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Abstract

Background: Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut
microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community

Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment.

Results: Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples
indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who

relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across

the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life.
In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal

diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial

diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population
shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera,

Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are

significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show
paradoxical associations with both obesity and late-life introduction to the USA.

Conclusions: Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible
for health disparities affecting Hispanics living in the USA.
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Background
Immigrants from Latin America and the Spanish-speaking

Caribbean make up the majority of the foreign-born

population living in the USA. Immigration-related life

course experiences may affect the gut microbiome (GMB)

among Latinos, with potential implications for chronic

diseases that have been linked to the GMB [1]. Many of

these, including obesity, diabetes, and asthma, are highly

prevalent in the US Hispanic population [2, 3] although

the association of these diseases with the Hispanic GMB

pattern is unknown.

Migration from lower-income countries to higher-

income countries is associated with change in community

structure of the GMB due to adoption of a Western style

diet, exposure to new natural and built environments, and

other influences [4]. Follow-up studies of migrants suggest

that geographic relocation to the USA often coincides

with a decrease in gut microbial diversity and transition in

GMB organisms, concurrent with replacement of dietary

starches and fiber with animal proteins and fats [4].

Changes in diet alter the GMB makeup by restricting

nutrients needed for growth of certain bacteria while en-

hancing the growth of others. After an altered GMB is

established, the new microbial communities in the host

gastrointestinal tract can lead to changes in metabolic

processes and generation of metabolites [5, 6].

Hispanic/Latino groups, which include the largest im-

migrant population in the USA, are known to harbor a

distinct GMB as compared with non-Hispanics [7], but

this has only been studied in small, local populations

[8]. Longitudinal assessments among migrants (e.g.,

Thailand to USA) [9] have extended over weeks to

months and are consistent with geographic variation in

GMB shown in cross-national comparisons between

lower- and higher-income countries [9]. Lacking are

large and detailed multicenter US Hispanic cohorts

which can estimate effects of immigration on the GMB

over the life course and inform about disease associa-

tions which may differ among populations [10]. Fur-

thermore, such knowledge has the potential to facilitate

the development of therapeutic interventions to alter

the microbiome and treat or prevent disease.

We used data from a longstanding multicenter US

cohort study to characterize the association of reloca-

tion to the mainland USA with GMB characteristics

among individuals from several Latin American na-

tional backgrounds.

Results
Population characteristics

Among the participating group of 1674 Hispanic US res-

idents (Table 1), approximately half were of Mexican/

Mexican American background, while Puerto Ricans and

Cubans each comprised over 10% of the population.

Thirteen percent had been born in the mainland USA,

almost all of whom were “second-generation” offspring

of at least one Latin American-born parent. Fourteen

percent were first-generation individuals who had relo-

cated to the US mainland during childhood and adoles-

cence (“relocation age” < 18 years old), whom we

considered to be the “1.5 generation”. The remaining

three quarters of the population had relocated from

Latin America to the US mainland during adulthood.

Puerto Rican-born individuals had the youngest reloca-

tion age (mean 18.6 years, standard deviation 12.1 years)

and Cuban-born migrants had the oldest relocation age

(mean 41.4 years, standard deviation 14.5 years) (Add-

itional file 1: Figure S1). Peak decade of relocation

ranged from the 1970s for Puerto Ricans to the 2000s

for Cubans and Central and South Americans (Add-

itional file 1: Figure S2).

Analysis of GMB composition and its correlates

Several markers of gut microbiome community structure

were defined. We quantified alpha diversity using the

Shannon index to describe the 16S rRNA gene V4 region

bacterial and ITS1 fungal microbiome. We also derived

the Prevotella to Bacteroides ratio from 16S data; these

taxa frequently appear as important and dominant in other

gut microbiome studies [14–16], hence the focus here.

From analysis of the Bray-Curtis community ordination,

we performed principal coordinate analysis (PcoA) using

the 16S and ITS1 data. The first 16S principal coordinate

(PCoA1) was strongly correlated with the Prevotella to

Bacteroides ratio (Spearman’s r = − 0.89), while PCoA2

was correlated strongly with Shannon index (r = 0.77).

Correlations with PCoA1 were − 0.89 and 0.94 for relative

abundance of Prevotella and Bacteroides, respectively.

Genus-level analysis of bacterial (16S) data from

Hispanic adults showed that Bacteroides had the highest

relative abundance both in those born in Latin America

and those born the mainland USA (Fig. 1). In contrast,

Prevotella had higher prevalence among Latin

American-born individuals, as compared with the main-

land US-born Hispanics. Among the most commonly

occurring genera, Prevotella also had the highest vari-

ability as defined by the interquartile range in both US-

born and Latin American-born groups of participants.

Within Prevotella, we found that P. copri was the dom-

inant species, comprising 88.7% of Prevotella albeit with

a substantial count of unclassified species (Add-

itional file 1: Table S1). US-born and Latin American-

born individuals had similar abundance rankings of

other common bacterial taxa (Fig. 2). In bivariate ana-

lyses, some taxa reached nominal statistical significance

(P < 0.05) for differences in abundance by birthplace,

including Ruminococcaceae, Clostridiales, Bifidobacter-

ium, Blautia, Enterobacteraceae, and Sutterella.
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Fungal (ITS1) GMB populations were dominated by

Aspergillus proliferans and Saccharomyces cerevisiae in

both mainland US-born and Latin American-born groups

(Table 1). Relative abundance of several fungal taxa

showed differences according to place of birth. Those

born in the mainland USA had a mean relative abundance

of Cyberlindnera jadinii of 5.8%, which was many folds

higher than that among Latin American-born groups.

Candida sake, Candida tropicalis, Candida glabrata, and

Rhodotorula mucilaginosa were nearly absent in the US-

born group but were fairly abundant in the range of 1 to

7% in Latin American-born populations.

Univariate analyses of 156 participant characteristics

and health-related phenotypes, including dietary behaviors

and disease-associated variables, were evaluated one-by-

one by calculating beta diversity based on genus-level bac-

terial 16S and fungal ITS1 data. Multiple sociodemo-

graphic variables reflecting country of birth and relocation

from Latin America to the mainland USA were identified

in the top 35 variables (all P < 0.05) associated with Bray-

Curtis distance in bacterial and fungal community-level

analyses (Fig. 2). Nearly all of the variables associated with

Bray-Curtis distance also met q value criteria of < 0.05,

with a few exceptions for ITS1 analyses (Fig. 2).

Relocation to the US mainland is associated with GMB

composition

Systematic analysis was undertaken to discern the birth-

place and migration-related factors that were independently

associated with GMB (Fig. 3a). Multivariable adjustment

was performed for gender, study center, intake of vegetables

excluding potatoes, intake of whole fruit, intake of whole

grains, moderate-to-vigorous physical activity (MVPA),

body mass index (BMI), diabetes, visits returning to home

country, education and income, and medications including

use of antibiotics and metformin. Prevotella to Bacteroides

ratio was lowest among those born in the US mainland

(Fig. 3a). Among those born in Latin America, Prevotella to

Table 1 Demographic, behavioral, and socioeconomic variables, by birthplace and age at relocation to the mainland USA

Mainland US born Relocated 0–17
years old

Relocated 18–34
years old

Relocated 35–44
years old

Relocated
45+ years old

N 225 235 730 306 261

Age in years, mean 48.3 (13.8) 54.7 (12.1) 56.6 (9.8) 59.2 (7.6) 65.7 (6.6)

Sex (women) 58% 64% 65% 66% 65%

Height, cm 164.0 (8.9) 160.6 (8.7) 159.5 (8.6) 159.7 (8.6) 159.2 (9.5)

Education level < 9th grade 6% 22% 34% 30% 32%

Education level > high school 61% 38% 32% 45% 45%

Household income > $30K/year 56% 46% 38% 35% 26%

Mother’s education > high school 14% 7% 8% 7% 7%

Father’s education > high school 10% 11% 10% 10% 11%

English language preference 76% 34% 2% 1% 0.40%

Median year of relocation to USA – 1970 1984 1996 2003

Childhood economic hardship* 55% 48% 57% 55% 53%

Childhood sanitation† 99% 88% 76% 85% 74%

Return to home country in last year 35% 34% 50% 47% 50%

SASH social relations subscale 2.6 (0.5) 2.4 (0.6) 2.2 (0.6) 2.0 (0.6) 1.9 (0.5)

Hispanic diet habits (dietary acculturation) ‡ 40% 61% 82% 90% 89%

AHEI score, mean 47.8 (8.2) 49.9 (7.7) 52.5 (7.1) 52.0 (7.1) 51.7 (7.1)

MVPA, meets 2008 guideline goals 44% 35% 39% 39% 30%

Sedentary time, upper quartile 19% 29% 21% 28% 36%

Hours of sleep, mean 7.9 (1.5) 7.9 (1.5) 7.8 (1.4) 7.8 (1.3) 7.7 (1.2)

Numbers indicate percent or mean (standard deviation). SASH Short Acculturation Scale for Hispanics (Marin [11], higher score indicates more non-Hispanic/Latino

social relations), AHEI Alternative Healthy Eating Index (Chiuve [12], higher score indicates more healthful diet), MVPA moderate-to-vigorous physical activity,

which was here defined according to whether individuals met 2008 US guidelines for healthy lifestyle (Ekelund, [13])

* English: “Did your family ever experience a period of time when they had trouble paying for their basic needs, such as food, housing, medical care, and utilities,

when you were a child? / Spanish: ¿Su familia alguna vez tuvo dificultades para pagar sus necesidades básicas como comidas, vivienda, cuidados médicos, o

servicios públicos, cuando usted era niño(a)?”

† English: “When you were growing up, did your home have the following basic utilities?... plumbing, septic tank. / Spanish: ¿Cuándo usted estaba creciendo, la

casa donde vivía tenía los siguientes servicios públicos? Plomería, Drenaje/fosa séptica”

‡ English: “Of Hispanic/Latino and American food, do you usually eat...? Mainly or Mostly Hispanic/Latino foods” / Spanish: “De la comida hispana/latina y la

comida americana, ¿por lo general come usted...? Principalmente comidas hispanas/latinas, or Mayormente comidas hispanas/latinas y algunas

comidas americanas”
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Bacteroides ratio increased monotonically with increasing

relocation age. Analyses of bacterial (16S) Shannon index

failed to find a clear “dose response” between timing of ex-

posure to the USA and bacterial diversity. (Fig. 3a). Point

estimates suggested that the Latin America-born group

who relocated to the USA after 45 years of age had high

bacterial alpha diversity, while in contrast, those who

relocated from Latin America before 18 years of age had

the lowest bacterial alpha diversity. Enigmatically, a high

bacterial alpha diversity was also found in the US-born

group. Confidence intervals for the groups were largely

overlapping, and none of these findings for bacterial alpha

diversity met q value criteria of < 0.05. Fungal (ITS1)

Shannon index was lowest among individuals with early-

life US exposure (i.e., born in the mainland USA or

relocated prior to age 18 years), and highest among those

who relocated to the mainland USA after age 45 (Fig. 3b).

Next, we addressed the issue of age confounding in

analyses of GMB composition versus relocation age.

Before conducting analyses within groups stratified by

current age, we excluded individuals who had relocated

to the USA after age 26 because this group was strongly

biased towards having older current ages. The current

age and relocation age were uncorrelated after this ex-

clusion was applied (Beta = 0.017, 95% CI − 0.029, 0.063)

(Additional file 1: Figure S3). We then examined the as-

sociation of relocation age and Prevotella to Bacteroides

ratio within each of five groups that were defined based

on age at the time of the GMB study (25–34 years, 35–

44 years, 45–54 years, 55–64 years, and 65 years and

older). The association between childhood relocation to

the USA and lower Prevotella to Bacteroides ratio was

seen across the full range of attained age, up to and in-

cluding the oldest group aged 65 years and older (Fig. 4).

We thus were able to control for the potential confound-

ing influence of current age, showing that the association

of relocation age and Prevotella to Bacteroides ratio was

independent of current age and indicating that the

Fig. 1 Relative frequency (median) and variability (interquartile range) of the 20 most abundant bacterial genera, among participants born in the

mainland USA and those born in Latin America. Bar plots show the top 20 OTUs by order of abundance combined at the genus level using the

phyloseq package. Boxes were colored based on the degree of statistical significance between US-born and foreign-born participants according

to Wilcoxon signed-rank test to evaluate statistical significance between groups
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association between relocation age and Prevotella to Bac-

teroides ratio was durable across the life course.

We found little evidence that the geographic place of ori-

gin within Latin America had associations with summary

measures of GMB composition (Fig. 3a and Fig. 3b). We

conducted two additional analyses to discern whether the

varied national backgrounds of our participants influenced

our results. The association between birthplace and reloca-

tion age with Prevotella to Bacteroides ratio and GMB di-

versity was similar after serial exclusion of each Latino

background group, indicating that a single group was not

disproportionately influencing the overall result (data not

shown). A subgroup analysis that was limited to the Mexi-

can/Mexican American individuals was also conducted

(Additional file 1: Figure S4), and it generally supported the

overall conclusions derived from analyses shown in Fig. 3 a

and b for the overall population.

Figure 5 summarizes the results described above relat-

ing GMB with exposure to the USA, as defined by birth-

place and age at arrival to the mainland USA. Prevotella

to Bacteroides ratio and fungal alpha diversity were low-

est among individuals with early-life exposure to the

USA. These measures increased in linear fashion across

groups with later-life arrival in the USA. In contrast,

bacterial alpha diversity was highest among the US-born

and those who migrated from Latin America to the

mainland USA after age 45 years old, whereas this GMB

characteristic was lowest in childhood arrivals from

Latin America to the USA.

Association between acculturation factors and GMB

Next we sought to understand the relationship of

GMB with acculturation, or adaptation of features of

the US environment, which varied across birthplace

and relocation age groups (Table 2) [17–19]. English

language preference was associated with lower Prevo-

tella to Bacteroides ratio and lower fungal Shannon di-

versity (Fig. 3a). However, English language preference

was associated with higher Shannon bacterial diversity

(versus Spanish language, beta English preference = 0.09

higher 16S Shannon index, 95% confidence interval,

0.01, 0.16); this contradicts the hypothesis that in-

creasing exposure to the USA leads to depletion of the

bacterial microbiome. Those consuming primarily

“American” foods rather than “Hispanic” foods (diet-

ary acculturation) had significantly lower Prevotella to

Bacteroides ratio, although this dietary acculturation

variable was not associated with alpha diversity. Social

acculturation, which captures whether social

interactions mainly involved other Latino or non-

Latinos, had no association with Prevotella to Bacter-

oides ratio or alpha diversity.

Fig. 2 Correlates of gut bacterial (left) and fungal (right) microbiome in Hispanic/Latino residents of the USA, ranked by R2 values. Correlations

were calculated using ordination based on pairwise Bray-Curtis distances. PERMANOVA analysis using the adonis function from the vegan

package was used to assess statistical significance. The figure shows the top 35 variables, all with P values < 0.05, ranked by the estimated effect

size. Variables were examined individually, rather than in a multivariable model containing all variables. Except where indicated by an asterisk, all

variables met q value criteria < 0.05
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Fig. 3 (See legend on next page.)
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Association between diet and GMB

We next examined variation in dietary habits across

Hispanic groups, which was previously shown in our

cohort [20]. Latin America-born individuals, especially

those who relocated to the US mainland during later

adulthood, had the most favorable eating habits, evi-

denced by a higher Alternative Healthy Eating Index -

2010 (AHEI) score, a summary measure of diet qual-

ity (Table 2), lower consumption of fats and sodium,

and higher consumption of fiber (Table 3). Fiber was

further analyzed by food sources (Additional file 1:

Table S2 displays definition of food group-derived

variables.) We found no significant variation in bean/

legume intake according to US-born or relocation age

groups. Instead, fruit and whole grains were the

sources of fiber that appeared to differ across the

population, favoring the adult age immigrants to the

USA who had higher intakes of these foods. More fa-

vorable AHEI diet score was associated with higher

Prevotella to Bacteroides ratio (beta 1 AHEI unit =

0.0063, 95% confidence interval 0.0027, 0.0100, P value =

0.0062) (Table 4). AHEI was not associated with alpha di-

versity for 16S (beta = −.0004, 95% confidence interval

− .0048, 0.0040, P value = 0.34) or for ITS1 (beta = 0.006,

95% confidence interval 0.0010, 0.0099, P value = 0.40).

Four specific foods that were associated with higher Prevo-

tella to Bacteroides ratio were higher whole grains, higher

vegetables, lower red meat, and lower trans fats (Table 5).

Higher grain intake was associated with lower bacterial

(16S) alpha diversity, while higher vegetable intake was as-

sociated with higher fungal (ITS1) alpha diversity

(Table 5).

(See figure on previous page.)

Fig. 3 Association of birthplace and acculturation-related variables with bacterial 16S (a) and fungal ITS1 (b) gut microbiome features. a Bacterial

microbiome associations. Shown are the results of models adjusted for age (except for the model for age at relocation), sex, field center, intake of

vegetables without potatoes, intake of whole fruit, intake of whole grains, moderate-to-vigorous physical activity (continuous), BMI (six groups),

diabetes (three groups), length of visit to home country (continuous), education level (four groups), income level (five groups), antibiotic in last 6

months (binary), and metformin use (binary). Plot shows linear regression beta estimates and 95% confidence intervals for mean standardized gut

microbiome outcomes. Estimates for which q value was less than 0.05 are shown in blue. Groups with less than 15 individuals were excluded

from comparison, specifically: among individuals born in the US mainland, group sizes were as follows: South American, 7; Cuban, 12; Central

American, 7; Dominican, 5. Sample sizes (n) for panel a are the same as those displayed in panel b. b Fungal microbiome associations, analyzed

in similar manner as described in A. No estimates in panel b had a q value less than 0.05. Arrows indicate that the upper confidence limit

exceeded the range of the X axis. PCoA1 and PCoA2 denote first and second principal coordinate from principal coordinate analysis.

Fig. 4 Linear regression analyses relating Prevotella to Bacteroides ratio with age at relocation to the mainland USA, among individuals who

relocated to the USA before age 26. At the time they were studied, all cohort members were 25 years or older. Thus, by limiting to those who

relocated to the mainland USA between birth and age 25, we could make a comparable analysis of age at relocation within groups defined by

attained age. For example, only the oldest age groups of 55–64 years old (blue) or 65+ years old (magenta) could have contained an individual

who had migrated at age 50 years old. However, any of the groups defined by attained age could have contained an individual who had

migrated during childhood. As expected, after exclusion of those who relocated after age 26, there was no correlation between age at relocation

and current age (Additional file 1: Figure S4). Within each of the groups defined by attained age, we observed a trend of increasing Prevotella to

Bacteroides ratio with older age at relocation to the mainland USA
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Physical activity habits

Using data from 7-day accelerometry, we observed that

late-life migrants to the USA had the worst physical

activity habits (Table 2). However, there was no evidence

that physical activity habits were related to measures of

GMB composition including diversity or Prevotella to

Bacteroides ratio (data not shown).

Association between socioeconomic variables and GMB

As compared with those who relocated to the US main-

land in adulthood, both mainland US-born individuals

and those arriving during childhood (age 0 to 17 years)

had greater attained height, which is a marker of early-

life socioeconomic advantage, and larger current house-

hold income (Table 2). Lower ratio of Prevotella to

Bacteroides was associated with annual household in-

come above $40,000 and higher educational attainment

(Table 4). Conversely, higher Prevotella to Bacteroides

ratio was found among those who lacked plumbing facil-

ities during childhood.

Obesity

The US Latino population has a significant burden of

obesity [18]. Therefore, we next examined the potential

role of GMB in obesity as has been shown in other pop-

ulations [4, 22].

Relatively few individuals (N = 293) had body mass

index in the healthy range of 18.5 to 25 kg/m2, while a

similar number (approximately 17%) of the cohort had

class II obesity (N = 188, BMI 35 kg/m2 to 40 kg/m2) or

Fig. 5 Summary of findings relating to acculturation and GMB among US Latinos. The graphs summarize the results relating birthplace and

migration history with summary measures of GMB including Prevotella to Bacteroides ratio, bacterial and fungal diversity. Older age at arrival to

the mainland USA, consistent with the least exposure to the USA and the lowest acculturation to the US lifestyle, was associated with the highest

Prevotella to Bacteroides ratio. This profile also went along with high fungal alpha diversity. Results for the bacterial GMB community were more

complex. High bacterial diversity was found among the US born, and also among the group who relocated to the mainland USA from Latin

America in older adulthood. The lowest bacterial alpha diversity was observed among those relocating from Latin America to the mainland USA

during early life. Values were derived from fitted multivariate linear regression models as predicted mean outcomes in each category of birthplace

and age at relocation, holding model covariates constant at either their mean value (for continuous variables, length of visit to home country/territory,

intake of whole fruits, whole vegetables and whole grains, moderate-to-vigorous physical activity) or at the value of the most frequent category

variable response (sex = female, field center = Chicago, body mass index = overweight, glycemic status = abnormal, metformin use = no, education =

greater than high school level, annual income = $20,000 to $40,000/year, and antibiotic use in the last 6 months = no)
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class III obesity (N = 106, BMI above 40 kg/m2). Geo-

graphic region of birth and timing of relocation to the

mainland USA were associated with obesity, and espe-

cially class II–III obesity (Additional file 1: Figure S5,

Additional file 1: Table S3, and reference [18]).

The association between GMB and obesity is shown

in Fig. 6. Higher levels of obesity were associated with

lower bacterial alpha diversity (Shannon index) and

higher Prevotella to Bacteroides ratio, after adjustment

for confounders. Measures of ITS1 composition had

no evidence of association with obesity (data not

shown).

Identification of bacterial and fungal taxa associated with

birthplace, relocation, and obesity

We next screened 74 bacterial genera with relative abun-

dance > 0.01% to identify taxa associated with body mass

index and relocation age. Of the 74 bacterial genera,

after FDR correction at P trend < 0.05, 20 genera were

significantly associated with obesity (Additional file 1:

Table S4), and 29 genera were significantly associated

with birthplace and relocation age (Additional file 1:

Table S5). Cross-classification of these two sets of results

identified 10 bacterial genera that showed significant

associations with both birthplace/relocation age and

obesity (Oscillospira, Acidaminococcus, Megasphaera,

Anaerotruncus, Unclassified.Ruminococcaceae, Unclassi-

fied.Coriobacteriaceae, Unclassified.Clostridiales, Unclassi-

fied.Christensenellaceae, Unclassified.YS2 (Cyanobacteria),

andUnclassified.Victivallaceae,Table 6 andAdditional file 1:

Figure S6). Of these 10 bacterial genera, 2 were positively

associated both with obesity and with early-life exposure to

the mainland USA, and 6 were negatively associated both

with obesity and early-life exposure to the mainland USA.

Others, including Oscillospira and Anaerotruncus, were

similar to Prevotella to Bacteroides ratio in that they

displayed the paradoxical pattern of being associated both

with normal weight and with early-life US exposure.

Fungal ITS1 classification yielded 16 class-level, 49

order-level, 109 family-level, 192 genus-level, and 396

species-level taxa (Additional file 2: Table S6). Analysis

of fungal taxa (Additional file 1: Table S7) revealed a

few differences comparing those born in the mainland

USA versus those born in Latin America (|LDA score| >

104) (Aspergillus, Cyberlindnera, Tremellomycetes). Fur-

thermore, in analysis of relocation age, among the 23 pre-

dominant fungal genera with relative abundance > 0.01%

and present in more than 5% of individuals, Candida

achieved an FDR-adjusted P value of 0.046 (Add-

itional file 1: Table S8), while four others met nominal but

Table 2 Relative abundance of fungal species (ITS1 classification) comparing HCHS/SOL participants by region of birth

Country of birth

Cuba Dominican
Republic

Puerto Rico Mexico South
America

Central
America

Mainland USA

Aspergillus proliferans, abundance 0.218 0.189 0.228 0.188 0.163 0.202 0.126

Ratio versus mainland USA 1.7 1.5 1.8 1.5 1.3 1.6

Saccharomyces cerevisiae, abundance 0.318 0.234 0.322 0.271 0.294 0.277 0.413

Ratio versus mainland USA 0.8 0.6 0.8 0.7 0.7 0.7

Candida albicans, abundance 0.069 0.202 0.118 0.100 0.100 0.115 0.113

Ratio versus mainland USA 0.6 1.8 1.0 0.9 0.9 1.0

Candida sake, abundance 0.059 0.058 0.045 0.053 0.071 0.052 ~ 0.001

Ratio versus mainland USA 70.2 69.4 53.7 63.3 84.3 61.8

Debaryomyces hansenii, abundance 0.034 0.027 0.014 0.039 0.023 0.029 0.048

Ratio versus mainland USA 0.7 0.6 0.3 0.8 0.5 0.6

Candida tropicalis, abundance 0.031 0.011 0.010 0.013 0.018 0.034 0.006

Ratio versus mainland USA 5.7 1.9 1.8 2.4 3.4 6.2

Wallemia muriae, abundance 0.049 0.043 0.052 0.044 0.038 0.042 0.066

Ratio versus mainland USA 0.7 0.7 0.8 0.7 0.6 0.6

Candida glabrata, abundance 0.027 0.012 0.036 0.020 0.016 0.013 < 0.001

Ratio versus mainland USA 78.4 35.0 107.0 59.6 46.5 39.1

Cyberlindnera jadinii, abundance 0.006 0.002 0.018 0.026 0.013 0.020 0.058

Ratio versus mainland USA 0.1 0.0 0.3 0.4 0.2 0.3

Rhodotorula mucilaginosa, abundance 0.011 0.008 0.014 0.023 0.020 0.033 < 0.0001

Ratio versus mainland USA 1055.7 795.9 1378.5 2314.3 2047.8 3290.0
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not FDR-adjusted P value < 0.05 (Cyberlindnera, Aspergil-

lus, Mrakia, Saccharomyces). We did not find any fungal

correlates of obesity, with only Debaryomyces achieving a

nominal P value < 0.05 (P value = 0.299 after FDR correc-

tion) (Additional file 1: Table S9).

Discussion
The study of the human microbiome provides a new ap-

proach to understand health consequences of the envir-

onment across different geographic regions. Prior data

suggest that gut microbiomes of Hispanic/Latino adults

Table 3 Diet among HCHS/SOL participants, classified according to place of birth and age at relocation from Latin America to the

mainland USA

Mainland US
born, Mean (SE)

Relocated 0–17 years
old, Mean (SE)

Relocated 18–34 years
old, Mean (SE)

Relocated 35–44 years
old, Mean (SE)

Relocated 45+ years
old, Mean (SE)

N 225 235 730 306 261

Overall diet

AHEI score, mean 47.4 (0.4) 49.2 (0.4)† 51.4 (0.2) † 51.4 (0.4) † 51.4 (0.4) †

Dietary acculturation scale* 2.6 (0.06) 2.2 (0.05) † 1.7 (0.03) † 1.5 (0.05) † 1.5 (0.05) †

Nutrient intake

Energy, mean (kcal) 1962 (23) 1918 (22) 1888 (13) † 1899 (19) 1903 (22)

Carbohydrates, mean (g) 234 (1.6) 241 (1.5) † 242 (0.9) † 245 (1.3) † 245 (1.5) †

Carbohydrates, mean (% calories) 50.9 (0.2) 51.8 (0.2) † 52.2 (0.1) † 52.7 (0.2) † 52.6 (0.2) †

Protein, mean (g) 77.1 (0.5) 77.2 (0.5) 78.2 (0.3) 77.7 (0.4) 77.9 (0.5)

Protein, mean (% calories) 16.9 (0.1) 16.9 (0.1) 17.1 (0.1) 17.0 (0.1) 17.1 (0.1)

Fat, mean (g) 67.5 (0.5) 65.6 (0.4) † 64.5 (0.3) † 63.2 (0.4) † 63.0 (0.4) †

Fat, mean (% calories) 30.9 (0.2) 30.2 (0.2) † 29.8 (0.1) † 29.3 (0.1) † 29.2 (0.2) †

Saturated fat, mean (% calories) 10.2 (0.1) 9.9 (0.1) † 9.7 (0.0) † 9.6 (0.1) † 9.5 (0.1) †

Saturated fat, mean (g) 22.1 (0.2) 21.3 (0.2) † 20.8 (0.1) † 20.5 (0.2) † 20.4 (0.2) †

Transfat, mean (g) 2.9 (0.04) 2.6 (0.04) † 2.4 (0.02) † 2.4 (0.04) † 2.3 (0.04) †

Dietary fiber, mean (g) 16.5 (0.3) 17.9 (0.2) † 19.1 (0.1) † 19.3 (0.2) † 19.1 (0.2) †

Sodium, mean (g) 3332 (40) 3179 (37) † 3141 (22) † 3159 (33) † 3152 (37) †

Intake of specific foods

Vegetable excluding potato, mean
(servings/day)

1.8 (0.2) 1.9 (0.1) 2.0 (0.1) 2.0 (0.1) 2.0 (0.1)

Fruit excluding juice, mean
(servings/day)

0.7 (0.1) 1.0 (0.1) 1.2 (0.1) † 1.3 (0.1) † 1.3 (0.1) †

Whole grain, mean (servings/day) 1.0 (0.2) 1.5 (0.2) † 1.9 (0.1) † 1.8 (0.1) † 1.9 (0.2) †

Refined grain, mean (servings/day) 4.9 (0.2) 4.7 (0.2) 4.5 (0.1) 4.9 (0.2) 4.6 (0.2)

Meat, mean (servings/day) 6.4 (0.3) 5.9 (0.2) 5.7 (0.1) 5.4 (0.2) † 5.3 (0.2) †

Red meat, mean (servings/day) 1.9 (0.2) 1.8 (0.2) 1.8 (0.1) 1.8 (0.2) 1.8 (0.2)

Processed meat, mean (servings/day) 0.9 (0.1) 0.9 (0.1) 0.7 (0.1) 0.7 (0.1) 0.9 (0.1)

Nuts and legumes, mean
(servings/day)

1.0 (0.1) 0.7 (0.1) 0.9 (0.1) 1.0 (0.1) 1.0 (0.1)

Sugar sweetened beverages, mean
(servings/day)

1.2 (0.1) 1.3 (0.1) 1.2 (0.1) 1.2 (0.1) 1.3 (0.1)

Milk/dairy, mean (servings/day) 1.5 (0.1) 1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 1.5 (0.1)

Alcohol, mean (servings/day) 0.35 (0.03) 0.28 (0.03) 0.26 (0.02) 0.30 (0.03) 0.32 (0.03)

AHEI Alternative Healthy Eating Index (Chiuve [12])

*Dietary acculturation scale 1 = Mainly Latino food, 2 = Mostly Latino food and some American food, 3 = Equal, 4 = Mostly American food, 5 = Mainly

American food

Nutrient intake was predicted from an amount model (i.e., a one-part non-linear mixed model) specified by the NCI method (Tooze, [21]), using single-component

SAS macros developed at NCI http://riskfactor.cancer.gov/diet/usualintakes/macros.html. This method estimates the within- and between-person components and

corrects for the high intra-individual variation intrinsic to 24-h recalls given that individuals do not eat the same foods every day. We excluded recalls with daily

energy intake below the recall-gender-specific 1st percentile or above the 99th percentile, and recalls that were unreliable according to the interviewer

Column comparisons are adjusted for age, sex, and field center. Additional adjustment has been made for predicted daily energy intake, for analyses of nutrients

and specific foods

† P < 0.05 comparing to US born (P adjusted for pairwise comparison)
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appear as a distinct cluster when analyzed alongside a

collection of USA and worldwide populations [7, 23]. The

results presented here describe characteristics of GMB

variation and their determinants within the US Hispanic

population. GMB heterogeneity among the US Latino study

population was significantly accounted for by differences

between the “first-generation” (Latin America-born) and

“second-generation” (mainland US-born) groups. Each

group had its own distinct microbiome pattern which was

dependent both upon place of birth and timing of geo-

graphic relocation to the mainland USA (e.g., “relocation

age”). People who relocated to the mainland USA from

Latin America, particularly those who did so relatively late

in life, were characterized by a relatively high ratio of

Table 4 Association of socioeconomic variables and diet quality with features of the gut microbiome

16S Shannon index P:B ratio ITS Shannon index

Beta (95% CI) Beta (95% CI) Beta (95% CI)

Household income/year ($)

< 10,000 Reference Reference Reference

10,000–20,000 0.03 (− 0.06, 0.13) 0.04 (− 0.04, 0.12) 0.10 (0.00, 0.20)

20,000–40,000 0.02 (− 0.08, 0.11) 0.02 (− 0.06, 0.10) 0.10 (0.01, 0.20)

> 40,000 0.08 (− 0.02, 0.18) − 0.11 (− 0.19, − 0.03) 0.10 (− 0.01, 0.20)

P value 0.16 0.0005 0.22

Educational attainment

< 9th grade Reference Reference Reference

Some high school 0.01 (− 0.09, 0.11) − 0.09 (− 0.18, − 0.01) − 0.02 (− 0.12, 0.08)

High school diploma − 0.03 (− 0.11, 0.05) − 0.08 (− 0.15, − 0.01) 0.01 (− 0.08, 0.09)

Beyond high school 0.02 (− 0.05, 0.09) − 0.15 (− 0.21, − 0.09) 0.05 (− 0.02, 0.12)

P value 0.62 < 0.0001 0.15

Childhood economic hardship − 0.02 (− 0.10, 0.07) 0.05 (− 0.02, 0.12) 0.01 (− 0.07, 0.10)

P value 0.72 0.14 0.77

Childhood sanitation (had basic
facilities such as plumbing and sewer tank)

− 0.03 (− 0.14, 0.08) − 0.14 (− 0.23, − 0.05) 0.08 (− 0.03, 0.19)

P value 0.60 0.003 0.17

Alternative Healthy Eating Index* −.0004 (−.0048, 0.0040) 0.0063 (0.0027, 0.0100) 0.0055 (0.0010, 0.0099)

P value 0.35 0.006 0.40

Linear regression models are adjusted for age, sex, and field center

* For Alternative Healthy Eating Index (Chiuve, [81]), a higher score means a healthier diet

Table 5 Association of foods and nutrients with gut microbiome composition

16S Shannon index Prevotella to Bacteroides ratio ITS1 Shannon index

Beta (95% CI) Beta (95% CI) Beta (95% CI)

Whole grains − .0280 (− .0553, − .0006) 0.0417 (0.0187, 0.0647) 0.0219 (− .0068, 0.0505)

Grains − .0112 (− .0207, − .0016) 0.0007 (− .0073, 0.0088) 0.0016 (− .0083, 0.0116)

Legumes − .0467 (− .1392, 0.0457) 0.0723 (− .0056, 0.1501) 0.0382 (− .0579, 0.1344)

Whole fruit 0.0237 (− .0172, 0.0646) 0.0078 (− .0267, 0.0422) 0.0366 (− .0061, 0.0794)

Vegetables (no potatoes) 0.0100 (− .0377, 0.0576) 0.0638 (0.0237, 0.1039) 0.0527 (0.0032, 0.1023)

Sugar sweetened beverages − .0148 (− .0502, 0.0206) 0.0151 (− .0147, 0.0449) −.0026 (− .0398, 0.0347)

Red and processed meat − .0042 (− .1168, 0.1084) − .1310 (− .2257, − .0364) −.0790 (− .1956, 0.0376)

Fiber − .0016 (− .0076, 0.0044) 0.0044 (− .0007, 0.0094) 0.0060 (− .0003, 0.0122)

Transfat 0.0654 (− .0698, 0.2006) − .2413 (− .3546, − .1279) −.0484 (− .1897, 0.0928)

PUFA 0.0071 (− .0327, 0.0469) − .0150 (− .0486, 0.0185) −.0001 (− .0417, 0.0415)

Alcohol 0.0091 (− .0493, 0.0676) 0.0014 (− .0478, 0.0507) 0.0267 (− .0343, 0.0876)

Models adjusted for age, sex, and field center. Italics indicate P<0.05. PUFA polyunsaturated fatty acid

Definitions of composite food group variables are described in Additional file 1: Table S2
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Prevotella to Bacteroides. This accounts for the fact that mi-

gration- and acculturation-related variables were among

the leading explanatory variables in Bray-Curtis distance

clustering analyses of 16S sequence data when ranked by

explained variation (Fig. 2, R2). There was also evidence for

increased GMB diversity of both bacterial and fungal

components in arrivals from Latin America, particularly

among those who arrived in the USA during middle to late

adulthood as opposed to early life. Our data are consistent

with the prevailing tendency for people in lower-income

countries to have different gut microbial characteristics [24]

including a Prevotella-dominant microbiome [4], when

compared with the US population. In contrast to the Latin

America-born, the US-born Latino population had low Pre-

votella to Bacteroides ratio and low fungal alpha diversity.

Among Hispanic populations, dietary patterns (fiber,

sugary sweets, animal products, etc.) and medical history

(e.g., diabetes, number of medications, Charlson comor-

bidity index) ranked high in terms of the variance

explained according to community-wide comparisons,

consistent with other cohorts [25]. A novel contribution

of our study was our observation that the strength of

sociodemographic, region of birth, and migration-related

influences rivaled that of known contributors to GMB

diversity. The findings are supportive of a strong and

lasting influence of early-life environment on the gut

microbiome. Our cohort of largely immigrant US Lati-

nos captured the “1.5 generation,” a subset of the first

generation which refers to those who relocated to the

USA during childhood and adolescence. Individuals in

this group have lived their adult life in the US environ-

ment, but during childhood development, their gut

microbiomes would have been established under the in-

fluence of the Latin American environment and lifestyle.

The “1.5 generation” had levels of Prevotella to Bacteroides

ratio that were intermediate between the “first” and “sec-

ond” generations. Particularly interesting was that reloca-

tion age effects were seen regardless of the current age of

Fig. 6 Association of gut microbiome features with obesity defined by body mass index. Beta and 95% confidence intervals were derived from

linear regression models relating body mass index categories with 16S Shannon index (left) and Prevotella to Bacteroides ratio (right), after

adjustment for age, sex, field center, intake of vegetables without potatoes, intake of whole fruit, intake of whole grains, moderate-to-vigorous

physical activity (continuous), diabetes (three groups), length of visit to home country (continuous), education level (four groups), income level

(five groups), antibiotic in last 6 months (binary), and metformin use (binary). Asterisks indicate P < 0.05. Body mass index (BMI) defined as normal, 18.5

to 25 kg/m2; overweight, 25 to 30 kg/m2; class I obesity, 30 to 35 kg/m2; class II obesity, 35 to 40 kg/m2; and class III obesity, BMI above 40 kg/m2. CI,

confidence interval
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participants. Thus, the tendency for childhood arrivals with

longer time living in the USA to have lower Prevotella to

Bacteroides ratio as compared with adult arrivals was a

consistent phenomenon that did not dissipate across the

life course. This finding suggests a critical time window for

establishment of the adult microbiome, in line with the ob-

servation that age at separation determined GMB concord-

ance between twins in the UK Twins cohort [26]. We also

showed that Hispanic adult US residents raised in Latin

America had diet patterns that differed from that among

the US-born. These differences in prevailing diet patterns

were discernable even after immigrants had lived in the

USA a long time, and they appeared to contribute to the

makeup of the GMB. However, diet did not explain the

GMB differences by birthplace and migration. The dual de-

pendencies of both GMB and diet on the historical age at

migration provide an interesting avenue of research to

understand the long-term health of Hispanic populations

of the USA.

In contrast to results for Prevotella to Bacteroides ra-

tio, the association of GMB bacterial diversity with birth-

place and geographic region was less clear. We found a

relatively weak overall association between exposure to

the USA and bacterial diversity. As compared both with

those who relocated as adults, and those who were born

in the mainland USA, those who relocated to the USA

during childhood tended to have lower bacterial diver-

sity. Moreover, those preferring to use the English

language over the Spanish language had significantly

higher 16S Shannon index, which was at odds with the a

priori expectation that higher acculturation to the US

environment would be associated with reduced bacterial

alpha diversity. This seems to provide a more nuanced

picture when compared with findings among other com-

munities [24] which have observed loss of GMB diversity

after migration from a low-to-moderate income setting

to the USA. It should be noted that in some studies

these immigrant generation differences in bacterial di-

versity have been relatively modest [4] and most studies

have not analyzed data separately from the “generation

1.5” childhood-arrival population.

We confirmed the expected association of low bacterial

(16S) diversity with obesity [4]. We also used classification

of subjects according to Prevotella to Bacteroides ratio be-

cause it is a frequently used metric to define the micro-

biome, although it only captures one feature of microbiome

space [16]. While decreasing Prevotella relative to Bacter-

oides was associated with exposure to the USA and “US

style” (versus “Latino”) foods, enigmatically Prevotella to

Bacteroides ratio tended to be higher rather than lower

among obese individuals. Therefore, our results were not

consistent with the hypothesis that “replacement” of Prevo-

tella with Bacteroides among immigrants relocating to

high-income nations is associated with increased risk of

obesity. On the contrary, our data suggested that normal

weight Latino adults had low prevalence of Prevotella rela-

tive to Bacteroides. While resolving specific species and

strains could not be done from our 16S data, it seems clear

that this will be an important next step for assessing health

effects of the GMB in Hispanics. For example, Prevotella

copri is a common species that has been associated with in-

creased risks of various diseases including diabetes [27].

Both Prevotella [28] and Bacteroides [29] are highly diverse

and with strain-specific gene functions that differ between

Table 6 Regression analyses relating genera with obesity, birthplace, and age at relocation to the mainland USA. After individually

examining the associations of 74 genera with relative abundance > 0.01% with obesity and with birthplace/age at relocation to the

mainland USA, the ten genera displayed in this table were found to be overlapping between these two analyses. Regression

models for obesity adjusted for age, sex, and center, and regression models for birthplace and age at relocation adjusted for sex

and center

Association with obesity Association with birthplace and age at
relocation to USA

Direction of association

P value P value P value P value

Beta Unadj FDR adj Beta Unadj FDR adj Obesity Early-life exposure to USA Consistent?

Oscillospira − 0.139 < 0.001 < 0.001 − 0.071 0.003 0.0111 Negative Positive No

Unclassified.Clostridiales − 0.207 < 0.001 < 0.001 0.101 < 0.001 < 0.001 Negative Negative Yes

Unclassified.Ruminococcaceae − 0.138 < 0.001 < 0.001 0.067 0.005 0.016818 Negative Negative Yes

Unclassified.Christensenellaceae − 0.426 < 0.001 < 0.001 0.158 0.003 0.0111 Negative Negative Yes

Unclassified.Coriobacteriaceae − 0.235 < 0.001 < 0.001 0.137 0.001 0.0056923 Negative Negative Yes

Megasphaera 0.277 < 0.001 < 0.001 − 0.167 0.003 0.0111 Positive Positive Yes

Acidaminococcus 0.318 < 0.001 < 0.001 − 0.3 < 0.001 < 0.001 Positive Positive Yes

Anaerotruncus − 0.18 < 0.001 < 0.001 − 0.083 0.011 0.03256 Negative Positive No

Unclassified.Victivallaceae − 0.144 0.009 0.037 0.118 0.004 0.014095 Negative Negative Yes

Unclassified.YS2 − 0.217 0.004 0.0185 0.205 < 0.001 < 0.001 Negative Negative Yes
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Western and non-Western populations. As compared with

the Prevotella-dominant GMB typical of the Latin Ameri-

can region, Latinos highly adapted to the USA who have a

Bacteroides-dominant GMB may have different responses

to dietary components and exposure to disease-related

mechanisms such as short-chain fatty acid production and

degradation of the GI mucus barrier [5, 6]. To resolve ap-

parent differences between studies, an intriguing hypothesis

that trans-cohort collaborations might be able to address

states that disease-associated microbiota patterns may be

different in different geographic regions [10].

Having observed a significant influence of dietary fiber

on Prevotella to Bacteroides ratio, we considered whether

types of carbohydrates, legumes, and starches consumed

differed across subgroups of the Hispanic population. Fruit

and whole grain consumption were variable in the popula-

tion, favoring the older adult age immigrants to the USA

who had higher intakes of these foods. Bean and legume

consumption was high by US standards [30]. However,

this food had similar consumption across the population,

and based on our adjusted analyses, we consider this diet

component unlikely to contribute to the observed GMB

differences.

Additional analyses identified that several genera had

the signature of a bacterial group that was related in the

same direction both to obesity and to early-life US expos-

ure. For instance, Acidaminococcus (anaerobic, Gram-

negative, acetate- and butyrate-producer [31]) was more

abundant both with high BMI and with mainland US

birth. Acidaminococcus has been associated with meta-

bolic disease risks in prior worldwide studies. Abundance

of these bacteria may be reduced in type 1 diabetes (China

[32], Mexico [33]) and increased in children with stunting

(Malawi, Bangladesh) [34]. Consistent with our results,

Acidaminococcus has been found to be increased in higher

BMI adults (Bangladesh [35], USA [36]) and in adults with

high combined cardiovascular risk factors (China) [37].

We also confirmed that those with unfavorable body

weight had reduced abundance of Oscillospira [22], which

has been also shown as a microbiome feature that corre-

lates with fatty liver disease which is of particularly high

prevalence among Latinos [38]. Paradoxically, although

adiposity and US exposure are strongly associated with

one another, Oscillospira as well as Anaerotruncus (an-

other bacteria known to be negatively related with obesity)

had lower abundance in the obese but higher abundance

in the US-born. This discordant pattern between these

two epidemiologically linked participant characteristics

was therefore seen for Prevotella, Anaerotruncus, and

Oscillospira, which we consider an interesting finding

albeit of uncertain interpretation.

We found an association of reduced mycobiome diver-

sity with early-life exposure to the USA. Components of

the mycobiome have been implicated in chronic disease

risk, but this is an understudied area [39]. The lead ex-

planatory variable for fungal beta diversity (Bray-Curtis

distance) was poor oral health (missing teeth), and oral

health overall is poor in the Latino population, as shown

for the groups enrolled in HCHS/SOL [40]. Fungal

diversity also varied by income and neighborhood of

residence (census block), which may be further evidence

that low socioeconomic status and living environment

may influence the mycobiome. A few of our findings

relating to particular fungal taxa are worthy of note. We

suspect that higher abundance of Cyberlindnera jadinii

(which is added to processed foods [41]) among US-

born as compared with Latin American-born individuals

may be associated with some aspect of diet. Rhodotorula

mucilaginosa, a yeast species that can be found in the

environment including within foods and beverages [42],

was practically absent in the US-born members of our

cohort; however, among those of Latin American birth,

this species had mean abundance ~ 1% in the Caribbean-

born groups (Cuba, Dominican Republic, Puerto Rico)

and 2–3% in the Mexico-, Central America-, and South

America-born groups. R. mucilaginosa is considered a rare

although emerging human pathogen [42], and in the con-

text of chronic disease, it is interesting for its carotenoid-

producing potential [43]. Latin American-born individuals

also had substantial mean abundance of several Candida

species that were rare in the US-born, including C. sake,

C. glabrata, and C. tropicalis. C. tropicalis is considered

part of the normal human microbiota, yet it is of particu-

lar clinical interest for producing a virulent and sometimes

antifungal-resistant systemic infection among patients in

the Latin American and Asian regions [44]. Despite

several interesting differences in the fungal distribution

between US- and Latin American-born people, we were

unable to identify particular fungal taxa that correlated

significantly with obesity among US Hispanics.

Following seminal work in this area [9], we can point to

several possible explanations for why exposure to the Latin

American and US environments may be associated with

distinct microbiota patterns. These may include conditions

and mode of childbirth, breastfeeding, diet, functioning of

the immune system due to pathogen exposures, and expos-

ure to pets and livestock. In our study, lifestyle factor pro-

files including diet and socioeconomic status differed

between the Latin American-born and US-born groups.

Physical activity levels also varied across Hispanic groups,

although this dimension of lifestyle was not found to be as-

sociated with GMB, an interesting null finding in light of

prior studies showing GMB differences across more ex-

treme contrasts of exercise habits [45]. Although several of

these lifestyle factors were themselves associated with

GMB, our multivariable adjustment models showed that

lifestyle and socioeconomic variables did not explain the

birthplace and migration associations with GMB or
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obesity risk. Nonetheless, despite the availability of a

lengthy and wide-ranging in-person data collection proto-

col, it can be hard to exclude the influence of mismeasure-

ment, unmeasured behaviors, or other environmental

variables.

Over the short term, time-since-immigration effects

on the GMB have been previously described in the USA

[4]—is it plausible that the timing as well as the duration

of US exposure may have independent effects? We

speculate that the life course experience of childhood

migrants from Latin America may have a particular influ-

ence on GMB. For instance, dramatic changes in diet,

nutritional status, and environment after relocation to the

USA may exert different effects when experienced in early

life versus later adulthood. Thus, we might consider age--

varying explanatory biological phenomena involving im-

munity, the physiology and function of the gastrointestinal

tract, or social factors such as contacts with other US- and

non-US-born individuals in the household. The time

course for establishment of the adult microbiome pattern

has been well studied (see [46]), although little is known

about how age may alter the response to environmental

perturbation (here represented as age at relocation from

Latin America to the USA). In this regard, we note our

prior report from the HCHS/SOL cohort that adults who

were childhood migrants to the USA had higher preva-

lence of asthma as compared with both US-born

individuals and adulthood migrants [47]. Like our GMB

findings, these data on asthma are consistent with an

immunological phenotype associated with early-life geo-

graphic relocation.

While we lacked a sufficient sample size to exam-

ine household clustering in this study [48, 49], in

sensitivity analyses, we confirmed that key conclu-

sions were similar after limiting the study to the

subset of non-cohabitating individuals (data not

shown). Other possible explanations which we may

not have fully been able to control include differ-

ences across waves of migrant influx into the USA

[50], as well as secular changes over time in the

relevant environments (social, built, nutritional) of

both the US and the Latin American source nations.

Limitations of this study include restriction to 16S and

ITS1 sequencing. Shotgun metagenomic sequencing is

in progress, which may allow identification of specific

taxa down to the species and subspecies level, a neces-

sary step to derive well-understood and modifiable bio-

logical targets. While we addressed the bacterial and

fungal microbiome in parallel, interplay among bacterial

and fungal taxa (co-occurrence, co-exclusion) will be

complex to disentangle and will require larger samples

and new statistical methods. Data on diet were assessed

years prior to the GMB assessment, although we obtained

these data using rigorous methods designed to capture

habitual diet and showed strong associations between diet

and GMB. Early-life environment was assessed retrospect-

ively and subject to recall bias, suggesting that the relatively

weak GMB signals in our data for variables such as child-

hood sanitation are likely to be underestimated. We did

not study recent migrants because of the design of SOL,

and geographic data was limited to the place of birth and

the location of residence during the years of study partici-

pation. We also lacked repeated stool samples over time,

and the analyses were cross-sectional, which will be over-

come as the HCHS/SOL cohort members undergo future

longitudinal assessments. Extant data suggest that genetic

influences on the GMB are relatively weak and oversha-

dowed by the environment [51, 52]. Hispanic background

groups differ in average continental ancestry [53] yet we

did not see a consistent pattern of difference by Hispanic

background. Finally, only adults were studied, although

results on migration suggest that studying children and

adolescent migrant populations may capture a critical

period for influences on lifelong GMB composition.

Strengths of the study setting include an extensive plat-

form of clinical, biometric, behavioral, and sociodemo-

graphic variables which are of potential relevance to

interactions among the host’s resident microbiome and

the environment. Another design feature which lends cre-

dence to these comparisons was the approach of sampling

all study participants from four US communities using

random population-based recruitment methods and con-

ducting assessments in a uniform manner across four US

locations. The parent HCHS/SOL cohort had a relatively

high participation rate of over 40%, which is notable con-

sidering that the cohort was inducted into a lengthy re-

search program by door-to-door community recruitment.

The participants were not selected from a diseased popu-

lation, which allows us to address a large array of disease

and biometric characteristics across a range of disease

severity.

Conclusions
In summary, this study shows that early-life migration

and length of stay in mainland USA significantly affect

key components of the GMB of Hispanic/Latino groups,

which differ from other groups in the USA in micro-

biome features. In addition, obesity was associated with

low bacterial alpha diversity consistent with other stud-

ies, but the findings of higher Prevotella to Bacteroides

ratio in obese individuals was enigmatic suggesting a

unique aspect of the GMB-host relationship in Latinos.

This in turn suggests the hypothesis that particular

aspects of the microbiome may explain unusual epi-

demiological patterns observed among the Latino com-

munity, such as high prevalence of diabetes, obesity, and

asthma [47, 54, 55], concurrent with a paradoxical pro-

pensity for longevity [56].
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Methods
Study cohort

HCHS/SOL is a prospective, population-based cohort

study of 16,415 Hispanic/Latino adults (ages 18–74 years

at the time of recruitment during 2008–2011) who were

selected using a two-stage probability sampling design

from randomly sampled census block areas within four

US communities (Chicago, IL; Miami, FL; Bronx, NY;

San Diego, CA) [57, 58]. The HCHS/SOL Gut Origins of

Latino Diabetes (GOLD) ancillary study was conducted

to examine the role of gut microbiome composition on

diabetes and other outcomes, enrolling participants for

this analysis from the HCHS/SOL approximately con-

current with the second in-person HCHS/SOL visit cycle

(2014–2017). The study was conducted with the

approval of the Institutional Review Boards (IRBs) of

Albert Einstein College of Medicine, Feinberg School of

Medicine at Northwestern University, Miller School of

Medicine at the University of Miami, San Diego State

University, and University of North Carolina at Chapel

Hill. Written informed consent was obtained from all

study participants.

Participant characteristics and collection of clinical and

behavioral data

A number of participant characteristics were ascertained

by questionnaire at entry into HCHS/SOL, conducted by

bilingual interviewers using the language preferred by

the respondent. Self-reported variables included Hispanic/

Latino background, place of birth, age at relocation (here

termed “relocation age”), and years living in the mainland

USA (with the US territory of Puerto Rico considered to

be part of Latin America). Following previously described

approaches, we used a combination of self-reported,

objective monitoring, and clinical examination and blood

laboratory components to define sociodemographic

factors [59], medical history and medication use [60],

physical activity including sedentary time and moderate-

to-vigorous physical activity (MVPA) derived from 7-day

hip worn accelerometry (Actical version B-1 model 198-

0200-03; Respironics, Inc., Bend, OR) [61], and diet [62].

Sedentary time was classified according to quartiles, while

MVPA was categorized according to whether participants

met the 2008 US guidelines [63]. Diet variables were

derived from the average of two 24-h dietary recalls that

were collected at the HCHS/SOL baseline visit. The first

recall was collected in person, and the second recall was

collected by telephone within the following 3months. Diet

recalls were conducted using the Nutrition Data System

for Research software (version 11) developed by the Nutri-

tion Coordinating Center, University of Minnesota,

(Minneapolis, Minnesota). Health insurance was defined

according to participant self-report. Childhood economic

hardship was assessed by the question, “Did your family

ever experience a period of time when they had trouble

paying for their basic needs, such as food, housing, med-

ical care, and utilities, when you were a child? / Spanish:

¿Su familia alguna vez tuvo dificultades para pagar sus

necesidades básicas como comidas, vivienda, cuidados

médicos, o servicios públicos, cuando usted era niño(a)?”

Access to sanitation during childhood was assessed by,

“When you were growing up, did your home have the fol-

lowing basic utilities?... plumbing, septic tank. / Spanish:

¿Cuándo usted estaba creciendo, la casa donde vivía

tenía los siguientes servicios públicos? Plomería, Drenaje/

fosa séptica.” English or Spanish language preference was

defined by the participant’s choice of English or Spanish

written and spoken language in data collection encoun-

ters. Dietary acculturation was a self-reported measure

stating whether a typical Hispanic, non-Hispanic (“Ameri-

can”), or blended style diet was consumed (“Of Hispanic/

Latino and American food, do you usually eat...? Mainly

or Mostly Hispanic/Latino foods” / Spanish: “De la comida

hispana/latina y la comida americana, ¿por lo general

come usted...? Principalmente comidas hispanas/latinas,

or Mayormente comidas hispanas/latinas y algunas comi-

das americanas”.) We administered a modified 10-item

version of the Short Acculturation Scale for Hispanics

(SASH) which has 5-point Likert scale responses. The de-

rived score for social acculturation was an average of the

four SASH items regarding socialization practices and

preferences [64]. Higher SASH response values represent

greater acculturation to the dominant US culture. The

overall SASH reliability was acceptable in the full sample

(Cronbach’s α = .90), and for both English and Spanish

language versions (αEnglish = .76; αSpanish = .85). The reli-

ability of SASH was similar across Hispanic/Latino back-

ground groups (ranging from αSouth Americans = .85 to

αMexicans = .89). In addition, the use of antibiotics or pro-

biotic supplements and dietary preferences within the

prior 6months, as well as stool characteristics (Bristol

scale), were ascertained via directed questions on self-

administered questionnaire at the time of stool sample

collection.

Stool sample collection and processing

Enrolled participants were provided with a stool collec-

tion kit. For each participant, a single fecal specimen

was self-collected using a disposable paper inverted hat

(Protocult collection device, ABC Medical Enterprises,

Inc., Rochester, MN). Participants were instructed to

collect a sample of the specimen with a plastic applicator

attached to the cap, to place the applicator into a sup-

plied container with a stabilizer (RNAlater, Invitrogen,

Carlsbad, CA) and 0.5-mm-diameter glass beads, and

then shake the container to mix stool and preservative

[65]. Samples were shipped to Albert Einstein College

of Medicine, aliquoted into 1-ml tubes and frozen at
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− 80 °C. Each aliquot was barcoded A–C and stored

in a separate box.

The following method was used to randomize the

samples sent to the Knight Lab for microbial sequencing.

Using a team of three, three boxes were randomly se-

lected from the set of all boxes containing the “A” sam-

ple using a random number generator. From a chosen

box containing 81 samples, each person randomly se-

lected three rows (9 tubes per row) of tubes and placed

them randomly in one 96-well tube rack (1 rack per per-

son; total 3 racks). The boxes were then rotated among

the group, and the process was repeated twice resulting

in three trays of 81 tubes consisting of 27 samples from

each box. The process took less than 5 min and the tube

racks were immediately returned to − 80 °C. The tubes

from each rack were scanned in the randomized order

creating a spreadsheet listing sample ID and location,

placed in a new, labeled freezer box, and then returned

to − 80 °C until shipment. Samples were shipped on dry

ice via FedEx overnight delivery to the Knight lab for

further analysis.

DNA extraction and sequencing

DNA extraction, 16S rRNA gene and ITS1 amplicon se-

quencing were done using Earth Microbiome Project

(EMP) standard protocols (http://www.earthmicrobiome.

org/protocols-and-standards/) [66]. Briefly, DNA was ex-

tracted with the Qiagen MagAttract PowerSoil DNA kit

as previously described [67]. Amplicon polymerase chain

reaction (PCR) was performed on the V4 region of the

16S rRNA gene using the primer pair 515f and 806r with

Golay error-correcting barcodes on the reverse primer.

Amplicon PCR was performed on the ITS1 region using

primer pair ITS1f and ITS12 as described in the Earth

Microbiome project (http://www.earthmicrobiome.org/

protocols-and-standards/ITS1/). ITS1 amplicons were

barcoded and pooled in equal concentrations for sequen-

cing. The amplicon pool was purified with the MO BIO

UltraClean PCR (Qiagen, Venlo, Netherlands) cleanup kit

and sequenced on an Illumina MiSeq sequencing plat-

form. Sequence data were demultiplexed and minimally

quality filtered using the Quantitative Insights Into Micro-

bial Ecology (QIIME) 1.9.1 [68] script split_libraries_fas-

tq.py, with a PHRED quality threshold of 3 and default

parameters to generate per-study FASTA sequence files.

Bioinformatics processing and statistical analysis

Bioinformatic processing steps and statistical analyses were

conducted in R versions 3.4.1 and 3.4.3 [69]. 16S sequence

reads were clustered into operational taxonomic units

(OTUs) based on ≥ 97% similarity by the UCLUST algo-

rithm, matched against the GreenGenes reference database

(version. 13_8) [70, 71]. Phylogenetic reconstruction was

performed by PyNAST [72] with the information from

the centroids of the reference sequence clusters con-

tained in the GreenGenes reference database. Sequences

that failed to align (e.g., chimeras) were removed. Data

were then rarefied and subsampled to a coverage depth

of 10,000 reads per sample for downstream analyses.

Rarefaction curves are presented in Additional file 1:

Figure S8.

For fungal bioinformatic processing, reads were trimmed

for bases that fell below a PHRED score of 25 at the 3′ end

with PrinSeq V0.20.4 [73]. DADA2 V1.8 [74] was used to

pre-process the ITS1 sequencing and to remove chimeras

using the default denovo protocol [74]. Processed reads

were then clustered into amplicon sequencing variants

using DADA2 and reference taxonomy was assigned using

the naïve Bayesian classifier [75] and the UNITE reference

database [76]. Outputs were imported into R using the

phyloseq [77] package and further processed with vegan

[78] and coin [79] packages.

16S rRNA gene V4 region (“16S”) amplicon sequen-

cing [80, 81] was performed on 1920 samples with 142

samples being blank controls. The sequencing yielded

21,991 ± 12,087 (mean ± SD) reads per sample. After

analysis with QIIME (version 1.9.1) closed reference

OTU picking, there was an average of 20,624 ± 10,771

(mean ± SD) reads per sample. Of the 1778 participant

samples, 1674 samples passed all QC metrics and were

used in subsequent analyses. To evaluate the fungal

component of the GMB, ITS1 amplification and sequen-

cing were performed on the same samples resulting in

12,468 ± 41,628 reads per sample. Following DADA2

analysis, an average read count of 11,902 ± 36,170 reads

per sample was obtained. Rarefaction analysis identified

a stable plateau point at 500 reads which allowed 1028

samples to be used in subsequent analysis. PERMA-

NOVA analysis using Bray-Curtis distances did not show

any significant biases among four sequencing runs.

Taxonomic analyses were performed after collapsing

OTUs at the genus level. Genera data were normalized with

cumulative sum scaling (CSS) and log2 transformation to

account for non-normal distribution [82]. The α-diversity

(Shannon index) and β-diversity (Bray-Curtis distances)

were calculated to investigate the community-level diversity

of gut microbiota using phyloseq, vegan, and dada2 package

in R (version 3.4.1) [77, 78]. Linear modeling was per-

formed using the base R [25] lm function.

To identify correlates of GMB within the HCHS/SOL

US Hispanic cohort, we used available information from

the two in person HCHS/SOL study examinations as

well as a brief diet, medication, and stool characteristic

questionnaire that was collected at the time of GMB

sampling. Lead correlates of beta diversity were identified

by conducting PERMANOVA analysis of Bray-Curtis

distances, computing the percent of sample clustering ex-

plained by 156 participant characteristics relating to stool
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quality, anthropometry (for example, height), behaviors

(for example, diet), disease and use of medications (includ-

ing clinical laboratory values, for example liver function

tests), childhood exposures (including access to sanitation

in home), sociocultural characteristics (including birth-

place and relocation to the mainland USA), and demo-

graphic variables (sex, age). This set of variables was a

subset of all collected variables available at the HCHS/

SOL baseline and follow-up examinations, including those

that had a plausible relationship with GMB and after

selecting one out of every highly correlated set of vari-

ables. Pairwise correlations among included variables are

shown in Additional file 1: Figure S9 and Additional file 1:

Figure S10. The adonis function from the vegan package

in R was used to assess statistical significance for PERMA-

NOVA analyses. For simplicity, we used a single, uniform

modeling approach for PERMANOVA analysis, using

linear ordination across categories of independent (pre-

dictor) variables. This test was most sensitive to dose-

response relationships between levels of the explanatory

variable, and Bray-Curtis distance. To understand our

results more fully, we also explored alternative statistical

approaches including global differences among categories

without assuming a dose-response ordination, which pro-

vided a more sensitive statistical test for variables such as

relocation age which had a non-linear association with

GMB metrics (data not shown). As expected, those vari-

ables rose in the R2 and P value rankings under the alter-

nate modeling approach.

Using multivariable adjusted models, we isolated

independent correlates of GMB outcomes. Linear

modeling was performed using the base R [25] lm

function with the dependent variable defined as the

metrics of GMB including Shannon index, Prevotella

to Bacteroides ratio, and the first two principal coor-

dinates of Bray-Curtis distance. We performed log

transformation as appropriate to improve model fit.

We used the approaches of stratification combined

with multivariable adjustment to address the rela-

tionship among multiple correlates of GMB in order

to isolate associations with the variables of primary

interest and exclude confounding. Adjustment vari-

ables were chosen based on a combination of em-

piric data on correlates of the main predictor and

outcome variable, and knowledge of risk factor and

disease relationships. These covariates included age

(except for analyses with the primary predictor of

interest defined as relocation age), gender, and study

center for the initial adjusted models, and for the

fully adjusted models, we added intake of vegetables

without potatoes, intake of whole fruit, intake of

whole grains, moderate-to-vigorous physical activity

(continuous), BMI (six groups), diabetes/pre-diabetes/

normoglycemic defined by American Diabetes Association

criteria applied to study glucose and hemoglobin A1c levels

(three groups), length and frequency of visits back to the

participant’s country of origin (continuous), education level

(four groups), income level (five groups), antibiotic use in

the last 6months (binary), and metformin use (binary).

Next, in order to exclude confounding effects of age at the

time of study, we examined the associations of relocation

age with GMB across strata of current age at the time

of GMB collection. This analysis was done after exclud-

ing individuals who relocated to the USA beyond age

26 years old in order to remove the strong correlation

between relocation age and current age. A leave-one-

out approach was also used to determine whether any

single Hispanic background group was responsible for

our main findings, and the Mexican subgroup of the

HCHS/SOL was deemed large enough to allow analyses to

be repeated in this group alone. To avoid false inferences

due to small sample size, we excluded participant sub-

groups that had a small number of participants (for ex-

ample, some of the mainland US-born groups separated

out by Hispanic background). The final set of analyses ex-

amined the independent associations of GMB metrics and

individual bacterial (16S) and fungal (ITS1) defined taxa

with body mass index (obesity) and birthplace and migra-

tion. Significance testing followed a P < 0.05 criteria, and q

values were used to control for multiple testing in R ac-

cording to the method of Storey (http://github.com/

jdstorey/qvalue).
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