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Abstract
Objective—Early HIV infection is characterized by a dramatic depletion of CD4 T cells in the
gastrointestinal tract and translocation of bacterial products from the gut into the blood. In this
study, we evaluated if gut bacterial profiles were associated with immune status before and after
starting antiretroviral therapy (ART).

Design—We evaluated the gut microbiota of men recently infected with HIV (n = 13) who were
participating in a randomized, double-blind controlled trial of combination ART and maraviroc
versus placebo and who were followed for 48 weeks.

Methods—To evaluate the gut microbiota of participants, we pyrosequenced the bacterial
populations from anal swabs collected before and longitudinally after the initiation of ART.
Associations of the gut flora with clinical variables (lymphocyte profiles and viral loads),
activation and proliferation markers in peripheral blood mononuclear cells and gut biopsies
(measured by flow cytometry) and markers of microbial translocation (lipopolysaccharide and
soluble CD14) were performed by regression analyses using R statistical software.

Results—Using pyrosequencing, we identified that higher proportions of Lactobacillales in the
distal gut of recently HIV-infected individuals were associated with lower markers of microbial
translocation, higher CD4% and lower viral loads before ART was started. Similarly, during ART,
higher proportions of gut Lactobacillales were associated with higher CD4%, less microbial
translocation, less systemic immune activation, less gut T lymphocyte proliferation, and higher
CD4% in the gut.

Conclusion—Shaping the gut microbiome, especially proportions of Lactobacillales, could help
to preserve immune function during HIV infection.
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Introduction
The gut-associated lymphoid tissue (GALT) is a crucial part of the immunological network
that maintains the integrity of the gastrointestinal (GI) tract against gut microbes [1]. Early
HIV infection results in substantial depletion of CD4 T cells, preferentially in the GALT [2–
4]. Consequences of this depletion include mucosal immune dysfunction, increased
permeability of the gut and ultimately translocation of bacterial products [5], which
contribute to chronic immune activation [6–8]. Immune activation is one of the strongest
predictors of HIV disease progression [9–11]. Antiretroviral therapy (ART) seems to at least
partially restore gut integrity [12–14] with marginal reduction in microbial translocation, but
not to the levels seen in HIV-uninfected persons [6,7].

The GI tract is colonized by numerous commensal microorganisms, which can be identified
by next-generation sequencing (NGS). NGS of the gut microbiome has revealed that certain
disease states, such as inflammatory bowel disease, HIV, and others may be associated with
modified gut flora [15–17]. Certain microbes may interact with the GALT to preserve gut
integrity [18], thereby decreasing the likelihood of translocation of microbial products [19].
For example, consumption of probiotics and specifically Lactobacillales may modulate
inflammatory responses, eradicate potential pathogens, and reduce gut permeability [19–24].
Manipulation of the gut flora may therefore benefit immune recovery during HIV infection.
In this study, we conducted a metagenomics analysis to longitudinally characterize the
changes of the gut microbiome during acute and early HIV infection and examined the
effects of ART on this microbiome by associating clinical and immunological factors before
starting and during ART.

Material and methods
Study cohort

Eligible participants were men who had sex with men (MSM) co-enrolled in the San Diego
Primary Infection Cohort (n = 13) and a randomized, double-blind controlled trial of
combination ART and maraviroc versus placebo. The Institutional Review Board of our
center approved this study and all participants provided written informed consent. All
patients initiated ART within 2 weeks of study enrollment with a combination of tenofovir,
emtricitabine and ritonavir-boosted atazanavir, with or without maraviroc. The double-blind
clinical trial is ongoing with all patients remaining blinded to maraviroc use. Anal swabs,
blood, semen, peripheral lymphocyte profiles, and HIV levels (Amplicor, Roche) were
collected at baseline (within a week before the initiation of ART) and approximately every 4
weeks thereafter for 48 weeks. A proportion of participants consented to repeat
colonoscopies to obtain mucosal biopsies of the rectosigmoid colon and terminal ileum.
Epidemiological, behavioral risk and HIV-related data were also collected from the
participants. We determined estimated duration of infection (EDI) using results of serologic
and virologic tests as described previously [25].
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DNA extraction and viral quantification from peripheral blood mononuclear cells, stool,
and semen

Genomic DNA was extracted from 5 million peripheral blood mononuclear cells (PBMCs)
for each timepoint using QIAamp DNA Mini Kit (Qiagen) per manufacturer’s protocol.
Extracted DNA was eluted in 100 μl elution buffer and total proviral HIV-1 DNA was
quantified by real-time PCR in an ABI 7900HT thermocycler (Applied Biosystems) with
virus-specific PCR primers and two DNA-locked nucleic acids (LNA) detection probes as
previously published [26]. Cellular input was normalized with beta-actin PCR as previously
described [27] and results were expressed in HIV DNA copies per 1 million actin cells
equivalents.

Stool DNA from anal swabs was extracted using the QIAamp Stool DNA kit (Qiagen) per
manufacturer’s protocol except that the elution was performed in 200 μl incubated for 5 min
before the final spin. DNA extraction and quantification of cytomegalovirus (CMV) in
seminal plasma and stool DNA was done as previously published [28].

Amplification of bacterial DNA and pyrosequencing
Amplification of the V6 hypervariable region of the 16 s rDNA gene was carried out in a 50
μl reaction using the highly purified Amplitaq Gold Low DNA polymerase (Applied
Biosystem) to reduce bacterial contamination as manufacturer’s protocol with primers
previously described [15]. The cycling conditions followed were: initial activation at 93°C
for 15 min; 30 cycles of 95°C for 30 s, 57°C for 30 s and 72°C for 1 min; followed by a final
extension at 72°C for 10 min. Samples were run in duplicates and a 1% agarose gel
electrophoresis was used to confirm the ~110 bp size of product. Duplicate samples were
combined and purified immediately after reaction (Qiagen PCR Purification Kit). We used
the Agilent 2100 BioAnalyzer to quantify and assess purity of DNA. Amplicon
pyrosequencing (Roche 454 FLX Titanium) was performed using standard protocols [29].

Classification of bacteria
We considered bacterial sequences with at least 90 continuous base pairs, which contained a
quality score of at least 20 [30–32] for metagenomics analyses. We classified sequences to
the order level using the Ribosomal Database Project [33]. We used the tool ESPRIT [34] to
assign operational taxonomic units (OTU) based on genetic distance to unclassified
sequences. With a cut-off of 10%, we built a consensus sequence for each OTU and
classified it using small subunit rRNA taxonomy and alignment pipeline (STAP) [35]. We
evaluated orders of bacteria in common across all samples and sequences that were unique
to an individual were categorized as ‘Other’.

Microbial translocation markers
Limulus Amebocyte Lysate QCL-1000 and Quantikine ELISA Human sCD14 Immunoassay
were used to measure plasma lipopolysaccharide (LPS) and soluble CD14 (sCD14),
respectively, following manufacturer’s protocols.

Flow cytometry
Fresh whole blood was collected at weeks 0,12, 24, and 48 and processed using density
gradient centrifugation to obtain PBMCs. Cells were incubated with antibodies for surface
marker staining, before fixation and permeabilization for intracellular assays (eBioscience).
We used the following antibody combinations to evaluate immune activation and
proliferation in T cells: HLA-DR–FITC, CD45RO–PE, CD38–PE-Cy7, CD27–APC, CD3–
APC-Cy7, CD4–PerCP-Cy5.5 and CD8–Pacific Blue, and Ki67–FITC, CD45RO–PE,
CD27–APC, CD3–APC-Cy7, CD4–PerCP-Cy5.5 and CD8–Pacific Blue, (BD Biosciences).
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These measures were used to assess naïve (CD45RO−CD27+), central memory
(CD45RO+CD27+) and effector memory (CD45RO+CD27−) in CD4 and CD8 T-cell
subsets.

Rectosigmoid junction and the terminal ileum gut biopsies were available for a subgroup of
nine patients at weeks 0 and 48 and interval biopsies at weeks 12 or 24 for a proportion of
the subgroup. Tissue samples were incubated with collagenase and DNAse before passage
through a cellular strainer (PGC Scientifics) and viably stored at −140°C. We assayed
proliferation of collected tissue on viably thawed mucosal mononuclear cells using the
following combination of antibodies: Ki67–FITC, CD45RO–PE, CD27–APC, CD3–APC–
Cy7, CD4–PerCP-Cy5.5, CD8–Pacific Blue (BD Biosciences) and Aqua-L-D (Invitrogen)
All samples were run on the BD FACSCanto (BD Biosciences) and data were analyzed with
FlowJo software (Tree Star Inc.).

Statistical analyses
Methods of unsupervised clustering, statistical tests and regression analyses were
implemented utilizing R statistical software. A two-tailed Mann–Whitney test was used to
assess statistical difference between groups and comparison of bacterial proportions between
groups was performed using Fisher exact test.

Normality of each order of bacteria and clinical variables was tested using a Shapiro test
with a significance of P < 0.05. We evaluated cross-sectional associations between gut
bacterial profiles (GBP) and clinical and immunological variables using fixed effects linear
models. We utilized mixed effects linear models for analysis of longitudinal data to adjust
for repeated measurements (packages lme4 and languageR).

We modeled each participant’s GBP as a vector , where xi corresponds
to every order of bacteria classified, excluding the category ‘Other’. We calculated the
sample variance of a GBP generalizing the sample variance formula for vector calculations.
We measured intra-patient variability calculating the sample variance of the GBP at all
timepoints for that particular patient. We computed inter-patient variability taking all the
samples at each timepoint available.

Results
Study cohort

Study participants were 10 Caucasians and three Asians with an average age of 33 years and
EDI of 6.5 weeks. All participants started ARTwithin 1 week of enrollment and were
followed for 48 weeks. A summary of the clinical variables measured at baseline is provided
in Table 1. We excluded two participants (L and M) from the baseline analysis because of
antibiotic use shortly before the collection of their stool samples.

Classifications of gut bacterial profiles
The study classified proportions of distal gut bacterial flora at the order level (13 orders)
using the V6 region of the bacterial 16s rDNA. The overall median intra-patient variability
in GBP was significantly lower than inter-patient variability (P = 0.006), as reported
previously [36]. An unsupervised clustering analysis of baseline orders of bacteria revealed
two distinct GBP (Fig. 1). The first GBP cluster (Group 1) showed significantly lower
proportions of Lactobacillales, Enterobacteriales, Pseudomonadales, Xanthomonadales,
Aeromonadales, Rhizobiales, and Neisseriales (P = 0.006 for all) and higher proportions of
Bacteroidales (P = 0.01) and Clostridiales (P = 0.04) compared with the second GBP cluster
(Group 2) (Fig. 1 and Supplementary Fig. 1, http://links.lww.com/QAD/A335).
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Interestingly, participants in these two groups also differed significantly by the percentage of
CD4 (CD4%) and viral load at baseline, but there were no differences in markers of
microbial translocation, LPS and sCD14 (Supplementary Table 1, http://links.lww.com/
QAD/A336). Although Group 1 had low CD4% (median = 9.5%) and high viral load
(median = 6.90 HIV RNA log10 copies/ml), Group 2 had high CD4% (median = 33%) and
low viral load (median = 4.39 HIV RNA log10 copies/ml, P = 0.01, for both CD4% and viral
load) (Fig. 2 and Supplementary Table 1, http://links.lww.com/QAD/A336). We observed
the most profound differences between groups in the proportion of Lactobacillales. Group 1
with low CD4% and high viral load had low Lactobacillales, while Group 2 with high
CD4% and low viral load had high Lactobacillales (median 10.6 vs. 46.5%) (Supplementary
Fig. 1, http://links.lww.com/QAD/A335). As the proportion of gut Lactobacillales has been
associated with mode of delivery at birth [37], we also examined reported differences
between vaginal versus cesarean delivery of participants and found no differences between
groups (P = 0.48).

Immune and clinical correlates of Lactobacillales before antiretroviral therapy
Before initiating ART, proportions of gut Lactobacillales were significantly correlated with
CD4% (P = 2.8 × 10−5), CD4/CD8 T-cell ratio (P = 0.0003) and CD4 cell count (P = 0.03),
and negatively associated with CD8% (P = 0.002), but only a negative trend with CD8 cell
count (P = 0.09, Fig. 3a–e). Proportions of Lactobacillales were also negatively correlated
with viral load (P = 0.03) and sCD14 (P = 0.04, Fig. 3f–g), but there was no association with
LPS (P = 0.88, Fig. 3h). Despite an association with a marker of microbial translocation
(sCD14), there was no observed relationship between Lactobacillales and either CD4 and
CD8 lymphocyte activation (measured as HLA-DR+ or CD38+ T cells) or gut CD4
lymphocyte proliferation (percentage of Ki67+ of CD4 T cells, data not shown). There was,
however, a negative association between higher proportion of gut Lactobacillales and lower
gut CD8 lymphocyte proliferation in the central memory subset (percentage of Ki67+ of
CD8+CD45RO+CD27+, P = 0.04, Fig. 3i). Although other orders of bacteria also showed
associations with clinical and immunological variables, most consistent associations were
found with Lactobacillales (Supplementary Table 2, http://links.lww.com/QAD/A336).

Since duration of HIV infection is associated with immune activation [38] and participants
had variable EDI at baseline, we evaluated if EDI influenced the associations between
baseline proportions of Lactobacillales and lymphocyte activation in the blood. As might be
expected, participants with a more recent EDI (≤4 weeks or acute phase of the infection, n =
8) at baseline showed a higher T-cell activation and proliferation than participants with
longer EDI at baseline (>4 weeks, n = 3, Supplementary Fig. 2, http://links.lww.com/QAD/
A335); however, baseline proportions of Lactobacillales were not associated with EDI (data
not shown).

Immune and clinical correlates of Lactobacillales during antiretroviral therapy
To determine the impact of ART on the associations between proportions of Lactobacillales,
clinical variables (viral load, CD4%, CD4 cell count, CD8% and CD8 cell count), markers
of translocation (sCD14 and LPS), and lymphocyte activation (HLA-DR, CD38) and
proliferation (Ki67) markers, we performed regression analyses for all variables at each
study timepoint, longitudinally including all time-points and cross-sectionally at weeks 24
and 48. As expected, ART was very effective at suppressing viral load, and only one
participant (Patient H) had detectable viral load at weeks 24 and 48 (2.70 and 1.91 HIV
RNA log10 copies/ml, respectively). Similarly, all participants increased their CD4% during
ART (median +9%, range 4–25%, P = 0.001) (Supplementary Fig. 3A, http://links.lww.com/
QAD/A335), and there was a trend for proportions of Lactobacillales to be positively
associated with CD4% gains (P = 0.07) (Supplementary Fig. 3A, http://links.lww.com/
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QAD/A335). Although all participants demonstrated an increase in CD4% and a decrease in
viral load during ART, those who started with low CD4% (Group 1), maintained lower
CD4% compared with Group 2 participants and could still be identified by their GBP
(Supplementary Fig. 4, http://links.lww.com/QAD/A335). Further, the relationships between
Lactobacillales and CD4%, CD4/CD8 ratio and CD8% remained consistent with baseline
results at week 24 but not at week 48 (P = 0.01, P = 0.01, P = 0.05, respectively, Fig. 4a–c);
however, there were no associations between proportions of Lactobacillales and CD4 or
CD8 T-cell count at either week 24 or 48 (data not shown). After 48 weeks of ART,
increased proportions of Lactobacillales were positively correlated with increased CD4% in
the gut (P = 0.04, Fig. 4d). As detectable viral load may have confounded the analysis, we
also excluded Patient H from cross-sectional analysis, and Lactobacillales became positively
associated with CD4 cell count at weeks 24 and 48 (r = 0.78, P = 0.04 and r = 0.82, P = 0.04,
respectively). All other correlations maintained significant levels except with CD4% at week
48 of the gut, likely due to a power issue (data not shown).

Evaluation of lymphocyte activation demonstrated a strong negative correlation between the
proportions of Lactobacillales and CD8 T-cell activation in the blood after 24 weeks of ART
(CD45RO+HLA-DR+, P = 0.002, CD45RO+CD38+, P = 0.01, Fig. 4e–f). After 48 weeks of
ART, the proportions of Lactobacillales were still negatively associated with CD38+

lymphocyte activation (P = 0.04), but only a trend remained for HLA-DR+ (P = 0.09) in
CD8 T cells (Fig. 4e–f). The proliferation of central memory CD4 T cells in the gut was
negatively associated with Lactobacillales at week 24 of ART (percentage of Ki67+ of
CD4+CD45RO+CD27+, P = 0.05), but not after 48 weeks (P = 0.22, Fig. 4g). Regarding
microbial translocation, the negative association between sCD14 and Lactobacillales
observed at baseline was lost at week 24 but regained after 48 weeks of ART (P = 3.7 ×
10−4, Fig. 4h). Throughout the study, sCD14 was inversely correlated with Lactobacillales
(P = 0.02) and time on ART (P = 0.04) (Supplementary Fig. 3B, http://links.lww.com/QAD/
A335). In contrast, LPS showed an isolated negative association at week 24 (P = 0.03, Fig.
4i). Other orders of bacteria also showed significant associations with these factors at week
24 but most were not significant by week 48 (Supplementary Table 3, http://links.lww.com/
QAD/A336). Similar to above, exclusion of Patient H only decreased the significance of
correlations with activation markers (HLA-DR and CD38) at week 48, possibly a power
limitation (data not shown).

HIV latent reservoir and cytomegalovirus shedding
As changes in immune activation may impact the HIV latent reservoir [39], we also
evaluated HIV DNA levels in PBMCs, but we did not observe any associations between
HIV proviral DNA and Lactobacillales after 24 or 48 weeks of ART. Proviral DNA did not
correlate with CD8 T-cell activation (Supplementary Fig. 5A-B, http://links.lww.com/QAD/
A335). There was a strong negative correlation, however between proviral DNA levels and
activation of CD4 lymphocytes (CD45RO+HLA-CD38+, P = 0.007) at week 24 of ART, but
not at week 48 (Supplementary Fig. 5C-D, http://links.lww.com/QAD/A335). We also
investigated the relationship between CMV shedding in the gut and the genital tract and
Lactobacillales, as the presence and magnitude of CMV shedding may influence immune
activation [28] and all participants were CMV antibody positive. Only two patients (D and
H) had detectable levels of CMV in rectal swabs. Patient D had 2.41 and 2.14 log10 copies/
swab at weeks 16 and 24 and patient H had 1.46 log10 copies/swab at week 4. Due to limited
sample availability, only nine semen samples were screened for CMV shedding and Patient
D exhibited high levels of CMV (4.49 log10 copies/swab). The eight remaining samples
showed no evidence of CMV, though no samples were available for Patient H. Interestingly,
both patients (D and H) exhibited the lowest overall proportion of Lactobacillales (<10%)
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throughout infection and Patient D in particular had the lowest CD4% after 48 weeks of
ART.

Discussion
This is the first study to identify associations between specific GBP and higher CD4 cell
count and CD4%, lower viral load, less CD4 T-cell proliferation in the gut and less evidence
of microbial translocation in untreated HIV infection. All of these factors have been
previously associated with better HIV disease outcomes [40,41]. The associations between
GBP, CD4%, immune activation, and markers of bacterial translocation continued, albeit
weakly, during ART that suppressed viral load. The important caveat of this study is that the
associations between changes in the GBP and the HIV disease markers cannot determine
causality.

The human gut prevents the translocation of commensal bacteria through physical barriers
(e.g. epithelial tight junctions), biochemical agents (e.g. antibacterial peptides and mucus),
and immune mechanisms (e.g., secretory IgA and Toll-like receptor mediated sensing,
oxidative bursts) [1,42–45]. During early HIV infection, gut populations of Bifidobacteria
and Lactobacillus species are reduced [46], the GALT is depleted [7], the gut barrier is
compromised and translocation of bacterial products can occur. The translocation of these
products is associated with HIV disease progression, most likely through persistent immune
activation [6,7]. This study aimed to further evaluate these connections by observing
multiple factors during acute and early HIV infection and by treating HIV infection at the
earliest stages possible, and identifying correlates associated with optimal immune recovery
and preservation. The current study extends previous observations [47] by linking the
constitution of the gut microbiome itself to immunologic and virologic dynamics during
recent HIV infection and subsequent ART, specifically identifying that higher proportions of
gut Lactobacillales are associated with markers that are predicative of better HIV outcomes
including higher CD4 percentage, lower viral load, and less evidence of microbial
translocation. Moreover, the higher proliferation of central memory cells in GALT, as a
surrogate marker of antigen stimulation, was less likely to occur in participants with higher
proportions of Lactobacillales suggesting a favorable gut immune health. As Lactobacillales
can modulate anti-inflammatory responses and immune cells (e.g., T-regulatory cells),
improve gut integrity and reduce gut permeability in other conditions [20–24,48], it is
interesting that this bacterial order would be identified as the main component of GBP
associated with markers of improved HIV outcome. However, it still needs to be
investigated whether these GBP are metabolically associated or represent only a biomarker
of a favorable state.

There are a number of limitations that should be considered. First, we conducted this
investigation in the setting of a randomized double-blind controlled trial of maraviroc versus
placebo combined with standard ART, but the overall study remains blinded to maraviroc
use because participant enrollment continues. Maraviroc use is not thought to have
contributed significantly to the study observations as associations between GBP and clinical
and immunological variables were identified at baseline, before the start of ART for all
participants. In general, these associations persisted during follow-up, and unblinding or
modification of the parent study is thought to be unnecessary. However, as maraviroc
inhibits CCR5, it could theoretically alter the composition of T cells in the GALT,
influencing our observations after the start of ART, and this will need to be assessed after
the unblinding of the study. Second, although NGS allowed us to conduct large-scale
metagenomic analyses of the distal gut microbiome, the analysis is limited by the
classification of sequences. To focus our study on the main drivers of gut bacteria across all
participants, we only considered bacterial populations shared across individuals. Bacterial

Pérez-Santiago et al. Page 7

AIDS. Author manuscript; available in PMC 2014 July 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sequences that were not identified in all participants were classified as ‘Other’, and these
‘Other’ populations may be very informative and warrant further investigation. Along these
lines, the study only considered classification at the order level and a more granular
classification may provide additional insight. To this end, all bacterial sequences have been
publically deposited at http://mepac.ucsd.edu. Third, the observation that sCD14 is more
highly correlated with measures of microbial translocation than LPS has been previously
reported [7,49], and could be related to the EDI. Microbial translocation occurs in early
phases of infection, thus levels of LPS do not increase until later HIV stages, while levels of
sCD14 increase earlier during the course of infection [7]. Alternatively, plasma inhibitors
[50] were observed that might have interfered with LPS assay measurements. Fourth, in
limited number of samples, we investigated if CMV shedding in the distal GI tract or semen
demonstrated similar associations to classified GBP. Although, the associations between
rectal CMV shedding and lower CD4 T-cell count and percentage were provocative in two
of the participants, the numbers are too small to draw conclusions for a role of CMV to
impact gut microbiota, but should provide testable hypotheses for future investigations.

It is increasingly evident that the human immune system is linked to the GI system [48], but
guidance regarding how this information should influence clinical care is lacking, especially
for HIV infection. Although the gut microbiome is influenced by methods of birth delivery,
host genetics, household contacts, age, geography, and so on [51], it is unknown if the
microbiome can be shaped with agents like prebiotics, probiotics, or targeted antibiotics for
beneficial outcomes. This study determined that increasing Lactobacillales in the gut could
be important for recovering and preserving immune system function during HIV infection
and a promising clinical target may be HIV-infected individuals who are able to suppress
their viral load with ART, but are unable to sufficiently recover their CD4 T-cell count.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Unsupervised clustering before antiretroviral therapy (ART)
Gut bacterial profiles separated our participants in two main groups colored as gold and blue
representing participants with low and high CD4% (Group 1 vs. Group 2), respectively.
Orders of bacteria are separated into two main groups clustered by correlation. Overall,
bacteria in the same cluster are positively correlated, whereas bacteria in different clusters
are negatively correlated. Blue and red correspond to enrichment or depletion on proportions
of bacteria, respectively.
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Fig. 2. Overview of participants’ CD4%, viral load (VL) and gut bacterial profiles (GBP) at
baseline
Participants’ CD4% and VL are colored blue and red, respectively, and their corresponding
GBP is in the bottom. Participants with lower CD4% and higher VL exhibit lower
proportions of Lactobacillales.
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Fig. 3. Associations of Lactobacillales with clinical and immunological variables at baseline and
before antiretroviral therapy (ART)
There is a positive association with (a) CD4%, (b) CD4/CD8 ratio, (c) CD4 cell count and a
negative correlation (or trend) with (d) CD8%, (e) CD8 cell count, (f) viral load, (g) soluble
CD14, and (i) Gut CD4+ T-cell proliferation. (h) There was no correlation between
Lactobacillales and lipopolysaccharide (LPS). All these correlations suggest that higher
proportions of Lactobacillales are beneficial for the host in the absence of ART.
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Fig. 4. Associations of Lactobacillales with clinical and immunological variables after ART
Week 24 is represented by solid dots and lines, and week 48 by empty dots and dotted lines.
At week 24, there is a positive association with (a) CD4%, (b) CD4/CD8 ratio and a
negative correlation with (c) CD8%, as observed at baseline. Additionally, higher gut
Lactobacillales are associated with higher CD4% in the gut (d), less CD8+ T-cell activation
(e, f), less CD4+ T-cell proliferation (g), and less microbial translocation (h, i). Associations
were independent of ART and suggest that higher proportions of Lactobacillales are
associated with better immune health.
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