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Gut microbiome development along the colorectal
adenoma–carcinoma sequence
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Wang1, Karsten Kristiansen1,2, Manimozhiyan Arumugam1,7, Herbert Tilg8, Christian Datz4 & Jun Wang1,2,6,9

Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from

benign polyps called adenoma. The gut microbiota is believed to be directly involved in

colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-

related gut microbe(s), however, have not been surveyed in a comprehensive manner.

Here we perform a metagenome-wide association study (MGWAS) on stools from advanced

adenoma and carcinoma patients and from healthy subjects, revealing microbial genes,

strains and functions enriched in each group. An analysis of potential risk factors indicates

that high intake of red meat relative to fruits and vegetables appears to associate with

outgrowth of bacteria that might contribute to a more hostile gut environment. These findings

suggest that faecal microbiome-based strategies may be useful for early diagnosis and

treatment of colorectal adenoma or carcinoma.
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C
olorectal cancer (CRC) is among the top three most
frequently diagnosed cancer worldwide and a leading
cause of cancer mortality1,2. The incidence is higher in

more developed countries, but is rapidly increasing in historically
low risk areas such as Eastern Asia, Spain and Eastern Europe,
attributable to a so-called western lifestyle1–3. Genetic changes
accumulate for many years in the development of colorectal
cancer, often involving loss of the tumour suppressor gene
adenomatous polyposis coli (APC), followed by activating and
inactivating mutations in KRAS, PIK3CA and TP53 (refs 3,4).
Most CRC cases are sporadic, but are preceded by dysplastic
adenomas which could progress into malignant forms, referred to
as the adenoma–carcinoma sequence3.

CRC is among the most studied diseases implicated with the
gut microbiota. Causal relationships, however, were typically
investigated by application of antibiotic cocktails that eradicate
the gut microbiota without knowing the exact microbial strains
and genes at play5–7. Fusobacterium has been detected in
colorectal carcinoma relative to normal colon tissue8,9, and was
found to be enriched in adenomas10. Fusobacterium nucleatum, a
periodontal pathogen, has been shown to promote myeloid
infiltration of intestinal tumours in ApcMin/þ mice and associate
with increased expression of proinflammatory genes such as
Ptgs2(COX-2), Scyb1(IL8), Il6, Tnf(TNFa) and Mmp3 in mice and
humans11. It is not clear, however, whether more bacteria or
archaea serve as markers for, or contribute to the aetiology of,
colorectal carcinomas. Moreover, as perhaps the most important
environmental factor for human health, or our ‘other
genome’12,13, it remains to be explored whether and how the
gut microbiome integrate other risk factors, for example, diet,
smoking, obesity1–3,14,15 and generate a coherent signal for
colorectal carcinogenesis.

Here, we present 156 metagenomic shotgun-sequenced faecal
samples from colorectal adenoma and carcinoma patients and
healthy controls, identify metagenomic linkage groups (MLG)16

characteristic of the tumours, and reveal the possible impact of
various risk factors, especially red meat versus fruit and vegetable
consumption on gut microbial alterations along the colorectal
adenoma–carcinoma sequence.

Results
Global shifts in the gut microbiome. To investigate changes in
the gut microbiome in colorectal adenoma and carcinoma, we
performed metagenomic shotgun sequencing on 156 faecal
samples from healthy controls, advanced adenoma, or
carcinoma patients (Supplementary Data 1). The high-quality
sequencing reads (5GB per sample on average, Supplementary
Data 2) were assembled de novo, and the genes identified
were compiled into a non-redundant catalogue of 3.5 million
genes, which allowed on average 76.3% of the reads in each
sample to be mapped.

We first investigated the richness and evenness of the gut
microbiota in the three groups (Fig. 1). Rarefaction analysis based
on the starting cohort of 55 healthy controls, 42 advanced
adenoma and 41 carcinoma patients showed that the gene
richness approached saturation in each group, and is higher in
advanced adenoma than in control, and higher in carcinoma than
in advanced adenoma (Fig. 1a). Both gene and genus richness
were significantly different among the three groups (P¼ 0.005,
P¼ 3.2e–7, respectively, Kruskal–Wallis test; Fig. 1b,e), while the
a-diversities were not (Fig. 1c,f), consistent with previous 16S
ribosomal RNA gene pyrosequencing analysis on adenoma and
healthy controls17. The number of virulence genes according
to the virulence factor database18 also significantly differed
among the groups (P¼ 1.2e–5, Kruskal–Wallis test; Fig. 1d,

Supplementary Data 3). Thus, greater richness in genes or genera
is not a sign of a healthy gut microbiota in this cohort,
but likely indicates overgrowth of a variety of harmful bacteria
or archaea in patients with advanced colorectal adenoma or
carcinoma.

Enterotype, another general measure of the gut microbiota19,20,
divided the cohort into two or three clusters (depending on the
method used, Fig. 2a,b, Supplementary Fig. 1a), each containing
healthy controls, adenoma and carcinoma patients. Yet, a greater
percentage of carcinoma and adenoma patients were seen with
the enterotype containing a high level of Bacteroides, while more
healthy samples were found in the enterotype represented by
Ruminococcus (Fig. 2c,d, Supplementary Fig. 1b,c). Neither the
original partitioning around medoid (PAM) clustering method19

nor the Dirichlet multinomial mixture model-based method20

detected a Prevotella-dominated enterotype, in agreement with
population-specific features or continuity of enterotypes21. The
analyses confirmed profound shifts in the gut microbiota before
or during the development of colorectal cancer.

MLGs characteristic of adenoma or carcinoma. To explore
signatures of the gut microbiome in healthy or tumour samples,
we identified 130,715 genes that displayed significant abundance
differences in any two of the three groups (Kruskal–Wallis test,
Benjamin–Hochberg q-valueo0.1; Fig. 3). None of the available
phenotypes other than tumour status displayed a significant dif-
ference among the controls, adenoma and carcinoma patients,
except for serum ferritin and red meat consumption (Po0.05,
Kruskal–Wallis test, Supplementary Data 4). About 58.9% of the
gene markers were significantly elevated in carcinoma compared
with both healthy and advanced adenoma samples (Fig. 3a),
indicating that they were specific to colorectal cancer; another
24.3% of the genes were significantly more abundant in carci-
nomas than controls, with intermediate levels in advanced ade-
nomas. Among the genes with a descending trend, 5,388 (4.1% of
total) were significantly reduced in carcinoma compared with
both healthy and advanced adenoma samples; 2,601 (2.0% of
total) were significantly less abundant in carcinomas than con-
trols, with intermediate levels in advanced adenomas. These
control-enriched genes were more often mapped to Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways than the
adenoma- or carcinoma-enriched genes (Fig. 3b). The disparity in
the number of increasing and decreasing genes suggests that the
increase in pathobionts is more pronounced than the decrease in
beneficial bacteria during the development of carcinoma.

The significantly different genes were clustered into MLGs
according to their abundance co-variations among all samples,
which allowed identification of microbial species characteristic of
each group16. A number of Bacteroides and Parabacteroides
species, along with Alistipes putredinis, Bilophila wadsworthia,
Lachnospiraceae bacterium and Escherichia coli were enriched in
carcinoma samples compared with both healthy and advanced
adenoma samples (Fig. 4, Supplementary Data 5). The likely oral
anaerobes mlg-75, mlg-83, mlg-84, mlg-88 (related to
Fusobacterium sp. oral taxon 370, Pavimonas micra, Gemella
morbillorum and Peptostreptococcus stomatis, respectively) and
mlg-77 formed a cluster of positive correlations relatively separate
from other carcinoma-enriched MLGs (Fig. 4b,c). mlg-75, mlg-88
and mlg-77 were also elevated in adenoma compared with control
samples (Fig. 4a). Gut commensals such as Bifidobactium
animalis and Streptococcus thermophilus, on the other hand,
decreased in faeces from adenoma or carcinoma patients,
consistent with deviation from a healthy microbiome.

In agreement with the MLGs, genera including
Ruminococcus, Bifidobacterium and Streptococcus were
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significantly overrepresented in the controls, while Bacteroides,
Alistipes, Escherichia, Parvimonas, Bilophila and Fusobacterium
were overrepresented in the carcinoma patients (Supplementary
Fig. 2).

E. coli, mlg-331, mlg-711 and mlg-1607 were more abundant in
samples histologically determined as carcinoma in situ compared
with samples from adenocarcinoma, whereas mlg-75, mlg-83,
mlg-84 and mlg-1697 were more abundant in adenocarcinoma
(Po0.05, Wilcoxon rank-sum test, False discovery rate
(FDR)¼ 0.7216; Supplementary Fig. 3). Seven of the 126 MLGs
(containing over 100 genes) exhibited significant differences
among carcinoma stages22 (Po0.05, Kruskal–Wallis test,
FDR¼ 0.531), often peaking in Stage II or III (Supplementary
Fig. 4). Many of the carcinoma-associated MLGs were more
abundant in samples from patients with carcinoma in the rectum
or left colon (the splenic flexure, descending colon and sigmoid
colon) than in the right colon (the caecum, ascending colon and
transverse colon) (Supplementary Fig. 5), indicating that faeces
were best proxy for the environment at the end of the
gastrointestinal tract, yet could still reveal malignancy at the
beginning of the colon.

MLG-based classification of adenoma or carcinoma. To illus-
trate diagnostic value of the faecal microbiome for colorectal
cancer, we constructed a random forest classifier that could detect
carcinoma samples. Five repeats of 10-fold cross-validation (that
is, 50 tests) in the training set consisted of 55 controls and 41
carcinoma samples led to the optimal selection of 15 MLG
markers that performed nicely on the training set (Fig. 5a–c,
Supplementary Data 1 and 5). The classification error remained
low on the test set (8 controls, 47 advanced adenomas and 5
carcinomas), showing an area under receiver operating curve
(AUC) of 96% (advanced adenoma considered as non-carcinoma,
Fig. 5d,e, Supplementary Data 1). Including age and body mass
index (BMI) together with the 126 MLGs did not change the
markers selected. Consistently, most of the MLGs were similarly
enriched in (AUC) elderly and middle-aged subjects (above and
below 65 years old; Supplementary Fig. 6, Supplementary Data 5),
indicating common characteristics of the carcinoma-associated
gut microbiome.

Among the MLG markers were the likely oral anaerobes
mlg-75 and mlg-84, the former also showed a high odds ratio for
adenoma (Supplementary Data 5), suggesting an early role in

Con
tro

ls

Adv
an

ce
d

ad
en

om
a

Car
cin

om
a

Con
tro

ls

Adv
an

ce
d

ad
en

om
a

Car
cin

om
a

Con
tro

ls

Adv
an

ce
d

ad
en

om
a

Car
cin

om
a

0.5

1.0

1.5

2.0

Genus α-diversity

P value= 0.98

130

140

150

160

170

180

190

Genus count

P value=3.23e−07

400

500

600

700

800

Virulence factor count

P value=1.228e−05

N
um

be
r 

of
 g

en
es

N
um

be
r 

of
 g

en
er

a

S
ha

nn
on

 in
de

x •••

•

•

•

•
•

•

d e f

1 5 9 13 17 21 25 29 33 37 41 45 49 53

0.5 M

1.5 M

2.5 M

Rarefaction of genes

Number of samples

N
um

be
r 

of
 g

en
es

Control
Advanced adenoma
Colorectal cancer

9.5

10.5

11.5

12.5

Gene α–diversity 

P value= 0.127
0.2 M

0.4 M

0.6 M

0.8 M

1 M

Con
tro

ls

Adv
an

ce
d

ad
en

om
a

Car
cin

om
a

Con
tro

ls

Adv
an

ce
d

ad
en

om
a

Car
cin

om
a

Gene count

P value= 0.005

N
um

be
r 

of
 g

en
es

S
ha

nn
on

 in
de

x

•
•

•

• •
•

a b c

Figure 1 | Increased gut microbiome richness in CRC. (a) Rarefaction for gut microbial gene content in healthy, advanced adenoma and carcinoma

samples56. The number of genes in each group was calculated after 100 random sampling with replacement. Plotted are interquartile ranges (IQRs; boxes),

medians (dark lines in the boxes), the lowest and highest values within 1.5 times IQR from the first and third quartiles (whiskers above and below the

boxes), and outliers beyond the whiskers (circles). (b,c) Richness and a-diversity (Shannon index) of the three cohorts at the gene level. Violin plots

showing both the richness or diversity values and their density. (d) Richness of genes encoding virulence factors18 (Supplementary Data 3).

(e,f) Richness and a-diversity (Shannon index) of the three cohorts at the genus level. n¼ 55 healthy controls, 42 advanced adenoma and 41

carcinoma patients. P values from Kruskal–Wallis tests are shown.
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pathogenesis. Other MLG markers included Bacteroides
massiliensis, mlg-2985, mlg-121 and ten more taxonomically
undefined MLGs (Supplementary Data 5). Thus, MLGs selected
by the carcinoma classifier captured important features of the
deteriorating gut microbiome in adenoma and carcinoma and
have great potential for early and non-invasive diagnosis of these
tumours.

We directly investigated the utility of the gut MLGs for
identifying adenoma, which is more difficult to screen than
colorectal carcinoma but important for early intervention3,23.
After five repeats of 10-fold cross-validation, the random forest
model chose 10 MLGs that allowed optimal classification of the
training set (55 controls and 42 advanced adenoma; Fig. 5f–h,
Supplementary Data 1 and 5). On the test set (8 controls,
5 advanced adenoma and 46 carcinoma), all the advanced
adenoma samples were correctly classified, while performance on
the control and carcinoma samples were not as satisfactory
(carcinoma considered as adenoma positive, Fig. 5i,j,
Supplementary Data 1). When age and BMI were included
along with the 126 MLGs, age was selected as a marker together
with the 10 MLGs (Fig. 5k–m), but performance on the test set
did not improve (Fig. 5n,o). Therefore, the faecal MLGs offer new
opportunities for non-invasive detection of colorectal adenoma as
well as carcinoma, but additional examinations would probably
be necessary for confirming adenoma.

Diet-associated functional changes in the microbiome. Dietary
components such as red meat are known risk factors for

colorectal carcinoma3,14,15, but it is not known how diet makes a
footprint on gut microbes associated with or even causing
colorectal carcinoma. We assessed influence of a number of
clinical or lifestyle factors on gut microbial genes or MLGs,
and found that the control, adenoma or carcinoma state was
indeed among the strongest factors (Supplementary Fig. 7a,
Supplementary Data 6). Interestingly, the influence of fruit and
vegetable consumption pointed towards control-enriched MLGs
in canonical coordinate analysis (CCA), while C-reactive protein
(CRP) and meat consumption were associated with carcinoma-
enriched MLGs (Supplementary Fig. 7a). Spearman’s correlation
coefficient of Z0.2 was observed between relative abundance of
the MLGs and the dietary or physiological parameters (Fig. 6,
Supplementary Figs 8 and 9). Carcinoma-enriched bacteria that
produce short chain fatty acids, the major energy source for
colonocytes, through amino acid fermentation, and/or bacteria
that metabolize bile acids24,25, for example, B. massiliensis, B.
dorei, B. vulgates, Parabacteroides merdae, A. finegoldii and B.
wadsworthia, showed a positive correlation with consumption of
red meat and/or a negative correlation with consumption of fruits
and vegetables (Fig. 6), suggesting a common pathway in
colorectal tumourigenesis. The control-enriched MLGs S.
mutans and Clostridium sp., on the other hand, positively
correlated with vegetable intake. These weak correlations with
diet were supported by significant differences in the MLGs
between high and low intake groups (Supplementary Fig. 7b–h).
Carcinoma-enriched bacteria such as B. massiliensis, P. merdae,
A. finegoldii and B. wadsworthia were less abundant in subjects
consuming more vegetable or fruits, in contrast to the control-
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Figure 2 | Difference in community types. (a) Fitting to the DMM model20 indicates optimal classification into two community types. (b) Plot for

non-metric dimensional scaling (NMDS) ordination of Jensen–Shannon divergence values between stool samples using DMM. Red, community type 1;

green, community type 2. (c) Relative abundances of the top 10 most abundant genera in the two community types. Box plot as in Fig. 1a. (d) Distribution of

the healthy control, advanced adenoma and carcinoma samples in the community types. The areas of the columns scale with sample size, that is, n¼ 55,

42 and 41, respectively. P¼0.00072, Fisher test; P¼0.0014, w2-test.
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enriched S. mutans and Clostridium sp. (Supplementary
Fig. 7b,d). Carcinoma MLGs including mlg-84, mlg-850 and
mlg-1738 were more abundant in subjects consuming a greater
amount of total meat or red meat (Supplementary Fig. 7e,f).

Serum levels of ferritin, a protein responsible for intracellular
iron storage, negatively correlated with many of the carcinoma-
enriched MLGs (Fig. 6), highlighting iron as a key resource for
the growth of a number of pathogenic bacteria26, which feed on
iron from the host or dietary sources such as meat. Haemoglobin

(Hb) displayed negative correlation with the carcinoma-enriched
mlg-75, mlg-2985, mlg-88 and mlg-84.

Other known risk factors, such as current or ever smoking also
coincided with enrichment of MLGs (including B. dorei and
B. vulgatus; Supplementary Figs 8 and 9). Waist–hip ratio
negatively correlated with the control-enriched Clostridium
sp. and S. thermophilus, and positively correlated with the
carcinoma-enriched Bacteroides sp., mlg-368 and mlg-448
(Fig. 6). BMI, on the other hand, showed negative correlation
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(b) Distribution in KEGG level 2 pathways of the gene markers in a.
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Figure 4 | Gut MLGs in the controls, advanced adenoma or carcinoma samples. (a) Control versus advanced adenoma (n¼ 55 and 42). (b) Advanced

adenoma versus carcinoma (n¼42 and 41). (c) Control versus carcinoma (n¼ 55 and 41). For all MLGs containing 4100 genes, the direction of

enrichment was determined by Wilcoxon rank-sum test (Po0.05, Supplementary Data 3). Size of the nodes scales with the number of genes (102B3613)

in the MLG. MLGs annotated to species or genera are coloured according to family. Edges between nodes indicate Spearman’s correlation 40.8 (green),

between 0.6 and 0.8 (light to dark blue) or o�0.6 (red), calculated according to the samples under comparison.
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with some carcinoma-enriched MLGs. These results are in
agreement with meta-analysis showing that central obesity is a
more reliable risk factor for CRC than general obesity27.

Consistent with a significant role played by diet, KEGG
orthology (KO) modules for phosphotransferase systems,
transporters for a number of different sugars, were over-
represented in healthy controls compared with adenoma samples
or in adenoma compared with carcinoma samples (Fig. 7,
Supplementary Data 7). Modules for transporting the amino acids
histidine, arginine and lysine were enriched in carcinoma
compared with adenoma, whereas those for synthesizing
histidine, lysine, methionine, cysteine, leucine and tryptophan
were enriched in control compared with adenoma, or adenoma
compared with carcinoma samples. Besides increased capacity
for the utilization of dietary or host amino acids along the
adenoma–carcinoma sequence, increased capacity for metaboliz-
ing host glycans such as mucin and glycosaminoglycans was
suggested by the higher abundance of KO modules for the
degradation of dermatan sulphate, heparin sulphate and keratan

sulphate (Fig. 7). The sulfatases in these modules have been
characterized in Flavobacterium heparinum, B. thetaiotaomicron
and seen in other Bacteroides28–31. Sulfonate/nitrate/taurine
transport system was elevated in adenomas compared with
controls, suggesting changes in the metabolism of bile acids
(Fig. 7, Supplementary Data 7). Higher levels of methanogenesis
modules were also observed in adenomas or carcinomas
compared with healthy controls. Moreover, these differentially
enriched functions such as lipopolysaccharide (LPS) biosynthesis,
keratan sulphate degradation and iron(III) transport system could
be found in the MLG markers in the classifier for adenoma or
carcinoma, along with more house-keeping functions (Fig. 7,
Supplementary Data 8–10). Together, our results suggest venues
through which a diet low in fruits and vegetables relative to meats
select for outgrowth of putrefactive bacteria, which might help
promote colorectal carcinoma.

In addition to functions listed in the KEGG database, the gut
microbiota have been reported to control response to cancer
therapies6,32. Alistipes and Ruminococcus positively correlated
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Figure 5 | Gut MLGs classify colorectal carcinoma and adenoma samples from healthy controls. (a) Distribution of 5 trials of 10-fold cross-validation

error in random forest classification of carcinoma as the number of MLGs increases. The model was trained using relative abundance of the MLGs

(4100 genes) in the controls and carcinoma samples (n¼ 55 and 41). The black curve indicates average of the five trials (grey lines). The pink line marks

the number of MLGs in the optimal set (Supplementary Data 5). The same MLGs were selected if age and BMI were included along with the MLGs.

(b) Box-and-whisker plot for the probability of carcinoma in the cross-validational training set according to the model in a. (c) Receiver operating

curve (ROC) for the training set. The area under receiver operating curve (AUC) is 98.34% and 95% confidence interval (CI) is 96.29–100%.

(d) Classification of the test set consisted of 8 controls (green), 47 advanced adenoma (blue) and 5 carcinoma (red), that is, 18 unused samples

and 42 adenoma samples used in analyses in Figs 1–4, 6 and 7. (e) ROC for the test set. The AUC is 96% and 95% CI is 87.88–100%. (f–j) Training and

testing the model that classifies adenomas from controls, performed as in a–e. The AUC for the training set (n¼ 55 controls, 42 adenomas) is 87.38%

and 95% CI is 80.21–94.55%; the AUC for the test set (8 controls, 5 advanced adenomas and 46 carcinomas) is 59.56% and 95% CI is 37.51–81.61%.

(k–o) Training and testing the model that classifies adenomas from controls, performed as in (f–j) except that age and BMI were included along with

the MLGs. Age was selected by the model, making the optimal number of markers 11. The AUC for the training set is 89.74% and 95% CI is 83.32–96.16%;

the AUC for the test set is 59.56% and 95% CI is 37.64–81.48%.
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Figure 6 | Numerical correlation between dietary or clinical indices and MLGs. Spearman’s correlation coefficient was calculated between the
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with TNF production after anti-IL-10R/CpG oligonucleotide
immunotherapy in C57Bl/6 mice transplanted with MC38 colon
carcinoma6. We observed increase in A. finegoldii, mlg-482 (most

related to A. onderdonkii), A. putredinis in colorectal carcinoma
and decrease in mlg-6514 (most related to Ruminococcus sp.
5_1_39BFAA) whose abundance anti-correlated with a few
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carcinoma-enriched MLGs (Fig. 4b,c, Supplementary Data 5). All
these MLGs were present in close to 100% of the carcinoma
patients regardless of histology, stage or location of the tumour.
P. distasonis monoassociation had been shown to compromise
immunogenic chemotherapy by doxorubicin against established
MCA205 sarcomas in mice32. MLGs for P. distasonis and
P. merdae were more abundant in carcinoma than advanced
adenoma samples, and were detected in most carcinoma samples
(Fig. 4b,c, Supplementary Data 5). Collectively, these results
indicate that gut microbes present or overgrown in human
colorectal carcinoma might facilitate or abrogate immuno or
chemotherapies, and should be examined for optimal selection of
treatment plans for each patient.

Discussion
In summary, our metagenome-wide association study for the gut
microbiome of healthy controls, colorectal adenoma and
carcinoma patients identified genes, strains (MLGs) and functions
associated with the tumours, and open new ways for early
detection and patient stratification of colorectal adenoma and
carcinoma. It remains to be seen how our markers might help
improve non-invasive screening of the colorectal tumours in
larger cohorts around the world.

In colitis-associated CRC mouse models, enterotoxigenic
B. fragilis induces colitis and colonic tumours through a T helper
type 17 (Th17) inflammatory response, and adherent-invasive
E. coli also promotes cancer33–35. B. ovatus and B. vulgatus have
been reported to be higher in human cases of Crohn’s disease (six
discordant and four concordant twin pairs)36. We observed
significant increase of B. dorei and B. massiliensis from healthy to
advanced adenoma, and significant increase of B. massiliensis,
B. ovatus, B. vulgatus and E. coli from advanced adenoma to
carcinoma (Fig. 4). B. dorei, B. vulgatus and E. coli also correlated
with levels of CRP, a marker for acute inflammation (Fig. 6).
These results suggest analogous roles played by gut microbes in
colitis-associated and adenoma-linked CRC.

Akkermansia, a mucin-degrading bacterium in the phylum of
Verrucomicrobia, has been reported to correlate with CRC in
humans and in a mouse model37,38. We observed no difference in
the abundance of Akkermansia among healthy controls, advanced
adenoma and carcinoma samples (Supplementary Fig. 2). Two of the
three PAM-based enterotypes contained a relatively high level of
Akkermansia, which included more controls and carcinoma samples,
respectively (Supplementary Fig. 1). Future analyses taking into
account factors such as obesity, diet and meal time would help
resolve the possible role of this important bacterium in CRC.

Even though putrefactive bacteria such as Alistipes and
Bacteroides could produce short chain fatty acid from amino
acids, carbohydrate fermentation is still preferred24,39, which
might explain protective roles of fruits and vegetables. In some
Fusobacterium species, however, transport of sugar depends on
amino acid fermentation (Glu, Lys, His or Ser)40,41, suggesting
that they only thrive in the presence of an ample supply of amino
acids. Phenolic compounds are produced from fermentation of
the aromatic amino acids phenylalanine and tyrosine39, which
might increase DNA damage in the colon. Bile acid metabolism
by Bacteroides species and B. wadsworthia would also affect
gut microbial composition and impact host physiology42,43.
B. wadsworthia, in particular, utilizes taurine-conjugated bile
acids in sulphite reduction, and promotes colitis in genetically
susceptible mice (Il10� /� )44. Bile acids have also been shown to
cause DNA damage and promote hepatocellular carcinoma in
mice45,46. Future research would help elucidate how the known
risk factors like diet, obesity and smoking collectively act on the
gut microbiome in the development of colorectal carcinoma.

Among the control-enriched MLGs were the lactic acid-
producing bacteria Bifidobacterium animalis, S. mutans and
S. thermophilus. The lactic acid produced might help lower the
pH and inhibit amino acid degradation in the colon24,39.
Lactobacillus and Bifidobacterium have been found to stimulate
NADPH oxidase 1-dependent ROS generation and intestinal
stem cell proliferation47, and lactate was reported to accelerate
colon epithelial cell turnover in starvation-refed mice48. Thus,
advanced colorectal adenoma or carcinoma patients appear to be
deficient in lactic acid-producing commensals such as
Bifidobacterium that could promote daily renewal of the colon
epithelium and inhibit potential pathogens. Gut microbiota-
dependent dietary or lifestyle intervention against colorectal
carcinoma warrants further investigation.

Methods
Study cohort and patient information. The study was conducted both in parti-
cipants of a health screening programme according to national screening recom-
mendations for CRC49 as well as in patients with suspected CRC undergoing
colonoscopy as part of the clinical workup at the Department of Internal Medicine,
Oberndorf Hospital (Teaching Hospital of the Paracelsus Medical University
Salzburg, Austria) between 2010 and 2012. The study was approved by the local
ethics committee (Ethikkommission des Landes Salzburg, approval no. 415-E/
1262/2-2010) and informed consent was obtained from all participants.

Data from 147 Caucasians aged between 45–86 years were included in the initial
analysis, including 57 healthy controls (24 females and 33 males), 44 advanced
adenoma (22 females and 22 males) and 46 carcinoma (18 females and 28 males)
(Supplementary Data 1). Nine additional samples taken for another manuscript
(six healthy controls and three advanced adenoma samples, Supplementary
Data 1) were also used in the test sets for the MLG-based adenoma or carcinoma
classifier (Fig. 5). So far, no study has investigated the given topic in a comparable
manner; therefore no formal power analysis for sample size calculation could be
performed. However, judging from previous 16S- and metagenomic shotgun-
sequencing studies on the faecal microbiota in diseases, this is a reasonable sample
size. Subjects were stratified with respect to gender, age and BMI so that the three
groups (control, advanced adenoma and carcinoma) were comparable with respect
to these variables. In the advanced adenoma group, 14 were located to the right
colon (including caecum, ascending colon and transverse colon), 15 were located to
the left colon (ranging from the splenic flexure to the sigmoid) and 15 to the
rectum. In the carcinoma group, 8 were located to the right colon, 11 to the left
colon and 27 to the rectum. Colorectal carcinoma was classified by the American
Joint Committee on Cancer (AJCC) TNM staging system22.

Metabolic syndrome was evaluated as defined by the National Cholesterol
Education Program Adult Treatment Panel50.

Blood pressure was measured twice by a nurse after a 5-min rest in a sitting
position and the average was taken as the measurement of blood pressure. Waist
circumference was taken at the highest point of the iliac crest with subjects
standing in an upright position. The metabolic syndrome was diagnosed when
three of the following criteria were met: fasting blood glucose level Z6.1mmol l� 1,
waist circumference 4102 cm or 488 cm in males or females, respectively,
blood pressure Z130/85mmHg or current antihypertensive treatment, plasma
triglycerides Z1.7mmol l� 1, plasma HDL o1.0mmol l� 1 or o1.3mmol l� 1 in
males or females, respectively, or current statin therapy. BMI was calculated as
weight/squared body height (kgm� 2).

Serum ferritin was measured by Architect CI 4100 Analyzer, using the ferritin
chemoluminiscent microparticle assay (ABBOTT Laboratories, Abbott Europe,
Delkenheim, Germany).

Laboratory assessment. Following an overnight fast, a venous blood sample was
obtained in all subjects and analyzed by standard laboratory methods. Blood was
centrifuged and plasma was analyzed for triglycerides, cholesterol, high density and
low density lipoprotein cholesterol and CRP. A standardized oral glucose tolerance
test was performed with 75 g of glucose in 300ml of water. HbA1c was measured
by HPLC using Adamts H-8160 (Menarini, Florence, Italy). The homoeostasis
model assessment (HOMA-IR; fasting insulin (mU l� 1)� fasting glucose
(mmol dl� 1)/22.5) was used to assess insulin resistance. Type 2 diabetes was
classified as use of diabetes medication or Hba1C Z6.5% or oral glucose tolerance
test 411.1mmol l� 1 after 2 h or fasting glucose 47.0mmol l� 1.

Stool samples. Fresh stool samples were collected from all patients and subjects.
Samples were mechanically homogenized with a sterile spatula, then four aliquots
were taken, using the Sarstedt stool sampling system (Sarstedt, Nümbrecht,
Germany). Each aliquot contained 1 g of stool in a sterile 12ml cryovial. Faecal
aliquots were then stored at home freezers at � 20 �C and transported to the
laboratory within 48 h after collection in a freezer pack, where they were
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immediately stored at � 80 �C. Patients and subjects did not receive probiotics or
antibiotics within the last 3 months.

Colonoscopy. The laxative Klean–Prep (containing macrogol 59.0 g, sodium
sulphate 5.68 g, sodium bicarbonate 1.68 g, NaCl 1.46 g and potassium chloride
0.74 g; Norgine, Marburg, Germany) was used for bowel preparation before
colonoscopy. Colonoscopic findings were classified as tubular adenoma, advanced
adenoma, that is, villous or tubulovillous features, size Z1 cm, or high-grade
dysplasia or carcinoma after a combined analysis of macroscopic and histological
results51,52. Lesions were classified by location (that is, right colon including
caecum, ascending colon and transverse colon, left colon ranging from the splenic
flexure to the sigmoid and rectum alone).

Assessment of lifestyle and dietary habits. A detailed medical history, including
lifestyle and dietary questionnaires, was obtained. Smoking status was classified
into never smokers, former smokers and current smokers (including detailed
assessment of current and former smoked cigarettes per day; data reported in packs
per year). Physical activity was assessed using the international physical activities
questionnaire (IPAQ)53 and subjects were grouped into three groups: low,
moderate and high physical activity according to published scoring protocol.
Dietary habits were assessed using a detailed standardized questionnaire within
1 week of the faecal donation and the colonoscopy. The amount of one serving as
well as the fibre content was calculated according to the recommendations of the
American Heart Association (www.heart.org). Meat consumption was asked in
detail for pork, beef, veal and venison (grouped as red meat); chicken and turkey
(white meat) and offal. Furthermore, the frequency and amount of the
consumption of vegetables, fruits and fish were assessed and total intake of fibre
was calculated.

The study was approved by the local ethics committee (Ethikkommission des
Landes Salzburg, approval no. 415-E/1262/2-2010) and informed consent was
obtained from all participants.

Metagenomic sequencing and gene catalogue construction. Paired-end meta-
genomic sequencing was performed on the Illumina platform (insert size 350 bp,
read length 100 bp), and the sequencing reads were quality controlled and de novo
assembled into contigs using SOAPdenovo v2.04 (refs 16,54; default parameters
except for -K 51 –M 3 -F –u).

Gene prediction from the assembled contigs was performed using GeneMark
v2.7d. Redundant genes were removed using BLAT55 with the cutoff of 90%
overlap and 95% identity (no gaps allowed). Relative abundances of the genes were
determined by aligning high-quality sequencing reads to the gene catalogue using
the same procedure as in ref. 16.

Taxonomic assignment of the predicted genes was performed according to the
IMG database (v400) using an in-house pipeline16, with 80% overlap and 65%
identity top 10% scores (BLASTN v2.2.24, -e 0.01 -b 100 -K 1 -F T -m 8). The
cutoffs were 65% identity for assignment to phylum, 85% identity to genus, 95%
identity to species and Z50% consensus for the taxon under question, if multiple
hits remained.

Rarefaction curve. Rarefaction analysis was performed to assess the gene richness
in the healthy controls, advanced adenoma and carcinoma samples. For a given
number of samples, we performed random sampling 100 times in the cohort with
replacement and estimated the total number of genes that could be identified from
these samples by the Chao2 richness estimator56. To minimize erroneous
identification, only the genes with Z1 pair of mapped reads were determined to be
present in a sample.

Quantification of virulence factors. Putative amino acid sequences were aligned
against the proteins in the Virulence Factors of pathogenic bacteria Databases
(VFDB)18 using BLASTP (v2.2.24, default parameter except that -p blastp -a 2 -F F
-e 1e-3 -m 8). A protein was assigned to a virulence factor by the highest scoring
annotated hit containing an identity 435% and high-scoring segment pair scoring
460 bits. Differentially enriched virulence factors were identified by using
Kruskal–Wallis test.

Microbial community types (enterotypes). The community type of each faecal
metagenomic sample was analyzed by the PAM-based method using relative
abundances of genera16,19, and by the Dirichlet multinomial mixture model-based
method using counts of sequencing reads20 (Supplementary Methods).

Metagenome-wide association study (MGWAS). For comparison of the faecal
microbiome in healthy controls, advanced adenoma and carcinoma patients, genes
that showed significant difference in relative abundance between any of the two
groups were identified (Benjamin–Hochberg q-valueo0.1, Kruskal–Wallis test).
These marker genes were then clustered into MLGs according to their abundance
variation across all three groups of samples16. Nine of the 147 samples contained
420% Escherichia (2 controls, 2 adenoma and 5 carcinoma samples), and were

only used subsequently in the test sets for the MLG-based adenoma or carcinoma
classifiers (Fig. 5). Nine additional samples taken for another manuscript (six
healthy controls and three advanced adenoma samples, Supplementary Data 1)
were also used in the test sets for the classifiers.

Taxonomic assignment and abundance profiling of the MLGs were performed
according to the taxonomy and the relative abundance of their constituent genes, as
previously described16. Briefly, assignment to species requires 490% of genes in an
MLG to align with the species’ genome with 495% identity and 70% overlap of
query. Assigning an MLG to a genus requires 480% of its genes to align with a
genome with 85% identity in both DNA and protein sequences. When comparing
two groups, for example, controls and adenoma, MLGs were further clustered
according to Spearman’s correlation between their abundances in all control and
adenoma samples, and the co-occurrence network was visualized by Cytoscape
3.0.2. The direction of enrichment was determined by Wilcoxon rank-sum test
(Po0.05).

MLG-based classifier. A 10-fold cross-validation was performed on a random
forest model (R 3.0.2, randomForest4.6-7 package) using the MLG abundance
profile of the control, advanced adenoma or carcinoma samples (Supplementary
Methods). The cross-validational error curves (average of 10 test sets each) from 5
trials of the 10-fold cross-validation were averaged, and the minimum error in the
averaged curve plus the s.d. at that point was used as the cutoff. All sets (r 50) of
MLG markers with an error less than the cutoff were listed, and the set with the
smallest number of MLGs was chosen as the optimal set. The probability of ade-
noma or carcinoma was calculated using this set of MLGs and an ROC was drawn
(R 3.0.2, pROC3 package). The model was further tested on the testing set and the
prediction error was determined.

PERMANOVA on the influence of clinical and lifestyle factors. Permutational
multivariate analysis of variance (PERMANOVA)57 was performed on the gene
abundance profile of all samples to assess impact from each of the factors listed
(Supplementary Methods). We used Euclidean distance and 9,999 permutations in
R (3.0.2, vegan package58).

Canonical correspondence analysis. Canonical correspondence analysis was
performed on the MLG (4100 genes) abundance profile of the control, adenoma
and carcinoma samples together to assess impact from each of the factors listed
(Supplementary Methods). The plot was generated by R (3.0.2, vegan package58).

KEGG analysis. Putative amino acid sequences were translated from the gene
catalogues and aligned against the proteins/domains in the KEGG databases
(release 59.0, with animal and plant genes removed) using BLASTP (v2.2.24,
default parameter except that -e 0.01 -b 100 -K 1 -F T -m 8). Each protein was
assigned to the KO group by the highest scoring annotated hit(s) containing at least
one HSP scoring 460 bits.

Differentially enriched KO modules were identified according to their reporter
score59 from the Z-scores of individual KOs. One-tail Wilcoxon rank-sum test was
performed on all the KOs that occurred in more than five samples and adjusted for
multiple testing using the Benjamin-Hochberg procedure. The Z-score for each KO
could then be calculated:

ZKOi ¼ y� 1 1�PKOið Þ

where y� 1 is the inverse normal cumulative distribution, PKOi is the adjusted P
value for that KO. The aggregated Z-score for a KEGG pathway (or module)
is then:

Zpathway ¼ 1ffiffi
k

p
X

ZKOi

where k is the number of KOs involved in the pathway (or module).
We corrected the background distribution of Zpathway by subtracting the mean

(mk) and dividing by the s.d. (sk) of the aggregated Z-scores of 1,000 sets of k KO,
chosen randomly from the whole metabolic KO network:

Zadjustedpathway ¼
Zpathway� mk

sk
: The Zadjustedpathway was used as the final reporter

score for evaluating the enrichment of specific pathways or modules. A reporter
score of Z1.6 (90% confidence according to normal distribution) could be used as
a detection threshold for significantly differentiating pathways.
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