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Abstract: Human lifestyle and dietary behaviors contribute to disease onset and progression. Neu-
rodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with
changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency
to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans
will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element
underlying NDD development and prognosis. In particular, an inflammation-associated microbiome
plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dys-
biotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain
fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis,
ameliorates the inflammatory microbiome. This intimate pathological link between the gut and
NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies
for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly
manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evalua-
tion at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion
that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA
represents a potent therapeutic target for treating NDDs.

Keywords: neurodegeneration; microbiome; stem cells; epigenetics; neurological disorders

1. Introduction

Neurodegenerative diseases (NDDs) are commonly defined as pathologies that lower
normal brain function, usually accompanied by brain tissue atrophy and lower cognition
capacity with a tendency to worsen with chronicity [1,2] Although NDDs manifest as
chronic and aging brain pathologies, the exact timing for a brain pathology to turn into
a neurodegenerative aberration remains not well understood. Acute brain insults with
chronic pathological manifestations, such as stroke, present symptoms of neurodegener-
ative disease [3]. NDDs stand as a major health problem that affect millions of people
worldwide, including those suffering from Alzheimer’s disease (AD), Parkinson’s disease
(PD) and Amyotrophic Lateral Sclerosis (ALS), the most common pathologies around the
world [4,5]. Most NDDs tend to be associated with aged people’s brain pathologies, and
with the constant increase in life expectancy, the incidence of these diseases is expected to
increase as well [1,4].
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Over the past decade, the accumulating evidence has implicated a pathological link
between brain and gut microbiota, which may also represent a novel therapeutic target
for treating NDDs [6,7]. The gut-brain axis (GBA) is the term used to describe the inter-
action between brain and gut microbiota, highlighting the complex interaction of brain
development, aging, and functioning [7,8]. Direct anatomical and physiological connec-
tions of the GBA may entail the vagus nerve, hormone signaling, metabolism of specific
molecules such as tryptophan and even the immune system, altogether corresponding to
key pathways for interrogating the GBA microbiome [6,9]. GBA may play an important
role in brain functions, such as cognition learning and memory, suggesting that targeting
the patients’ specific gut microbiota may alleviate neurological symptoms in NDDs, such as
AD and PD [8,10]. Indeed, dampening the pro-inflammatory immune response product of
pathogenic bacteria secretions and natural immune response in the gut affords therapeutic
effects in NDDs [11].

Current medical treatment for NDDs is primarily symptomatic. Specific drugs that
target the brain under a regimen of polypharmaceutical therapies can retard the progression
of NDDs, but most of these pharmacotherapeutics are palliative and do not directly alter
the disease pathology [6,12]. Novel therapies designed to promote disease-modifying
outcomes, such as stem cell therapy, generate promising preclinical and clinical outcomes
in NDDs [13,14]. Of note, several in vitro and preclinical models of NDDs reveal the
mechanistic action of this stem cell therapy involves downregulation of the deleterious
pro-inflammatory response closely associated with NDDs [14,15]. Recognizing the close
interaction of inflammation in GBA and NDDs, in this article, we discussed the pathological
hallmarks of NDDs (AD, PD, ALS, and chronic stroke), emphasizing the role of the gut
microbiome in the disease progression as well as in developing innovative treatment via
anti-inflammatory strategies, such as stem cell therapy. Many paradigms implicate the
association of neurodegenerative diseases with infectious diseases and the putative biologi-
cal function of some of the primary proteins implicated in these disorders. The aberrant
accumulation of specific proteins, such as TDP-43 [16] and SOD1 [17] in ALS, amyloid β [18]
and Tau [19] in AD, and α-synuclein [20] in PD, with similar proteinopathies seen in the
chronic stage of ischemic stroke [21] can initiate a cascade of deleterious innate immunity
processes that may contribute to the dysbiotic and dysfunctional GBA pathophysiological
manifestations of NDDs. Recent review papers highlight the interaction between GBA and
NDDs, with emphasis on diet, exercise, prebiotics and probiotics as treatments towards
maintaining healthy microbiota in GBA [22–27]. Here, we chose to probe the underexplored
use of stem cells for improving the microbiota in NDDs. While ethical and technical caveats
abound, such as stem cell source, cell purity and amplification, and potential tumorigenic
risks, hinder stem cell therapy, the optimization of the safety and efficacy of this approach
may open new avenues of research and clinical application of cell-based therapeutics for
treating NDDs.

2. Epigenetics and Neurodegeneration

Early human developmental stages represent a key period that may affect health in
adulthood [28–30]. Indeed, a differentiation process takes place during the first 1000 days of
life that leads to specialized cells of the pluripotent mediated by an epigenetic remodeling
that is responsible for deactivating unnecessary genes for a particular tissue while helping
to express those that are essential for the same [28]. To differentiate cells, DNA methylation
processes dependent on DNA methyltransferases (DNMT) are necessary, which catalyze
the methylation of CpG islands in the gene promoter. When the presence of methyl groups
obstructs the interaction between the transcription factors and the promoter region, the
binding with RNA polymerases that initiates early gene expression is suppressed [28–30].
An additional gene expression regulation through a complex process entails methylation
of regulatory regions as well as histone methylation. The availability of methyl group
donors determines the methylation process during pregnancy and throughout life via the
folate metabolism pathway. A diet rich in folates, with folic acid supplementation during



Int. J. Mol. Sci. 2022, 23, 1184 3 of 15

pregnancy, and the availability of vitamins B6 and B12 help to promote a good availability
of methyl groups. In addition to DNA methylation, post-translational modifications and
histone modification also stand as highly relevant epigenetic mechanisms associated with
regulating a healthy and an unhealthy phenotype [28–31].

Chromatin remodeling is associated with the activation or inhibition of gene ex-
pression through processes such as histone methylation, acetylation, phosphorylation,
ubiquitination, sumoylation, and glycation, altogether representing the first step for gene
expression [28]. For the modulation of these processes, specific precursors are required for
surveillance of adequate quantity and quality of nutrient intake to maintain a balanced ratio
of FAD/FADH2. A reduced intake of folates during early life has been linked to incorrect
DNA methylation with long-term effects, such as a decrease in the insulin growth factor
2 (IGF2) promoter methylation of the maternal allele transmission to offspring, overweight
in men at age 20 and glucose intolerance at age 50 [28]. Additionally, low birth weight,
obesity with coronary heart disease, and deterioration in neurocognitive development in
adult life, with maternal smoking exacerbating this phenotype [28–31].

Neurological disorders, especially those presenting with neurodegeneration, have
been associated with harmful environmental factors identified in childhood; in particular,
an unbalanced diet that alters early gene expression leads to epigenetic changes that
manifest in adulthood [28]. Early neurobehavioral deficits accompany remodeling of the
epigenome by environmental factors such as smoking, alcohol, stress, and exposure to
pesticides [32]. An iron deficit in early life is related to permanent deficits in recognition
memory and, later in life, in procedural memory [33]. On the contrary, an excess of maternal
iron or during adulthood can have deficiencies in development due to epigenetic and
neuroinflammatory processes [34]. Studies in animal models showed that an iron deficiency
in the neonatal age coincides with a neurodevelopmental dysfunction consequent with
altered hippocampal DNA methylation and deficient expression of genes involved in the
regulation of permeability, hypoxia, and angiogenesis [35]. A decrease in fetal neurogenesis
may manifest as deficiencies in metals such as copper and zinc due to an impaired DNA
methylation process, which during adulthood may contribute to the production of the
β-amyloid peptide present in plaques of AD patients [28–31]. Similarly, dysfunctional
fetal neurogenesis of immature dopaminergic neurons has been implicated in PD [20],
whereas in ALS cellular modeling, induction, but not inhibition, of inflammation in fetal
brain-derived human neural stem cells enhances their proliferation and differentiation
into oligodendrocytes [36]. Interestingly in stroke, lactation protects the maternal brain
against ischemic insult partly through angiogenic and neurogenic remodeling processes [37].
Altogether, these findings suggest that epigenetics in early life, or when recapitulated
during pregnancy, may play a significant role in adult health, specifically regulating the
brain capacity to undergo repair or neuroregeneration.

2.1. Amyotrophic Lateral Sclerosis

ALS, also known as motor neuron disease, manifests as a multifactorial neurodegener-
ative disease characterized by progressive degeneration and death of motor neurons in the
brain and spinal cord, which leads to both motor and extra-motor symptoms. [38,39]. ALS
diagnosis often occurs during the third and fourth decade of life and can be classified as
sporadic, accounting for 90% of the cases, or hereditary, accounting for 10% of the cases [40].
Clinical features typically include muscle weakness, dysarthria, dysphagia, and, in more
advanced stages, respiratory problems due to diaphragm paralysis [39,41].

The clinical neurodegeneration observed in ALS consists of decreasing ability to
control and activate skeletal or smooth muscles, eventually manifesting as muscle weakness
and wasting [42]. This muscular dysfunction is due to a loss of neuromuscular connection
as well as axonal retraction, which leads to cell death of both upper and lower motor
neurons [42,43]. Clinical symptoms can start with bulbar symptoms, such as dysarthria
and dysphagia or can manifest in muscles of the extremities. Independent of mechanistic
triggers of symptom initiation, neurodegeneration proceeds, and motor neuron death
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progresses to a point where patients are not self-sufficient anymore and need external help
for basic life chores such as moving and eating [44]. Unfortunately, most of the patients die
due to breathing or eating inability produced by near-complete incapacitation of breathing
or swallowing muscles [43,44]. Despite the severity of motor neuron death, patients do
not display cognitive or mental dysfunctions, thereby relegating ALS as a purely motor
neurodegenerative disease.

Although ALS etiology remains not well established, the gut microbiota may me-
diate the disease pathology, mainly due to pro-inflammatory gut microbiomes [45,46]
(Figure 1). Of note, the gut pro-inflammatory state leads to neural disturbance, and with
time, to neurodegeneration [46]. Pro-inflammatory cytokine expression contributes to
the progressive damage of the central nervous system (CNS) and inhibits self-repairing
processes [47,48]. Likewise, a deleterious feedback loop ensues with the initial inflam-
matory insult, subsequently triggering pro-inflammatory immune components such as
microglia, macrophages, neutrophils, and natural killers to encroach cerebral tissue and
create neurological dysfunctions [49,50].

Figure 1. ALS and GBA. A dysfunctional gut accompanies the progression of ALS, with increased
bacteria, including E. coli and enterobacteriaceae, leading to upregulation of damaging reactive
oxygen species (ROS) and eventually contributing to motor neuron death, which is a hallmark
pathological manifestation of the disease.

Microglial activation acts as a major element of chronic neurodegeneration [51,52]. Pa-
tients suffering from ALS have higher levels of pro-inflammatory cytokines and biomarkers
in cerebrospinal fluid and the spinal cord, such as IL-8, IL-6, MCP-1, and the expression of
CD1, CD40, among others [53,54]. Pathologic bacteria expression of LPS and inflammatory
cytokines, which are commonly associated with dysbiotic gut microbiomes, exacerbates
chronic microglial activation [55,56]. Accordingly, an unhealthy gut state can lead to sev-
eral neurologic disbalances, such as neurovascular unit (NVU) disturbance, blood–brain
barrier (BBB) leakage, neurotoxic environment, etc., which together increase the risk to
develop NNDs, such as ALS [46,53]. Upregulation of specific pathologic bacterias, such
as E. coli and other enterobacteriaceae, accompanies ALS clinical manifestations and a
poorer prognosis for long-term survival [53,57]. That the GBA may be the source of ALS
pathophysiology is recognized from patients, as well as animal models, in their inability to
eliminate reactive oxygen species (ROS) and other neurotoxic agents, which consequently
increases motor neuron death [58,59]. This specific pathologic characteristic of ALS, in
addition to the pro-inflammatory state produced by gut dysbiosis, creates a health scenario
where it is crucial to attend to both the clinical neurological manifestations as well as the
imbalance that exists at the gut level.
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2.2. Alzheimer’s Disease

Advanced age is the main risk factor for AD. The composition of the intestinal micro-
biota changes as we age, and certain protective bacteria, such as Bacteroidetes, Bifidobac,
and Lactobacillus, decrease [9,60,61]. The intestinal microbiota contains large amounts of
bacterial amyloid, and the most studied is Escherichia Coli. The production of amyloid
proteins prompts bacterial cells to form biofilms that confer resistance against the destruc-
tion of immune factors [62–65]. Exposure to bacterial amyloid proteins in the gut enhances
the immune response to endogenous neuronal amyloid accumulation in the brain [11,66]

AD entails a complex neurodegenerative process that involves the aberrant formation
of amyloid-β (Aβ) plaques as well as hyperphosphorylated Tau neurofibrillary tangles,
thereafter producing neurotoxicity and neuroinflammation and resulting in cell death and
lowering normal brain functions [67,68]. AD patients suffer from neuronal loss, specifically
from the middle and lower temporal lobes, as revealed by imaging studies such as CT scans
and MRIs [68]. This cellular death coincides with clinical manifestations such as lower
semantic and episodic memory, which with time can make a person not self-sufficient for
living alone or socializing with people [68,69]. The clinical onset of AD neurodegeneration
usually starts with patients having difficulty remembering places, words, or names that
they used to know [70]. Likewise, they have problems with learning new things or concepts
and maintaining focus on a specific chore [71]. As neurodegeneration progresses, the
symptoms worsen, and patients may not recognize familiar faces, places, or objects, recent
activities, or known concepts, leading to behavioral changes [72,73].

The pathogenesis of AD coincides with dysfunctional intestinal microbiota (Figure 2).
Irritable bowel syndrome characterized by an alteration of the microbiota is one of the main
pathophysiological factors of AD [74]. The bacteria that invade the intestinal microbiome
have the ability to excrete huge amounts of amyloids and lipopolysaccharides, which
can contribute to AD pathology [75]. Moreover, because AD is an age-related disorder,
the BBB and the epithelium of the gastrointestinal tract become more permeable during
aging, thereby allowing polysaccharides and amyloid to access the brain, easily causing
inflammation [9,76]. Such age-induced compromise of the BBB and the gut suggests that the
GBA may participate in the initial stages of AD-associated proteinopathy and inflammation.

Figure 2. AD and GBA. A leaky gut may allow the transport of bacterial amyloids from the intestines
to the brain, where aberrant aggregation of amyloid β (Aβ) occurs, forming Aβ plaques implicated
in AD pathology and symptoms.
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2.3. Parkinson’s Disease

PD corresponds to the most common movement disorder affecting up to 1% of the
population over 60 years of age. PD neurodegeneration etiology remains unclear, but neuro-
toxicity appears to arise from combined genetics and epigenetics alterations. The hallmark
pathology of PD entails the depletion of dopaminergic cells located in the pars compacta of
the midbrain [50,77]. Dopaminergic cell death leads to a dysfunction of dopaminergic path-
ways, mainly the nigrostriatal pathway, which is responsible for movement control [78].
Major clinical symptoms include resting tremor, bradykinesia and rigidity [79,80]. As
neurodegeneration progresses, patients can experience mood and behavioral changes and
limited facial movements and physical activity [81,82]. By the time clinical symptoms
are clearly evident, it is estimated that around 80% of dopaminergic neurons have been
lost [81].

The association of the microbiome with PD is of particular interest since a healthy
and dysbiotic microbiome can influence gut and brain homeostasis through complex two-
way communication along the GBA [83,84] (Figure 3). The intestinal microbiome, largely
affected by the diet, serves as a source of disease pathology but also represents a therapeutic
target in preventing, modifying, or stopping PD [83]. A change in the gut composition of
transgenic PD mice reveals GBA’s role in the pathogenesis of the disease since α-synuclein
aggregates easily spread upward from the enteric nervous system to the brain [84]. Similarly,
the components of the diet are closely related to the risk of suffering from PD since patients
with this disease show a dysregulated intestinal microbiome (dysbiosis) characterized
mainly by the loss of short-chain fatty acid bacteria and an increase in lipopolysaccharide
bacteria [85,86]. Downstream neurodegeneration-inducing mechanisms of an altered
microbiota in PD models include aberrant activation of the NLRP3 inflammasome, impaired
insulin resistance, and dysfunctional mitochondrial [84,87,88].

Figure 3. PD and GBA. Prior to dopaminergic depletion in the brain and even before the manifestation
of PD symptoms, preclinical and clinical evidence indicates a dysregulated gut characterized by
downregulated short-chain fatty acid bacteria but upregulated lipopolysaccharide bacteria, resulting
in abnormal accumulation of α-synuclein in the gut that subsequently aggregates in the brain and
causes dopaminergic degeneration, a PD pathological hallmark.

The classic motor symptoms of PD reflect the death of dopamine-generating cells
in the substantia nigra, but a wide spectrum of nonmotor clinical manifestations, among
which there is a loss of smell, alterations in the gastrointestinal, cardiovascular and uro-
genital systems also accompany the disease [89]. Interestingly, gastrointestinal dysfunc-
tion is present in more than 80% of people with PD patients, suggesting that a deficient
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GBA contributes significantly to its pathogenesis [90]. As noted above, a bidirectional
communication in GBA may preclude an initial excessive stimulation of the systemic in-
nate immune system due to the dysregulation of the gastrointestinal system or bacterial
overgrowth. Such dysfunctional GBA subsequently compromises the BBB permeability,
resulting in a systemic-to-CNS influx of inflammatory microbiome, α-synuclein, altogether
inducing deleterious immune and inflammation responses and ultimately dopaminergic
neurodegeneration [84,90]. Another very important point to consider in this GBA-induced
neurodegenerative pathology is that intestinal bacteria are capable of synthesizing various
neurotransmitters and neuromodulators that allow intracellular communication [90].

Bacterial colonization is closely associated with postnatal development, including
the maturation of the immune, endocrine and neural systems. These processes are highly
relevant for efficient CNS signaling [91,92]. Indeed, a dysfunctional GBA accompanies
disorders characterized by stress, depression, anxiety, irritable bowel syndrome, inflam-
matory bowel disease, and neurodevelopmental disorders, such as autism [90]. Of note, a
significant percentage of PD patients present with symptoms, such as abnormal salivation,
dysphagia, nausea, constipation, and impaired defecation, altogether corresponding to bod-
ily functions associated with the gut [93,94]. Although a decrease in brain dopamine may
mediate some gastrointestinal symptoms, peripheral organs (i.e., gut) are likely involved in
the non-motor pathophysiology of PD [90]. The incorrect folding of α-synuclein is rampant
in the intestinal microbiota of PD animals and accompanies the peripheral damage in
dopaminergic neurons [95]. In parallel, the eradication of H. pylori in PD animals improved
the absorption of the levodopa and reduced the motor symptoms [96,97]. In PD patients,
worsening of motor severity proceeds with an infection of H. pylori [97]. Taken together,
these findings suggest the close interaction of GBA in PD pathology and treatment.

2.4. Stroke

Stroke stands as the fifth cause of sudden death in the US. Common risk factors for
stroke include arterial hypertension, smoking, age, and obesity [98,99]. This pathology
involves thrombosis, embolism, or focal hypoperfusion that leads to cerebral blood flow in-
terruption and consequent ischemia [100,101]. Lack of blood supply leads to cellular death,
excitotoxicity, and an immediate pro-inflammatory response characterized by macrophages
type 1 and T cells infiltration, the release of pro-inflammatory chemokines, oxidative stress,
and reactive oxygen species production [102,103]. If blood reperfusion is not quickly
restored or the pro-inflammatory environment is not sequestered, it can lead to severe
complications such as BBB disruption and critical neuronal loss with considerable brain
functional disability [104].

While traditionally considered an acute injury, stroke manifests with chronic neurode-
generation. A stroke consists of two key pathological events [105]. The first one involves
the initial injury and death of neurons due to ischemia. Cell loss in the initial injury
cannot be recovered, and, depending on the anatomical location of the ischemia, specific
clinical symptoms ensue [15,105]; frontal lobe ischemia can lead to motor dysfunction,
while temporal lobe ischemia may induce language and speech deficit as well as memory
and cognitive impairment [106]. The second stroke event entails a neurodegenerative
event likely mediated by microglial activation, BBB leakage, oxidative stress, chronic in-
flammation, among other cell death mechanisms [15,107]. Our long-standing interest in
chronic neuroinflammation reveals that this cell death process can be present weeks or
even months after the ischemic event and can enhance late neurodegeneration [15,107,108].
Similar to acute stroke symptoms, chronic stroke symptoms associated with neurode-
generation may vary depending on the anatomical region of the ischemia, but some of
the most commonly reported manifestations include dizziness, amnesia, disorientation,
and constant headache [108,109]. Treating acute stroke, as well as chronic stroke (albeit),
neuroinflammation may need enhanced post-ischemic patient medical care.

Probing the role of GBA bidirectional communication in stroke reveals cell death
pathways [110] (Figure 4). After ischemia, damage-associated molecular patterns (DAMPs)
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not only trigger cerebral inflammation but also induce a gut inflammatory response [111].
Gut inflammation can lead to intestinal injury, increased gut permeability, and even sep-
sis [112]. Furthermore, gut inflammation confers systemic inflammation that contributes
to brain inflammation [110,113]. Pro-inflammatory gut microbiomes accompany a worst
stroke prognosis likely due to a heightened immune system that generates a detrimental
pro-inflammatory response after cerebral ischemia [110,114]. Reminiscent of established
neurodegenerative disorders, such as ALS, AD, and PD, as discussed above, the significant
contribution of GBA to stroke secondary injury requires a closer examination of this cell
death pathway in the stroke pathology and its treatment.

Figure 4. Stroke and GBA. Following the initial primary injury of ischemic injury (acute phase), the
gut mounts an inflammatory response, resulting in the production of deleterious pro-inflammatory
microbiomes, which, when uncontrolled over time (chronic phase), leads to detrimental inflammation
that damages the neurovascular unit, thereby exacerbating stroke outcomes.

Current stroke treatments, such as tissue plasminogen activator (tPA) and mechan-
ical thrombectomy, are highly timing-dependent after the stroke onset in order to be
effective [115]. The therapeutic window of 4.5 h and 24 h for tPA and mechanical thrombec-
tomy [116–119] are limited to treating the acute stroke injury, i.e., restoration of blood supply.
However, cognizant of the chronic stroke complications, specifically the neurodegeneration,
novel treatment strategies need to be developed to improve stroke clinical outcomes.

3. GBA-Based Stem Cell Therapy for NDDs

Treatment options for neurological diseases are very limited and mostly palliative
instead of disease-modifying therapies. Stem cell therapy represents a breakthrough in
abrogating the neurodegenerative disease process owing in large part to the regenerative
features of the stem cells that recapitulate brain development [120]. Indeed, the application
of stem cell therapy in neurological diseases has reached clinical trials based on solid
safety and efficacy data over the last three decades [121]. Stem cells have unique properties,
among which are their capacity for self-renewal, differentiation, and growth factor secretion,
which by themselves can initiate the regenerative process or stimulate the host brain to
foster brain repair [121].
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There are several sources for stem cells, such as the fetus, embryo, and adult tissues
such as bone marrow, adipose, placenta, and umbilical cord, among others, each with
promising applications [122–124]. Pluripotent stem cells appear to confer multi-pronged
regenerative processes, including neural differentiation and by-stander growth factor
effects, which may afford disease-modifying outcomes, especially in neurodegenerative
diseases and ischemic processes [15,124–126]. Moreover, the wide window (e.g., several
days to weeks and even many months after disease diagnosis) in transplanting stem cells
in animal models and patients with NDDs circumvents the narrow treatment intervention
timing seen with tPA and mechanical thrombectomy in the case of stroke.

Animal models of NDDs have shown an improvement in neural function after the
transplantation of different cells or their derivatives by replacing lost neural cells, releasing
cytokines, modulating inflammation, and mediating remyelination, among other regenera-
tive mechanisms [127–130]. Although preclinical and clinical studies show the safety of
transplanting stem cells, whether directly into the brain or peripherally via intravenous or
intra-arterial routes, the demonstration of efficacy remains elusive for a number of factors
but primarily due to optimization of cell dose and timing.

Recognizing that the pathology of NDDs encompasses not just brain degeneration
but early aberrant alterations in the gut point to a novel strategy for transplanting stem
cells in these neurological disorders. In particular, targeting the stem cells to the gut rather
than the brain may be more practical and effective in the view that gut dysbiosis precedes
neurodegeneration. We, and others, have shown that many intravenously administered
stem cells in PD animal models preferentially migrated into the gut than the brain [131,132].
Moreover, this preferential gut migration of the stem cells reduced inflammatory microbiota
and dampened inflammation in both gut and brain [131,132]. Such GBA-targeting of stem
cells has also been explored in ALS, in that reducing the microbial burden in mutant
mice by transplanting gut microflora from a protective environment suppressed harmful
systemic and neural inflammation produced by gut dysbiosis even at the ALS symptomatic
period [133]. Our studies provide further evidence that the microbial composition of our
gut has an important role in brain health and can interact in surprising ways with well-
known genetic risk factors for disorders of the nervous system. In AD, while directly
transplanting stem cells into the gut remains to be tested, a similar concept of treating
gut dysbiosis with healthy microflora specifically with B. bifidum BGN4 and B. longum
BORI effectively blocked amyloidosis and apoptotic processes, enhanced synaptic plasticity,
and reduced cognitive and memory impairment in AD mice [134]. Finally, in strokes, we
advance a similar GBA-focused stem cell therapy whereby we highlight that peripheral
inflammatory responses accompany strokes, necessitating a paradigm shift from purely
central towards incorporating peripheral sequestration of cell death pathways to improve
stroke therapeutic outcomes [135–138]. The body of evidence from basic and clinical
investigations of NDDs suggests that the underlying homeostatic and pathophysiological
functions of GBA represents a novel approach in advancing our knowledge of the disease
pathology and treatment, i.e., cell-based regenerative medicine needs to consider GBA-
targeted treatments.

4. Conclusions

A better understanding of the GBA could provide novel perspectives of NDD patho-
physiology and therapeutic approaches. Profiling of the microbiome signature of specific
NDDs may reveal distinct microbiota associated with gut dysbiosis. In the same token,
these microbiota may serve as therapeutic targets for treating NDDs. To this end, an inflam-
matory microbiome closely approximates NDD progression, and dampening this harmful
microbiome retards neurodegeneration. In particular, transplanting stem cells into the gut
of preclinical models of NDDs reduces the inflammatory microbiome not just in the gut
but also in the brain accompanied by improvement in neurological functions. Whereas
the present paper focuses on just four NDDs, other neurological disorders present with
similar GBA alterations that accompany the disease progression, including Huntington’s
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disease [139–141] and multiple sclerosis [142–144]. Accordingly, disease-specific tailoring of
stem cell transplantation targeting GBA may provide disease-modifying outcomes for these
neurological disorders. The fact that the GBA plays a significant role in disease pathology
advances the innovative concept of GBA-based therapeutics for NDDs.
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