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Abstract

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and

non-motor symptoms. Gastrointestinal tract dysfunction is one of the non-motor features, where constipation is

reported as the most common gastrointestinal symptom. Aromatic bacterial metabolites are attracting considerable

attention due to their impact on gut homeostasis and host’s physiology. In particular, Clostridium sporogenes is a

key contributor to the production of these bioactive metabolites in the human gut.

Results: Here, we show that C. sporogenes deaminates levodopa, the main treatment in Parkinson’s disease, and

identify the aromatic aminotransferase responsible for the initiation of the deamination pathway. The deaminated

metabolite from levodopa, 3-(3,4-dihydroxyphenyl)propionic acid, elicits an inhibitory effect on ileal motility in an

ex vivo model. We detected 3-(3,4-dihydroxyphenyl)propionic acid in fecal samples of Parkinson’s disease patients

on levodopa medication and found that this metabolite is actively produced by the gut microbiota in those stool

samples.

Conclusions: Levodopa is deaminated by the gut bacterium C. sporogenes producing a metabolite that

inhibits ileal motility ex vivo. Overall, this study underpins the importance of the metabolic pathways of the

gut microbiome involved in drug metabolism not only to preserve drug effectiveness, but also to avoid

potential side effects of bacterial breakdown products of the unabsorbed residue of medication.

Keywords: Non-motor symptoms, Gastrointestinal motility, Clostridium sporogenes, Drug side effects, Bioactive

metabolites, Aminotransferase

Background
Gut bacteria produce a wide range of small bioactive mol-
ecules from different chemical classes, including aromatic
amino acids [1]. Bacterial products from aromatic amino
acid degradation have been shown to play a critical role in
intestinal barrier function, immune modulation, and gut
motility [2–6]. In the lower part of the gastrointestinal

(GI) tract, where oxygen is limited, aromatic amino acid
degradation by anaerobic bacteria involves reductive or
oxidative deamination [7] resulting in production of aro-
matic metabolites [8–11]. Although the enzymes involved
in the deamination pathway of the aromatic amino acids
tryptophan, phenylalanine, and tyrosine have been de-
scribed [11–13], the enzyme involved in the initial trans-
amination step remains unknown.
Recently, small intestinal (SI) microbiota have been

implicated in the interference with levodopa drug avail-
ability [14, 15]. Early in vivo studies showed that ~ 90%
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of levodopa is transported to the circulatory system [16–
18], leaving a ~ 10% unabsorbed fraction of residual
levodopa that can act as substrate for other bacterial
species associated with the lower, more anaerobic re-
gions of the GI tract [19]. Such bacterial-residual drug
interaction might act as bioactive metabolites with an
impact on gut homeostasis.
Parkinson’s disease (PD) is often associated with non-

motor symptoms especially in the GI tract. GI tract dys-
function such as constipation, drooling, and swallowing
disorders occurs frequently in PD patients, especially
constipation, which is reported in 80–90% of the PD pa-
tients [20]. Importantly, chronic idiopathic constipation
is associated with SI motor abnormalities in the esopha-
gus, stomach, jejunum, and ileum [21, 22] and patients
with constipation have a longer SI transit time compared
to controls [22]. Only recently, SI dysfunction in PD was
studied showing that the transit time in the SI was sig-
nificantly longer in PD patients compared to healthy
controls (HC) [23, 24]. Using wireless electromagnetic
capsules, the SI transit time was reported to be signifi-
cantly higher in PD patients (400 min; n = 22) compared
to HC (295min, n = 15) [24].
This study uncovers the aminotransferase responsible

for initiating the deamination pathway involved in the
transamination of (among others) levodopa and shows
that C. sporogenes can effectively deaminate levodopa to
3-(3,4-dihydroxyphenyl)propionic acid through the aro-
matic amino acid deamination pathway [11]. We show
that the deamination product of gut bacterial degrad-
ation of the unabsorbed residues of levodopa in fecal
samples from PD patients reduces ileal motility ex vivo.
Our results highlight the urgency for further research on
the effects of bacterial conversion of the unabsorbed res-
idues of medication, which may affect host physiology.

Results
Clostridium sporogenes deaminates levodopa through its

deamination pathway

C. sporogenes is able to deaminate proteinogenic aro-
matic amino acids (PAAAs) through an anaerobic de-
amination pathway (Fig. 1a) [11–13]. We hypothesized
that levodopa, a non-proteinogenic amino acid (NPAA
A) and the main treatment in PD, could be deaminated
through the same pathway. Together with another
NPAAA, 5-hydroxytryptophan (5-HTP, precursor of
serotonin, over-the-counter available drug used to treat
depression, obesity, insomnia, and chronic headaches
[25]), as an analogous control compound derived from
tryptophan, we screened for deamination of these com-
pounds in batch cultures of C. sporogenes. Cultures were
incubated with 100 μM levodopa or 5-HTP in combin-
ation with PAAAs from the growth medium and were
followed over a period of 48 h. Analysis of the samples

using high-pressure liquid chromatography (HPLC)
coupled to an electrochemical detector (ED) revealed
that levodopa is completely converted within 24 h to a
new metabolite, which was identified by 1H/13C-NMR
and LC-MS as 3-(3,4-dihydroxyphenyl)propionic acid,
DHPPA (Fig. 1b, c; Additional File 1: Fig. S1A, 1B, 1C).
Furthermore, the incubations showed that the PAAAs
available from the growth medium did not prevent the
deamination of levodopa and that, during the incubation
for 48 h, DHPPA remained stable. Similarly, 5-HTP was
converted into two new unknown peaks (Additional File
1: Fig. S2A, S2B), albeit to a much lesser extent com-
pared to levodopa. Only the first peak could be detected
and assigned by LC-MS as 5-hydroxyindole-3-lactic acid
(5-HILA) by its predicted exact mass (Additional File 1:
Fig. S2C). The other peak is potentially 5-hydroxyindole-
3-propionic acid (5-HIPA), described below.
To further investigate the involvement of the deamin-

ation pathway in levodopa and 5-HTP deamination, the
enzyme responsible for the dehydratase reaction (encoded
by the fldC gene [11–13]) was disrupted using the Clos-
Tron mutagenesis system (Additional File 1: Fig. S2D)
[26]. The resulting strain C. sporogenes Ll.LtrB-eryRΩfldC

(CSΩfldC) was incubated with levodopa, and the PAAAs
from the growth medium. Tryptophan and tyrosine were
converted to their intermediates ILA (indole-3-lactic acid)
and 4-HPLA (3-(4-hydroxyphenyl)lactic acid), respect-
ively, as previously shown [11]. Analogous to tryptophan
and tyrosine, levodopa was no longer deaminated to
DHPPA but to its intermediate product 3-(3,4-dihydroxy-
phenyl)lactic acid (DHPLA) (Fig. 1d, e). Only a slight pro-
duction of 4-HPPA (from tyrosine) is observed after 48 h,
presumably because of the substitution of FldABC by the
similar HadABC proteins from the had-operon in C. spor-

ogenes [11, 12]. HPLC-ED analysis of the 5-HILA produc-
tion from 5-HTP by the fldC mutant was hampered by
the production of coeluting 4-HPLA, the intermediate de-
amination product produced from tyrosine (described
above). However, the analysis revealed that the second un-
known peak produced from 5-HTP was no longer pro-
duced by CSΩfldC (Additional File 1: Fig. S2E, S2F),
demonstrating that 5-HTP conversion is affected and sug-
gesting that the unknown product is 5-HIPA. Overall, the
results show that the deamination pathway from C. sporo-

genes not only is involved in the deamination of PAAAs
but also is in the deamination of the NPAAAs, levodopa
and 5-HTP.

Identification of the aromatic aminotransferase

responsible for initiation of the deamination pathway

The aromatic aminotransferase responsible for the trans-
amination of levodopa and the other (N)PAAAs is cru-
cial for the initiation of the reductive deamination
pathway and for the full deamination of the substrates

van Kessel et al. BMC Biology          (2020) 18:137 Page 2 of 14
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by the dehydrogenases (FldH and AcdA) and dehydra-
tase (FldABC) (Fig. 1a). However, the gene encoding this
transaminase remains unidentified. To further investi-
gate this critical step in the pathway, all nine class I/II
aminotransferases encoded by C. sporogenes were
cloned, purified, and screened for their activity on
levodopa and the other (N)PAAAs. Screening revealed a
single aminotransferase (EDU38870 encoded by
CLOSPO_01732) to be involved in their transamination
(Fig. 2a). To verify whether other aminotransferases
could substitute for the identified aminotransferase
in vivo, CLOSPO_01732 was disrupted (resulting in
CSΩCLOSPO_01732 (Additional File 1: Fig. S3A)) and a tar-
geted metabolomic analysis of all the (N)PAAA metabo-
lites was performed using HPLC-ED (except metabolites
from phenylalanine, which were quantified using HPLC-
UV). The disruption of fldC or CLOSPO_01732 resulted
in only a minor reduction of the exponential growth rate
in rich broth (doubling time is 55.1 ± 1.2 min and 64.1 ±
1.1 min, respectively, compared to wild type 44.3 ± 1.2
min) all reaching stationary phase within 12 h (Add-
itional File 1: Fig. S3B). Comparing the metabolic pro-
files from wild type C. sporogenes (CSWT), CSΩfldC, and
CSΩCLOSPO_01732 demonstrated that none of the other
tested aminotransferases could take over this transamin-
ase reaction effectively, except for the substrate phenyl-
alanine (Fig. 2b and Additional File 1: Table S1).
Disrupting CLOSPO_01732 significantly reduced the
production of phenyl-3-propionic acid (PPA), 3-(4-
hydroxyphenyl)propionic acid (4-HPPA), indole-3-
propionic acid (IPA), and 3-(3,4-dihydroxyphenyl)pro-
pionic acid (DHPPA) by 16.4%, 79.0%, 97.2%, and 97.7%,
respectively, compared to CSWT within 24–48 h (Add-
itional File 1: Table S1). Presumably, the transamination
of phenylalanine is substituted by EDU37030 as this
aminotransferase also showed phenylalanine-converting
activity in vitro (Fig. 2a). Interestingly, CSΩCLOSPO_01732

produces significantly higher amounts of tryptamine (4-
to 6-fold increase at 24 and 48 h, respectively) compared
to CSWT, reflecting a reduced competition for the same

substrate by different enzymes (Fig. 2b, Additional File
1: Table S1). Analogous to tryptamine, CSΩCLOSPO_01732

produced significantly more serotonin compared to
CSWT at 48 h when incubated with 5-HTP (Fig. 2b, Add-
itional File 1: Fig. S3C, Additional File 1: Table S1),
though to a much lesser extent (~ 1% of substrate added)
compared to tryptamine. Collectively, the data show that
the aromatic aminotransferase (EDU38870) is involved
in the initiation of the aromatic amino acid deamination
pathway and is crucial for the production of DHPPA, 5-
HILA, 5-HIPA, and the previously described metabolites
to be circulating in the blood, IPA, and 4-HPPA (Dodd
et al. [11]).

3-(3,4-Dihydroxyphenyl)propionic acid elicits an inhibitory

effect on ileal muscle contractions ex vivo

Because levodopa is the main treatment of PD patients
and is efficiently deaminated to DHPPA within 24 h by
the C. sporogenes deamination pathway compared to 5-
HTP, we further focused on levodopa and its deamin-
ation products. DHPPA is a phenolic acid (a molecule in
the class polyphenols), and recent findings demonstrated
an association between bacterial-derived polyphenol me-
tabolites and gut transit times in humans [27]. Levodopa
is mainly absorbed in the proximal small intestine, but
significant amounts can reach the distal part of the in-
testinal tract [17], and these levels increase with age
[28]. As levodopa is taken orally, the first intestinal site
where anaerobic bacteria such as C. sporogenes (Clostrid-
ium Cluster I) can encounter relevant levels of levodopa
is the ileum. Studies on asymptomatic ileostomy subjects
established that the core ileal microbiota consists of (fac-
ultative) anaerobes including species from Clostridium

Cluster I [29, 30]. Moreover, the transit time in the SI
has been shown to be significantly longer in PD patients
compared to healthy controls (with a median increase of
1.75 h in PD patients) [23, 24]. To this end, we tested
whether DHPPA (100 μM) could affect the muscle con-
tractility in the ileum. Ileal rings of wild type C57BL/6 J
mice were suspended in an ex vivo organ bath system to

(See figure on previous page.)

Fig. 1 Levodopa is deaminated by Clostridium sporogenes. a Full reductive deamination pathway of C. sporogenes is depicted resulting in the full

deamination (R-propionic acid) of (non)-proteinogenic aromatic amino acids ((N)PAAAs). The red arrow indicates a disrupted deamination pathway of C.

sporogenes, where the dehydratase subunit fldC is mutagenized, resulting in a pool of partially deaminated metabolites (R-lactic acid) by C. sporogenes. b

HPLC-ED curves from supernatant of a C. sporogenes batch culture conversion of levodopa (3-(3,4-dihydroxyphenyl)alanine) over time. At the beginning

of growth (timepoint 0 h), 100 μM of levodopa (blue) is added to the culture medium; the black line in the chromatogram depicts the control samples.

In 24 h, levodopa is completely converted to DHPPA (3-(3,4-dihydroxyphenyl)propionic acid), the deaminated product of levodopa. Other aromatic

amino acids from the medium, tryptophan and tyrosine (which are detectable with ED), are converted to the deaminated products IPA (indole-3-

propionic acid) and 4-HPPA (3-(4-hydroxyphenyl)propionic acid). c Quantification (n= 3) of levodopa conversion to DHPPA by C. sporogenes wild type

(also see Additional File 1: Table S1). d Analysis of the supernatant of CSΩfldC shows that levodopa is not deaminated to DHPPA but to its intermediate

product DHPLA (3-(3,4-dihydroxyphenyl)lactic acid) within 24 h. Tryptophan and tyrosine are converted to their intermediates ILA (indole-3-lactic acid)

and 4-HPLA (3-(4-hydroxyphenyl)lactic acid), respectively. e Quantification (n = 3) of levodopa conversion to DHPLA by C. sporogenes ΩfldC (also see

Additional File 1: Table S1). All experiments were performed in 3 independent biological replicates, and means with error bars representing the SEM

are depicted
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Fig. 2 Identification of the aromatic amino transferase initiating the deamination pathway. In order to identify which aminotransferase is responsible for

the initial transaminase reaction, all class I/II aminotransferases were cloned and purified to test the activity against (N)PAAAs. a Transaminase activity

(production of glutamate) for all substrates is depicted. EDU38870 (CLOSPO_01732) was involved in all transaminase reactions. EDU37030 showed

similar activity as EDU38870, for phenylalanine. Experiment was performed in technical duplicates to screen for candidate genes for mutagenesis in C.

sporogenes. b Targeted metabolic quantification of deamination products from CSWT, CSΩfldC, and CSΩCLOSPO_01732 reveals that EDU38870 is involved in

the transamination of all for all tested (N)PAAAs. All quantified deamination products are normalized to their initial substrate concentration, and the data

represents 3 independent biological replicates. Corresponding values are reported, and metabolite concentration differences between WT and ΩfldC or

ΩCLOSPO_01732 were tested for significance using Student’s t test, in Additional File 1: Table S1. Black squares indicate that quantification was not

possible because of a coeluting HPLC-ED peak. As no commercial standards are available for 5-HILA and 5-HIPA, the peaks were quantified assuming a

similar ED-detector response as for 5-HTP
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test the effect of DHPPA on muscle contractions. Our
initial results indicated that DHPPA displayed an inhibit-
ing effect on natural ileal contractility (Additional File 1:
Fig. S4A).
Because acetylcholine is the neurotransmitter con-

stantly produced from the excitatory muscle motor neu-
rons to induce gut smooth muscle contractility [31], we
tested whether DHPPA could have an inhibiting effect
on acetylcholine-induced contractility in the ileum. The

differences in amplitude of the contractions were quanti-
fied by measuring the decrease of the observed frequen-
cies after a Fourier transform of 5-min intervals
(Fig. 3a). Ileal tissue preparations were tested by initiat-
ing an acetylcholinergic twitch by adding 50 μM of
acetylcholine (a concentration saturating the muscarinic
receptors (Kd = 1.7 ± 0.18 μM [32])). After 5 min,
100 μM DHPPA (a concentration resembling the higher
levels detected in fecal samples of PD patients, see

Fig. 3 DHPPA inhibits the acetylcholine-induced twitch from mouse ileum. a Experimental setup, where 5min after adding 50 μM acetylcholine,

100 μM DHPPA is added. The panel below indicates how the amplitude of the frequencies of the observed oscillations (from 5min bins) is extracted

by a Fourier transform of the analog input. b A representative 1-min recording trace before and after the addition of acetylcholine and DHPPA or

vehicle (VH) is shown. ACh, acetylcholine; VH, vehicle (0.05% ethanol). c Inhibition of DHPPA on acetylcholine-induced twitch binned in intervals of 5

min shows a decrease in contractility over time (n = 6 biological replicates and experiments were repeated 1–4 times per tissue). Significance was

tested using repeated measures (RM) 1-way ANOVA followed by Tukey’s test (*p < 0.0021, ***p < 0.0002, #p < 0.0021). Box represents the median with

interquartile range, and whiskers represent the maxima and minima. d Dose response curve of DHPPA on the acetylcholine-induced twitch at the t15–20
minute bin (n = 4 biological replicates) with a half maximal inhibitory concentration (IC50) of 20.3 ± 10.6 μM
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below) was added and contractions were followed fur-
ther over a period of 15 min. One-minute traces of
the contractility representing one of the experiments
are shown before and after addition of acetylcholine,
DHPPA, or vehicle (Fig. 3b). A significant decrease in
the amplitude (binned in 5-min intervals) of the acet-
ylcholinergic twitch by DHPPA was observed at the
10–15-min (maximal reduction 69%) and 15–20-min
interval (maximal reduction 73%) (Fig. 3c). In order
to determine the potency of DHPPA, a dose response
curve with DHPPA was performed and showed a half
maximal inhibitory concentration (IC50) of 20.3 ±
10.6 μM (Fig. 3d). In contrast to DHPPA, incubations
with levodopa did not show any significant effect on
the acetylcholinergic twitch (Additional File 1: Fig.
S4B). Collectively, the data shows that DHPPA can
inhibit the acetylcholine-induced muscle contractility
of mouse ileum ex vivo.

Active levodopa deamination pathway in fecal

suspensions of patients with Parkinson’s disease

We hypothesized that if C. sporogenes or other bac-
teria with the deamination pathway (C. botulinum,
Peptostreptococcus anaerobius, or Clostridium cada-

veris [11]) are present in the GI tract of PD patients
on levodopa/carbidopa treatment, those patients
might have considerable amounts of DHPPA in their
distal GI tract. Because DHPPA can be a product of
gut bacterial metabolism of polyphenolic rich foods in
the colon such as coffee and fruit (Jenner et al. [33]),
fecal samples from 10 PD patients were compared to
10 age-matched HC. Samples were collected in a pre-
vious study, and there were no significant differences
in macronutrients, dietary fiber, or total calorie intake
between groups [34]. Using a catechol extraction tar-
geted for the quantification of DHPPA, we found that
the DHPPA concentrations were significantly higher
in PD patient’s fecal samples compared to HC
(Fig. 4a). Identification of DHPPA was confirmed by
LC-MS (Additional File 1: Table S2). The higher
amounts (2.2-fold increase) of DHPPA observed in
the fecal samples of PD patients are likely to result
from levodopa metabolized by the anaerobic bacteria,
deaminating levodopa through the FldBC dehydratase
(Fig. 1a). In order to investigate the presence and ac-
tivity of the anaerobic deamination pathway in fecal
samples, the dehydration of the intermediate levodopa
metabolite, DHPLA (Fig. 1a), was tested. The levo-
dopa intermediate DHPLA was used as substrate in-
stead of levodopa to prevent an in vitro substrate bias
for bacteria that can decarboxylate levodopa to dopa-
mine [14, 15]. Moreover, FldABC is the key protein
complex responsible for the production of DHPPA.
Screening for the identified transaminase or FldH

dehydrogenase upstream of FldABC would not be
relevant as many bacterial species harbor these types
of enzymes (Additional File 1: Fig. S5). Hence, fecal
suspensions (10% w/v) from PD and HC were incu-
bated anaerobically with DHPLA, and samples were
collected at 0, 20, and 45 h and were analyzed by
HPLC-ED. After 20 h, DHPPA was detected in fecal
samples from PD patients, as well as in fecal samples
of HC when supplied with the substrate levodopa
(Fig. 4b, Additional File 1: Fig. S6A). Moreover,
DHPPA was further converted to the downstream
dehydroxylated metabolite of DHPPA, 3-(3-hydroxy-
phenyl)propionic acid (3-HPPA), over time (Fig. 4b,
Additional File 1: Fig. S6A). Because DHPPA is fur-
ther converted to 3-HPPA in vitro, we quantified
both the production of DHPPA and/or 3-HPPA in
the fecal incubations as measure for the presence of
an active deamination pathway. Metabolic profiles of
PD or HC samples that produced DHPPA/3-HPPA
over time were quantified and merged (Fig. 4c, Add-
itional File 1: Fig. S6B), showing that DHPPA is pro-
duced first and is further metabolized to 3-HPPA.
The production of DHPPA or 3-HPPA was observed
in 50% and 20% of the PD patient’s and HC fecal
suspensions, respectively, after 20 h and in 70% and
50% PD patient’s and HC fecal suspensions, respect-
ively, after 45 h (Additional File 1: Fig. S6C). The pro-
duction of 3-HPPA in vitro is likely to be performed
by Eggerthella lenta, which has been shown to per-
form p-dehydroxylations [35]. Indeed, in vitro cultur-
ing of E. lenta showed p-dehydroxylation of DHPPA
(Additional File 1: Fig. S7A [35, 36]). Because DHPPA
is further converted to 3-HPPA in vitro, we examined
whether 3-HPPA could elicit a similar effect on the
acetylcholine-induced contractions in the ileum. Un-
like, DHPPA, 3-HPPA did not elicit a significant ef-
fect on the acetylcholine-induced twitch (Additional
File 1: Fig. S7B [35, 36]). Furthermore, to investigate
the genomic abundance levels of bacteria capable of
deaminating (N)PAAAs, we analyzed the 16s rDNA
sequence data of the fecal samples of patients with
Parkinson’s disease [34] that were employed in this
study (Additional File 1: Supplementary Results [11–
13, 37] and Additional File 1: Fig. S8). A significant
positive correlation (r = 0.62, R2 = 0.38, p = 0.02) was
found between bacteria with the deamination pathway
and DHPPA/3HPPA production in fecal incubation
samples at 20 h (Additional File 1: Fig. S8E). Taken
together, the results show that DHPPA can be pro-
duced by the microbiota via anaerobic deamination of
levodopa. Moreover, our findings indicate that 3-
HPPA originates from DHPPA via dehydroxylation
potentially by Eggerthella lenta and that the aromatic
deamination pathway, as measured by the production
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of DHPPA or 3-HPPA, is active and present in at
least 70% of the PD samples.

Discussion
Identifying bacterial pathways and elucidating their po-
tential impact on bacterial drug metabolism are crucial
in order, not only, to maximize medication efficacy, but
also to recognize and eventually prevent potential side
effects that might affect the host’s physiology on an indi-
vidual basis [14, 36, 38, 39]. Here, we disclosed the re-
ductive anaerobic deamination pathway in C. sporogenes

by identifying its initiating enzyme, the aromatic amino-
transferase, and expanded the pathway’s relevance by
demonstrating its capacity to convert two clinically im-
portant NPAAAs, levodopa and 5-HTP. We showed that
C. sporogenes is able to completely deaminate levodopa
to DHPPA and to a much lesser extent 5-HTP (Figs. 1
and 2; Additional File 1: Fig. S1, S2, S3; Additional File
1: Table S1). Disrupting the bacterial transaminase-
encoding gene abolished the production of deaminated
products, and increased the production of neuromodula-
tors such as tryptamine and, to much lesser extent, sero-
tonin (Fig. 2, Additional File 1: Fig. S3C, and Additional
File 1: Table S1). Tryptamine is a natural product pro-
duced by C. sporogenes that has been proposed to modu-
late gut transit time [40]. The application of engineered
gut bacteria as a therapeutic strategy to modulate GI
motility or host physiology has been also proposed re-
cently in two proof-of-concept studies: by heterologous
expression of Ruminococcus gnavus tryptophan decarb-
oxylase in Bacteroides thetaiotamicron [5] and by modi-
fication of the metabolic output of bioactive compounds
in an engineered fldC-deficient C. sporogenes strain [11].
However, translation of these studies into applications is
hindered by restrictions on the application of genetically
engineered microorganisms (GMOs) per se, and the
complexity of introducing these GMOs into an existing
gut microbiota ecosystem. Selective therapeutic blockage
of the aminotransferase identified in this study may pro-
vide an attractive alternative solution to modify gut
microbiota metabolism.
PD patients encounter increased gut transit time; thus,

an additional inhibition of acetylcholine-induced

contraction could result in further slowing down of gut
transit rates. The inhibitory effect of DHPPA on the
acetylcholine-induced ileal muscle contractions (Fig. 3),
higher DHPPA levels in fecal samples of PD patients
compared to HC (Fig. 4), and an active deamination
pathway of levodopa during fecal incubations of PD pa-
tients (Fig. 4) demonstrate active deamination of levo-
dopa in the distal GI tract of PD patients and suggest
potential side effects of this bacterial by-product of the
unabsorbed residue of the medication. DHPPA shares
similarity with dopamine structure except of the ter-
minal amine group, which is substituted by a carboxyl
group in DHPPA. Dopamine and dopamine agonists
have been shown to inhibit methacholine (analog of
acetylcholine) induced contraction, which is not medi-
ated via dopamine receptors, in guinea pig jejunum in
similar concentration ranges to DHPPA (EC50 relaxation
by dopamine ~ 290 μM) [41], indicating that DHPPA
might act on a similar mechanism. Collectively, although
further research is needed to unravel the underlying
mechanism, our results show that DHPPA inhibits the
acetylcholine-induced muscle contractions in the ileum
with implications on intestinal motility, often observed
in PD patients.

Conclusions
The present study shows that C. sporogenes can effect-
ively deaminate unabsorbed residues of levodopa in fecal
samples from PD patients to 3-(3,4-dihydroxyphenyl)-
propionic acid, which reduces ileal motility ex vivo.
Overall, our results highlight the urgency to unravel po-
tential effects of gut bacterial processing of (unabsorbed
residues of) medication, such as levodopa.

Methods
Growth and incubation of Clostridium sporogenes and

Eggerthella lenta

Clostridium sporogenes ATCC15579 was grown in
enriched beef broth (EBB) with 2 g/L glucose [14] and
0.1% Tween 80 (EBB/T) anaerobically (10% H2, 10%
CO2, 80% N2) in a Don Whitley Scientific DG250 Work-
station (LA Biosystems, Waalwijk, The Netherlands) at
37 °C. Eggerthella lenta DSM2243 was grown in

(See figure on previous page.)

Fig. 4 Higher DHPPA levels in PD patients and active levodopa deamination pathway in PD fecal suspensions. a DHPPA was extracted from fecal

samples of PD patients (n = 10) and age-matched healthy controls (n = 10) using activated alumina beads, and concentrations were quantified using a

standard curve of DHPPA on the HPLC-ED with 3,4-dihydroxybenzylamine as internal standard. DHPPA concentrations are depicted on the logarithmic

y-axis, and individual levels are indicated and compared between Parkinson’s disease (PD) patients and age-matched healthy controls (HC). The cross-

header represents the median (PD, 4.36 μM; HC, 1.37 μM) and the interquartile range (PD, 2.15–37.90 μM; HC, 0.53–3.75 μM). Significance was tested

using an unpaired nonparametric Mann-Whitney test (p = 0.0232). b A representative HPLC-ED chromatogram of fecal suspension from PD7 where

DHPPA is produced from DHPLA (black) after 20 h and is further metabolized to 3-HPPA after 45 h of incubation. The control, without the addition of

DHPLA, is indicated in gray. The green bars indicate the retention time of the standards indicated. c Metabolite profiles of the PD fecal suspensions

that produced DHPPA/3-HPPA within 20–45 h (70%) are merged as replicates. Lines represent the mean and the shadings the SEM; a zoom in graph

of DHPPA and 3-HPPA is depicted on the right
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modified DSMZ medium 78 (DSMZ 78: beef extract,
10.0 g/L; casitone, 30.0 g/L; yeast extract, 5.0 g/L;
K2HPO4, 5.0 g/L; Tween 80, 0.1%; menadione (vitamin
K3), 1 μg/mL; cysteine, 0.5 g/L; hemin, 5 mg/L; L-argin-
ine 0.1–1.5%) anaerobically (1.5% H2, 5% CO2, balance
with N2) in a Coy Laboratory Anaerobic Chamber (neo-
Lab Migge GmbH, Heidelberg, Germany) at 37 °C in a
tube shaker at 500 RPM. Upon use, bacteria were inocu-
lated from − 80 °C stored glycerol stocks in the appropri-
ate media and grown for 18–24 h for C. sporogenes and
24–40 h for E. lenta. Overnight turbid cultures were
then diluted 1/50 in an appropriate volume EBB/T or
CMM for further experiments with 100 μM levodopa
(D9628, Sigma), 5-hydroxytrytophan (H9772, Sigma),
50 μM 3-(3,4-dihydroxyphenyl)propionic acid (102601,
Sigma), or H2O as control. All experiments were per-
formed in triplicate (3 biological replicates).

Protein production and purification

Transaminase-encoding genes from C. sporogenes

(Additional File 1: Table S3) were amplified using
Phusion High-fidelity DNA polymerase and primers
listed in Additional File 1: Table S3. All amplified
genes were cloned in pET15b, except for EDU37032
which was cloned in pET28b (Additional File 1: Table
S3). Plasmids were maintained in E. coli DH5α and
verified by Sanger sequencing before transformation
to E. coli BL21 (DE3). Overnight cultures were diluted
1:50 in fresh LB medium with the appropriate anti-
biotic and grown to OD600 = 0.7–0.8 shaking at
37 °C. Protein translation was induced with 1 mM iso-
propyl β-D-1-thiogalactopyranoside (IPTG, 1141144
6001, Roche Diagnostics), and cultures were incubated
overnight at 18 °C. The cells were washed with 1/5th
of the volume in 1× ice-cold PBS and stored at
− 80 °C or directly used for protein isolation. Cell pel-
lets were thawed on ice and resuspended in 1/50th of
buffer A (300 mM NaCl; 10 mM imidazole; 50 mM
KPO4, pH 8.0) containing 0.2 mg/mL lysozyme
(105281, Merck) and 2 μg/mL DNAse (11284932001,
Roche Diagnostics), and incubated for at least 10 min
on ice before sonication (10 cycles of 15 s with 30 s
cooling at 8 μm amplitude) using Soniprep-150 plus
(Beun de Ronde, Abcoude, The Netherlands). Cell
debris was removed by centrifugation at 20,000×g for
20 min at 4 °C. The 6 × his-tagged proteins were
purified using a nickel-nitrilotriacetic acid (Ni-NTA)
agarose matrix (30250, Qiagen). Cell-free extracts
were loaded on 0.5 mL Ni-NTA matrixes and incu-
bated on a roller shaker for 2 h at 4 °C. The Ni-NTA
matrix was washed three times with 1.5 mL buffer B
(300 mM NaCl; 20 mM imidazole; 50 mM KPO4, pH
8.0) before elution with buffer C (300 mM NaCl; 250
mM imidazole; 50 mM KPO4, pH 8.0). Imidazole was

removed from purified protein fractions using Amicon
Ultra centrifugal filters (UFC505024, Merck) and
washed three times and reconstituted in buffer D (50
mM Tris-HCl; 300 mM NaCl; pH 7.5). Protein con-
centrations were measured spectrophotometrically
(Nanodrop 2000, Isogen, De Meern, The Netherlands)
using the predicted extinction coefficient and molecu-
lar weight from ExPASy ProtParam tool (www.web.
expasy.org/protparam/).

Transaminase activity test

Purified transaminases were incubated with 1 mM sub-
strate, 2 mM α-ketoglutaric acid, and 0.1 mM PLP (pyri-
doxal-5-phosphate, P9255, Sigma, The Netherlands) in
buffer D with an enzyme concentration of 50 nM for
tyrosine, tryptophan, or 5-HTP as substrate and an en-
zyme concentration of 500 nM for phenylalanine and
levodopa as substrate. Enzyme reactions were incubated
for 0.5 h at 37 °C; the reactions were stopped with 0.7%
(v/v) perchloric acid (1:1). Transaminase activity was
tested using an L-glutamic acid detection kit (K-GLUT,
Megazyme Inc., Wicklow, Ireland), according to the
manufacturer’s microplate assay procedure with some
modifications. The supplied buffer was substituted for
buffer D (described above, to prevent oxidation of the
substrates/products). A reaction mix was prepared mix-
ing 50 μL buffer D, 10 μL quenched sample reaction
mixture, 20 μL NAD+/iodonitrotetrazolium chloride so-
lution, 5 μL diaphorase solution, and 5 μL glutamate de-
hydrogenase (GIDH) solution and reconstituted to a
final volume of 290 μL with H2O. Absorbance at 492 nm
was measured after 10 min of incubation using a micro-
plate reader (Synergy HTX spectrophotometer, BioTek,
BioSPX, The Netherlands), and background was sub-
tracted from initial read before addition of GIDH
solution.

Targeted mutagenesis

Gene disruptions in Clostridum sporogenes were per-
formed using the ClosTron system [42, 43]. This system
facilitates targeted mutagenesis using the group II Ll.LtrB
intron of Lactococcus lactis. Introns targeting fldC

(CLOSPO_311) or CLOSPO_1732 (encoding for the
transaminase) were designed using the ClosTron intron
design tool (http://www.clostron.com) and were ordered
in pMTL007C-E2 from ATUM (Newark, CA, USA)
resulting in pMTL007C-E2_Cs-fldC-561a and pMT
L007C-E2_Cs-CLOSPO_1732-493s, respectively. Plasmids
were transferred to C. sporogenes by conjugation as de-
scribed before [43] using E. coli CA434 (E. coli HB101
(Bio-Rad Laboratories, The Netherlands)) harboring the
broad host IncPß+ conjugational plasmid pRK24 [44] as
donor strain. E. coli CA434 harboring pMTL007C-E2_Cs-
fldC-561a or pMTL007C-E2_Cs-CLOSPO_1732-493s was
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grown in Luria Broth (LB) with 10 μg/mL tetracycline and
25 μg/mL chloramphenicol (to select for pRK24 and
PMTL007C-E2, respectively). Cell suspensions of 1 mL of
overnight culture were washed once with PBS, and the cell
pellet was resuspended in 200 μL of C. sporogenes over-
night cell suspension. The bacterial mixture was spotted
(in drops of 10 μL) on trypticase soy agar (TSA) plates and
incubated for 24 h anaerobically at 37 °C. Sequentially, 1
mL of PBS was added to the spotted plates and the donor-
recipient mix was scraped of the plate; sequentially, the
scraped-off suspension was distributed over TSA plates
containing 50 μg/mL neomycin (to prevent growth of E.
coli) and 15 μg/mL chloramphenicol to select for C. sporo-
genes conjugants. Chloramphenicol-resistant colonies of
C. sporogenes were re-streaked on TSA plates containing
50 μg/mL neomycin and 2.5 μg/mL erythromycin (to se-
lect for intron insertion) for several times. To make sure
the plasmids were integrated, colonies were checked and
selected for their sensitivity towards chloramphenicol and
the genomic DNA was verified using PCR (Additional File
1: Fig. S1F and 2A).

Fecal samples from patients with Parkinson’s disease and

age-matched healthy controls

Fecal samples from patients diagnosed with PD (n = 10)
and age-matched healthy controls (n = 10) were acquired
from the Movement Disorder Center at Rush University
Medical Center, Chicago, IL, USA, published previously
[34]. All study subjects consented to the use of their
samples for research. PD was diagnosed according to the
UK Brain Bank Criteria as previously described [34].
Study subjects were provided with the supplies and in-
structions for home feces collection using the BD Gas-
pak EZ Anaerobe Gas Generating Pouch System with
Indicator (Ref 260683; Becton, Dickinson and Company,
Sparks, MD) in order to minimize the exposure of the
feces to high oxygen ambient atmosphere, which may
alter the microbiota. Subjects were asked to have a
bowel movement within 24 h of their study visit. Sub-
jects kept the sealed anaerobic fecal bag in a cold envir-
onment, before bringing the anaerobic fecal bag to the
hospital. Fecal samples were then immediately stored at
− 80 °C until analysis.

Fecal metabolite incubations from PD patients and HC

subjects

Stool samples were suspended 1:1 (w/v) in EBB/T and incu-
bated anaerobically (10% H2, 10% CO2, 80% N2) in a Don
Whitley Scientific DG250 Workstation (LA Biosystems,
Waalwijk, The Netherlands) at 37 °C with 100 μM sodium 3-
(3,4-dihydroxyphenyl)-DL-lactate (39363, Sigma). Samples
were taken at 0, 20, and 45 h and analyzed on HPLC-ED as
described below.

HPLC-ED/UV analysis and sample preparation

For bacterial cell suspensions, 1 mL of methanol was
added to 0.25 mL of cell suspension and stored at
− 20 °C until further use. For fecal metabolite incuba-
tions, 300 μL of methanol was added to 75 μL of fecal
suspension and stored at − 20 °C until further use. Me-
tabolites from stool samples were extracted by suspend-
ing the stool 1:1 (w/v) in water, followed by
homogenization by vigorously vortexing while keeping
samples as cold as possible. Homogenized suspensions
were centrifuged at 3500×g for 20 min at 4 °C, and se-
quentially, 1.6 mL of methanol was added to 0.4 mL of
supernatant. From bacterial, fecal incubation or stool
samples, cells and protein precipitates were removed by
centrifugation at 20,000×g for 10 min at 4 °C. Super-
natant was transferred to a new tube, and the methanol
fraction was evaporated in a Savant speed-vacuum dryer
(SPD131, Fisher Scientific, Landsmeer, The Netherlands)
at 60 °C for 1.5–2 h. The aqueous fraction was reconsti-
tuted with 0.7% HClO4 to the appropriate volume. Sam-
ples were filtered and injected into the HPLC-ED system
(Alliance Separations Module 2695, Waters Chromatog-
raphy B.V, Etten-Leur, The Netherlands; Dionex ED40
electrochemical detector, Dionex, Sunnyvale, USA, with
a glassy carbon working electrode (DC amperometry at
0.8 or 1.0 V, with Ag/AgCl as reference electrode)).
Samples were analyzed on a C18 column (Kinetex 5 μM,
C18 100 Å, 250 × 4.6 mm, Phenomenex, Utrecht, The
Netherlands) using a gradient of water/methanol with
0.1% formic acid (0–10 min, 95–80% H2O; 10–20min,
80–5% H2O; 20–23 min, 5% H2O; 23–31min, 95%
H2O). Fecal suspension metabolites were injected twice
and analyzed at DC amperometry at 0.8 V (for DHPPA)
and at 1.0 V (for 3-HPPA). Lowering the voltage makes
the detection more selective for more readily oxidizable
compounds [45] such as DHPPA, but making 3-HPPA
invisible for detection. For the detection of the
C. sporogenes metabolites and for peak isolation, another
HPLC-ED system was used (Jasco AS2059 plus autosam-
pler, Jasco Benelux, Utrecht, The Netherlands; Knauer
K-1001 pump, Separations, H. I. Ambacht, The
Netherlands) with the same detector (ED40) and the
same gradient as described above. Phenylalanine metab-
olites were detected by injecting the same samples in an
HPLC-UV system (Alliance Separations Module 2695,
Waters Chromatography B.V, Etten-Leur, The
Netherlands; TSP UV6000LP UV-detector (wavelength,
260 nM) Thermo Scientific, The Netherlands). Samples
for peak isolation were separated on a Vydac Semi-
preparative C18 column (218TP510, 5 μm, 300 Å, 10
mm × 250mm, VWR International B.V, Amsterdam,
The Netherlands) at 3 mL/min using the same gradient
as above. Data recording and analysis were performed
using Chromeleon software (version 6.8 SR13).
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Significance was tested using a two-sample equal vari-
ance (homoscedastic) Student’s t test (Microsoft Excel
2019 version 1808).

Catechol extraction from stool for DHPPA quantification

Catechols were extracted from PD patients and HC stool
samples using activated alumina powder (199966, Sigma)
as previously described [14] with a few modifications. A
volume of 200 μL 50% stool suspension (described
above) was used with 1 mM DHBA (3,4-dihydroxybenzy-
lamine hydrobromide, 858781, Sigma) as an internal
standard. Samples were adjusted to pH 8.6 with 800 μL
TE buffer (2.5% EDTA; 1.5 M Tris/HCl, pH 8.6), and 5–
10mg of alumina was added. Suspensions were mixed
on a roller shaker at room temperature for 20 min and
were sequentially centrifuged for 30 s at 20,000×g and
washed three times with 1mL of H2O by aspiration. Cat-
echols were eluted using 0.7% HClO4 and filtered before
injection into the HPLC-ED-system as described above
(DC amperometry at 0.8 V). A standard curve was
injected to quantify the concentrations of DHPPA in
50% (w/v) stool samples. Significance was tested using
an unpaired nonparametric Mann-Whitney test (Graph-
Pad Prism version 7).

Organ-bath experiments

Distal ileal samples were harvested from wild type
adult (18–20 weeks) male C57BL/6 J mice that were
sacrificed for another purpose. Harvested tissue was
immediately removed, placed, and washed in 0.85%
NaCl. Approximately 3-mm rings were cut and were
placed in an organ bath (Tissue Bath Station with
SSL63L force transducer, Biopac Systems Inc., Varna,
Bulgaria) filled with Krebs-Henseleit solution (NaCl,
7.02 g/L; KCl, 0.44 g/L; CaCl2.2H2O, 0.37 g/L;
MgCl2.6H2O, 0.25 g/L; NaH2PO4.H2O, 0.17 g/L; glu-
cose, 2.06 g/L; NaHCO3, 2.12 g/L) gassed with carbo-
gen gas mixture (5% CO2, balanced with O2) at 37 °C.
Ileal rings were equilibrated for at least 45–60 min
with replacement of Krebs-Henseleit solution approxi-
mately every 15 min. Sequentially, 50 μM of acetylcho-
line (ACh) (Sigma, A2661) was added to induce a
stable repetitive muscle twitch response, and after ~ 5
min, 100 μM of DHPPA (102601, Sigma) (n = 6 bio-
logical replicates, 1–4 technical replicates), 3-HPPA
(91779, Sigma) (n = 4 biological replicates, 2 technical
replicates), or levodopa (D9628, Sigma) (n = 3 bio-
logical replicates, 2 technical replicates) was added for
~ 15 min before the ileal rings were washed. This step
was repeated 1–4 times per ileal preparation. As con-
trol, ACh was added for at least 20 min with or with-
out 0.05% ethanol (solvent of DHPPA) after 5 min to
check for spontaneous decrease. For the dose re-
sponse curve (n = 4 biological replicates), every 15

min, the cumulative dose of DHPPA was increased by
2-fold ranging from 8 to 512 μM. Data was recorded
and analyzed in BioPac Student Lab 4.1 (Build: Febru-
ary 12, 2015). Frequencies were extracted performing
a fast Fourier transform (FFT) on bins of 5-min inter-
vals. The maximum amplitude of all the observed fre-
quencies was extracted, and the average decrease of
all frequencies over time was calculated. Significance
was tested using repeated measures (RM) 1-way
ANOVA followed by Tukey’s test (GraphPad Prism
version 7).

NMR

Samples were exchanged once with 99.9 atom% D2O
with intermediate lyophilization, finally dissolved in
650 μL D2O. One- and two-dimensional 1H and 13C
NMR spectra were recorded at a probe temperature of
25 °C on a Varian Inova 500 spectrometer (NMR De-
partment, University of Groningen). Chemical shifts are
expressed in parts per million in reference to external
acetone (δ 1H 2.225; δ 13C 31.08). 1D 500-MHz 1H
NMR spectra were recorded with 5000 Hz spectral width
at 16k complex data points, using a WET1D pulse to
suppress the HOD signal. Homonuclear decoupled 1D
125MHz 13C NMR spectra were recorded with 31,000
Hz spectral width at 64k complex data points. 2D
1H-13C HSQC spectroscopy was performed using multi-
plicity editing, rendering CH2 signals in the negative
plane, while CH and CH3 remain in the positive plain.
2D 13C-1H HMBC spectroscopy was performed sup-
pressing single-bond correlations. Spectra were proc-
essed using MestReNova v9.1 (Mestrelabs Research SL,
Santiago de Compostela, Spain).

LC-MS

HPLC-MS analysis was performed using an Accella1250
HPLC system coupled with the benchtop ESI-MS Orbi-
trap Exactive (Thermo Fisher Scientific, San Jose, CA,
USA) in negative and positive ion mode. Samples were
analyzed on a C18 column (Shim Pack Shimadzu XR-
ODS 3 × 75 mm) using a gradient of water/acetonitrile
with 0.1% formic acid (0–5 min, 98–90% H2O; 5–10
min, 90–5% H2O; 10–13min, 5% H2O; 13–14 min, 98%
H2O). Data analysis was performed using Qual Browser
Thermo Xcalibur software (version 2.2 SP1.48).
HPLC-MS analysis of alumina extraction samples was

performed using a Waters Acquity Class-I UPLC (Waters
Chromatography B.V, Etten-Leur, The Netherlands) sys-
tem coupled to a MaXis Plus Q-TOF (Bruker, Billerica,
MA, USA) on negative ion mode with post-column
addition of 3 μL/min ESI Tune Mix (G1969-85000; Agi-
lent Technologies, Middelburg, The Netherlands) for mass
calibration. Samples were analyzed on a C18 column
(Shim Pack Shimadzu XR-ODS 3 × 75mm) using a
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gradient of water/acetonitrile with 0.1% formic acid (0–5
min, 98–90% H2O; 5–10min, 90–5% H2O; 10–13min, 5%
H2O; 13–15min, 2% H2O; 15–17min, 98% H2O). Data
analysis was performed using Bruker Compass Data Ana-
lysis (version 4.2 SR1).

Bioinformatics

Phylogenetic trees

Proteins were BLASTed against a local BLAST database
constructed from the protein sequences of the NIH Hu-
man Microbiome Project (HMP) Roadmap project
(PRJNA43021) using BLAST 2.9.0+, NCBI. The top 100
BLASTp hits were aligned in the Constraint-based Mul-
tiple Alignment Tool (COBALT, NCBI) and converted
to a distance tree using NCBI TreeView (Parameters:
Fast Minimum Evolution; Max Seq Difference, 0.85; Dis-
tance, Grishin).

Sequence data analysis

The demultiplexed paired-end sequence data from stool
and sigmoid colon samples of PD patients and healthy
controls from Keshavarzian et al. [34] (bioproject
PRJNA268515) were analyzed using Kraken2 (v2.0.9,
April 7, 2020), a k-mer taxonomic classification system
[46], using the standard Kraken2 database. To further
estimate the species abundance, the Kraken2 output was
analyzed with Bracken (Bayesian Reestimation of Abun-
dance with KrakEN; v2.6.0, April 3, 2020) [47]. The
number of mapped reads from bacteria with the fld-gene
cluster [11] was extracted from the Bracken results, and
the abundance was calculated relative to the total num-
ber of mapped bacterial reads.
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