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Gut microbiome diversity detected 
by high-coverage 16S and shotgun 
sequencing of paired stool and 
colon sample
Joan Mas-Lloret  1,2,3, Mireia Obón-Santacana1,2,3, Gemma Ibáñez-Sanz  1,2,3,4, 
Elisabet Guinó1,2,3, Miguel L. Pato  5, Francisco Rodriguez-Moranta4, Alfredo Mata6, 
Ana García-Rodríguez7, Victor Moreno  1,2,3,8 ✉ & Ville Nikolai Pimenoff1,2,3,9 ✉

The gut microbiome has a fundamental role in human health and disease. However, studying the 
complex structure and function of the gut microbiome using next generation sequencing is challenging 
and prone to reproducibility problems. Here, we obtained cross-sectional colon biopsies and faecal 
samples from nine participants in our COLSCREEN study and sequenced them in high coverage using 
Illumina pair-end shotgun (for faecal samples) and IonTorrent 16S (for paired feces and colon biopsies) 
technologies. The metagenomes consisted of between 47 and 92 million reads per sample and the 
targeted sequencing covered more than 300 k reads per sample across seven hypervariable regions 
of the 16S gene. Our data is freely available and coupled with code for the presented metagenomic 
analysis using up-to-date bioinformatics algorithms. These results will add up to the informed insights 
into designing comprehensive microbiome analysis and also provide data for further testing for 
unambiguous gut microbiome analysis.

Background & Summary
�e gut microbiome is highly dynamic and variable between individuals, and is continuously in�uenced by fac-
tors such as individual’s diet and lifestyle1,2, as well as host genetics3. Next generation sequencing (NGS) has 
greatly enhanced our understanding of the human microbiome, as these techniques allow researchers to investi-
gate variation in diversity and abundance of bacteria in a culture-independent manner. Recent developments in 
bioinformatics have permitted the identi�cation of thousands of novel bacterial and archaeal species and strains 
identi�ed in human and non-human environments through metagenome assembly4–6. For colorectal cancer 
(CRC), recent large-scale studies have revealed speci�c faecal microbial signatures associated with malignant 
gut transformations, although the causal role of gut bacterial ecosystem in CRC development is still unclear7,8.

�e 16S small subunit ribosomal gene is highly conserved between bacteria and archaea, and thus has been 
extensively used as a marker gene to estimate microbial phylogenies9. �e 16S rRNA gene contains nine hyper-
variable regions (V1-V9) with bacterial species-speci�c variations that are �anked by conserved regions. Hence, 
the ampli�cation of 16S rRNA hypervariable regions can be used to detect microbial communities in a sample 
typically down to the genus level10, and species-level assignments are also possible if full-length 16S sequences 
are retrieved11.
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However, conserved regions are not entirely identical across groups of bacteria and archaea, which can have 
an e�ect on the PCR ampli�cation step. Notably, among the conserved regions of the 16S gene, central regions are 
more conserved, suggesting that they are less susceptible to producing bias in PCR ampli�cation12. Furthermore, 
an in silico study has shown that the V4-V6 regions perform better at reproducing the full taxonomic distribution 
of the 16S gene13. In another study, a constructed mock sample was sequenced by IonTorrent technology, demon-
strating that the V4 region (followed by V2 and V6-V7) was the most consistent for estimating the full bacte-
rial taxonomic distribution of the sample14. In addition, other methodological factors such as the actual primer 
sequence, sequencing technology and the number of PCR cycles used may impact on microbiome detection when 
using 16S sequencing. However, the relative ratios in taxonomic abundance have been shown to be consistent 
regardless of the experimental strategy used15.

Beyond 16S sequencing, shotgun metagenomics allows not only taxonomic pro�ling at species level16,17, but 
may also enable strain-level detection of particular species18, as well as functional characterization and de novo 
assembly of metagenomes19. Moreover, a plethora of new computational methods and query databases are cur-
rently available for comprehensive shotgun metagenomics analysis20. However, shotgun metagenomics is more 
expensive than 16S sequencing and may not be feasible when the amount of host DNA in a sample is high21. 
Nevertheless, provided su�cient sequencing coverage, taxonomic pro�ling of shotgun metagenomes is rather 
robust and mostly depends on the input DNA quality and bioinformatics analysis tools22. Taken together, 16S 
and shotgun microbiome pro�les from the same samples are not entirely the same, but rather represent the rela-
tive microbiome composition captured by each methodological approach23–26. In agreement, comparative stud-
ies have already revealed that faecal, rectal swab and colon biopsy samples collected from the same individuals 
usually produce di�erential microbiome structures although consistent relative taxon ratios and particular core 
pro�les are also detected27.

In this study, we characterized the gut microbiome signature of nine participants with paired feacal and colon 
tissue samples. Our data shows a high concordance between di�erent sequencing methods and classi�cation 
algorithms for the full microbiome on both sample types. However, clear deviations depending on the sample, 
method, genomic target and depth of sequencing data were also observed, which warrant consideration when 
conducting large-scale microbiome studies.

Accompanying this dataset, we also provide the full source code for the bioinformatics analysis, available and 
thoroughly documented on a GitLab repository. We expect that this annotated, high-quality gut microbiome 
dataset will provide useful insights for designing comprehensive microbiome analyses in the future, as well as be 
of use for researchers wishing to test their analysis bioinformatics pipelines.

Methods
Subjects and sampling. �e COLSCREEN study is a cross-sectional study that was designed to recruit 
participants from the Colorectal Cancer Screening Program conducted by the Catalan Institute of Oncology. �is 
program invites men and women aged 50–69 to perform a biennial faecal immunochemical test (FIT, OC-Sensor, 
Eiken Chemical Co., Japan). Patients with a positive test result (≥20 g Hb/g faeces) are referred for colonoscopy 
examination. A detailed description of the screening program is provided elsewhere28,29. Exclusion criteria are 
as follows: gastrointestinal symptoms; family history of hereditary or familial colorectal cancer (2 �rst-degree 
relatives with CRC or 1 in whom the disease was diagnosed before the age of 60 years); personal history of CRC, 
adenomas or in�ammatory bowel disease; colonoscopy in the previous �ve years or a FIT within the last two 
years; terminal disease; and severe disabling conditions.

Participants provided written informed consent and underwent a colonoscopy. A week prior to colonoscopy 
preparation, participants were asked to provide a faecal sample and store it at home at − 20 °C. �e day of the 
colonoscopy, participants delivered the faecal sample. Participants also delivered a self-administered risk-factor 
questionnaire where they had to report antibiotics, probiotics and anti-in�ammatory drugs intake in the previous 
months (Table 1). Patients reporting any antibiotics or probiotics intake one month prior to sampling were not 
included in this study.

Sample 
ID Sex Age

Weight 
(kg)

Height 
(cm) Smoking

Red meat 
(g/day)

Processed 
meat (g/day)

Vegetables 
(g/day)

Alcohol 
(g/day)

NSAIDS 
use

Family 
history CRC

AE1235 M 62 64 164 Current NA NA NA NA No No

AE1236 F 67 62 148 Never 19.1 3.7 280.4 0 Yes No

AE1237 F 63 63 155 Former NA NA NA NA Yes No

AE1238 M 61 73 172 Current 5.8 14.7 264.3 720.1 Yes Yes

AE1239 F 54 69 166 Current 8.6 8.5 182.5 196.7 Yes No

AE1240 M 63 83 168 Never 49 0.8 197.9 142.7 No No

AE1241 F 67 74 160 Never 19.9 6.6 109.7 265 No No

AE1242 F 67 65 152 Never NA NA NA NA No No

AE1243 F 55 85 160 Never 13 0.8 113.3 557.8 No No

Table 1. Clinical descriptives. Colorectal cancer risk-factor information. Former smoker indicates non-smoker 
for the last 12 months prior sampling. User consumed non-steroidal anti-in�ammatory drugs (NSAIDs) in the 
12 months prior sampling.
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All stool samples were stored in − 80 °C, while colonic mucosa biopsy samples were retrieved during the colo-
noscopy. Four biopsies of normal tissue of each colon segment (4 of ascending colon, 4 of transverse colon, 4 of 
descending colon, and 4 of rectum) were obtained. If a tumour or a polyp was biopsied or removed, a biopsy was 
obtained if the endoscopist considered it possible. Subsequently, biopsy samples were immediately transferred to 
RNAlater (Qiagen) and stored at − 80 °C. One biopsy of normal tissue from ascending colon was selected from 
each of nine individuals and used in this study.

Colonic lesions were classi�ed according to “European guidelines for quality assurance in CRC”30. For the 
present study, we selected patients with no lesions in the colonoscopy, patients with intermediate-risk lesions (3–4 
tubular adenomas measuring <10 mm with low-grade dysplasia or as ≥1 adenoma measuring 10–19 mm) and 
with high-risk lesions (≥5 adenomas or ≥1 adenoma measuring ≥20 mm). We analysed 18 biological samples 
(9 faecal samples and 9 colon tissue samples) from 9 participants: n = 3 negative colonoscopy, n = 3 high-risk 
lesions, n = 3 intermediate-lesions) (Table 2). Our CRC screening programme follows the Public Health laws and 
the Organic Law on Data Protection. All procedures performed in the study involving data from human partic-
ipants were in accordance with the ethical standards of the institutional research committee, and with the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards. �e protocol of the study was 
approved by the Bellvitge University Hospital Ethics Committee, registry number PR084/16.

DNA extraction and sequencing. Total faecal DNA was extracted using the NucleoSpin Soil kit 
(Macherey-Nagel, Duren, Germany) with a protocol involving a repeated bead beating step in the sample lysis for 
complete bacterial DNA extraction. Total DNA from the snap-frozen gut epithelial biopsy samples was extracted 
using an in-house developed proteinase K (�nal concentration 0.1 µg/µL) extraction protocol with a repeated 
bead beating step in the sample lysis. All extracted DNA samples were quanti�ed using Qubit dsDNA kit (�ermo 
Fisher Scienti�c, Massachusetts, USA) and Nanodrop (�ermo Fisher Scienti�c, Massachusetts, USA) for su�-
cient quantity and quality of input DNA for shotgun and 16S sequencing. DNA yields from the extraction proto-
cols are shown in Table 2.

Metagenomics sequencing libraries were prepared with at least 2 µg of total DNA using the Nextera XT DNA 
sample Prep Kit (Illumina, San Diego, USA) with an equimolar pool of libraries achieved independently based 
on Agilent High Sensitivity DNA chip (Agilent Technologies, CA, USA) results combined with SybrGreen quan-
ti�cation (�ermo Fisher Scienti�c, Massachusetts, USA). �e indexed libraries were sequenced in one lane of a 
HiSeq 4000 run in 2 × 150 bp paired-end reads, producing a minimum of 50 million reads/sample at high quality 
scores. In total 92.15% of the base calls of the whole sequencing run had a quality score Q30 or higher (i.e. an 
error rate of 1 in 1000).

Targeted 16S sequencing libraries were prepared using Ion 16S Metagenomics Kit (Life Technologies, 
Carlsbad, USA) in combination with Ion Plus Fragment Library kit (Life Technologies, Carlsbad, USA) and 
loaded on a 530 chip and sequenced using the Ion Torrent S5 system (Life Technologies, Carlsbad, USA). �e pro-
tocol was designed for microbiome analysis using Ion torrent 510/520/530 Kit-chef template preparation system 
(Life Technologies, Carlsbad, USA) and included two primer sets that selectively ampli�ed seven hypervariable 
regions (V2, V3, V4, V6, V7, V8, V9) of the 16S gene. At least 10 ng of total DNA was used for 16S library prepa-
ration and re-ampli�ed using Ion Plus Fragment Library kit for reaching the minimum template concentration. 
Equimolar pool of libraries were estimated using Agilent High Sensitivity DNA chip (Agilent Technologies, CA, 
USA). Library preparation and 16S sequencing was performed with the technological infrastructure of the Centre 
for Omic Sciences (COS).

Bioinformatics analysis. Bioinformatics analysis was performed by running in-house pipelines. Shotgun 
reads were �rst introduced into a pipeline including removal of human reads and quality control of samples. High 
quality reads resulting from this pipeline were further analysed under three di�erent approaches: taxonomic clas-
si�cation, functional classi�cation and de novo assembly. Additionally, we subsampled high quality shotgun reads 
to analyse the loss of observed alpha diversity when a lower sequencing depth is reached.

Sample Sex Age
FIT 
result Condition

DNA 
(stool, µg)

DNA 
(tissue, µg)

AE1235 Male 62  −  HRA 4.3 9.1

AE1236 Female 67  −  neg 3.0 15.2

AE1237 Female 63 + HRA 4.2 31.6

AE1238 Male 61  −  IRA 9.8 15.4

AE1239 Female 54 + neg 5.2 11.4

AE1240 Male 63  −  neg 3.5 9.3

AE1241 Female 68 + IRA 5.4 6.5

AE1242 Female 67 + IRA 6.5 13.6

AE1243 Female 55 + HRA 2.4 17.1

Table 2. Clinical characteristics of the samples and DNA yields. HRA = high-risk adenoma; IRA = 
intermediate-risk adenoma; neg = healthy colon.
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Targeted 16S sequencing reads, on the other hand, were �rst subjected to a pipeline which identi�es variable 
regions and separates them accordingly. Further denoising and classi�cation analyses were performed separately 
for each 16S variable region as explained in the following sections.

Removal of human reads. Prior to submission of the raw sequence data to the European Nucleotide 
Archive (ENA), human reads were removed from the metagenome samples in order to follow legal pri-
vacy policies. Raw reads were aligned to the human genome (GRCh38) using Bowtie2 with options –
very-sensitive-local and -k 1. A FASTQ �le was then generated from reads which did not align 
(carrying SAM �ag 12) using Samtools. �ese FASTQ �les were deposited to the ENA.

Shotgun reads quality control. Shotgun samples were quality controlled using FASTQC. Accordingly, 
sequences were deduplicated using clumpify from the BBTools suite, followed by quality trimming (PHRED 
> 20) on both ends and adapter removal using BBDuk. Read pairs where one read had a length lower than 75 
bases were discarded. Results of this quality control pipeline are shown in Table 3.

Shotgun taxonomic and functional profiling. Pre-processed paired-end shotgun sequences were clas-
si�ed using three di�erent classi�ers: Kraken2 (a k-mer matching algorithm), MetaPhlan2 (a marker-gene 
mapping algorithm) and Kaiju (a read mapping algorithm). �ese three so�wares were chosen to cover the 
three main algorithms used in taxonomic classi�cation20.

Kraken2 was run against a reference database containing all RefSeq bacterial and archaeal genomes (built 
in May 2019) with a 0.1 con�dence threshold. Following classi�cation by Kraken, Bracken was used to 
re-estimate bacterial abundances at taxonomic levels from species to phylum using a read length parameter of 
150. MetaPhlAn2 was run using default parameters on the mpa_v20_m200 marker database. Kaiju was run 
against the Progenomes database (built in February 2019) using default parameters. Corresponding taxonomic 
pro�les at family level are shown in Fig. 1a.

Functional profiling of the concatenated metagenomic paired-end sequences was performed using the 
HUMAnN2 pipeline with default parameters, obtaining gene family (UniRef90), functional groups (KEGG 
orthogroups) and metabolic pathway (MetaCyc) pro�les. ChocoPhlAn and UniRef90 databases were retrieved 
in October 2018.

De novo assembly. High quality metagenomic reads were assembled using metaSPADES with default 
parameters and binned into putative metagenome assembled genomes (MAGs) using metaBAT. checkM 
was used to check the quality of MAGs and �lter them to comply with strict quality requirements (complete-
ness > 90%, contamination < 5%, number of contigs < 300 %, N50 > 20,000). A total of 112 high quality 
MAGs were assembled from the nine high-coverage metagenomes and assigned a species-level taxonomy using 
PhyloPhlAn2. Assembled species shared by at least two of the nine samples are listed in Table 4.

Generation of lower coverage pseudo-samples. Pseudo-samples of lower coverage were generated in 
silico using the reformat tool from the BBTools suite. Five samples were created at 15 M, 10 M, 5 M, 2.5 M, 
1 M, 500 K, 100 K and 50 K read pairs coverage.

Pseudo-samples were then classi�ed using Kraken2 and HUMAnN2. From this classi�cation, Shannon 
index alpha diversity pro�les were computed at the species, genus and phylum level, as well as UniRef90, KO and 
MetaCyc pathways level using the R package vegan.

Splitting 16S samples by region. As the Ion 16S Metagenomics Kit contains several primers in the PCR 
mix, the resulting FASTQ �les contained sequencing reads belonging to di�erent variable regions. Hence, an 
in-house Python program was written in order to identify the variable region(s) present in each read. �en, 
FASTQ �les were strati�ed into new sub�les where all sequences contained belonged to the same region.

First, we positioned the 16S conserved regions12 in the E. coli str. K-12 substr. MG1655 16S reference gene 
(SILVA v.132 Nr99 identi�er U00096.4035531.4037072) as well as the corresponding variable region positions10. 

Sample Microbial
High 
quality

Deduplicated 
(%)

Trimmed 
(%)

AE1235 27,510,304 19,991,742 7.42 19.91

AE1236 45,050,043 29,097,088 12.47 22.94

AE1237 25,720,634 18,745,351 7.78 19.34

AE1238 34,831,431 25,727,431 7.78 18.36

AE1239 36,353,427 25,946,121 8.15 20.47

AE1240 31,699,249 23,225,137 8.08 18.65

AE1241 34,083,370 24,830,987 8.04 19.11

AE1242 31,592,814 23,239,834 7.77 18.67

AE1243 23,476,326 17,887,436 7.80 16.01

Table 3. Quality control. Numbers indicate the amount of original microbial paired-end reads and the amount 
of paired-end reads passing quality control, as well as percentages of read pairs excluded due to duplication or 
quality and adapter trimming.
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Regions 5 and 7 were truncated to match the reference E. coli sequence. Each sequencing read was then assigned 
into its corresponding variable region by mapping.

Analysis of the regions covered in our samples revealed a prevalence of V3, followed by V4, V2, V6-V7 and 
V7-V8 (Table 5). For each sample, each set of sequences from the same variable region(s) was subsequently 
extracted from the original FASTQ �les with an in-house Python script (code available).
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Fig. 1 Taxonomic classi�cation of samples at family level. (a) Classi�cation of shotgun samples using three 
di�erent classi�ers. (b) Classi�cation of 16S sequences, split by region and source material, using DADA2 and 
IdTaxa.
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16S denoising and taxonomic binning. 16S sequences were denoised following the standard DADA2 
pipeline with adaptations to �t our single-end read data. For this analysis, reads spanning di�erent regions, 
obtained in the previous step, were introduced into the pipeline as di�erent input �les. Taxonomic classi�cation 
of the high-quality sequences was performed using IdTaxa included in the DECIPHER package. A summary of 
quality estimates of the DADA2 pipeline is shown in Table 6. Taxonomic assignment at family level by region and 
source material is shown in Fig. 1b.

Phylum Family Species name
Completeness 
(%)

Genome 
size (Mb)

N50 
(Kb)

Times 
observed

Actinobacteria Coriobacteriaceae Collinsella aerofaciens 95–100 2.1–2.2 67–72 2

Bacteroidetes Bacteroidaceae Bacteroides uniformis 96–97 4.2–4.5 75–117 2

Bacteroidetes Prevotellaceae Paraprevotella clara 92–97 3.2–3.4 24–55 2

Bacteroidetes Rikenellaceae Alistipes putredinis 92–98 2.0–2.3 61–110 5

Euryarchaeota Methanobacteriaceae Methanobrevibacter smithii 95–100 1.6–1.9 76–189 3

Firmicutes Clostridiaceae Clostridium sp CAG 127 91–97 2.4–2.6 53–240 3

Firmicutes Clostridiaceae Clostridium sp CAG 217 96–97 1.9–2.0 257–320 2

Firmicutes Clostridiaceae Clostridium sp L2 50 94–99 2.4–2.6 60–162 2

Firmicutes Clostridiaceae Clostridium sp 97–98 2.5–2.7 33–75 3

Firmicutes Erysipelotrichaceae Holdemanella SGB6796 94–96 2.1–2.2 25–89 2

Firmicutes Eubacteriaceae Eubacterium sp CAG 202 99 2.1–2.3 53–76 2

Firmicutes Eubacteriaceae Eubacterium sp CAG 251 99 1.8–1.9 53–143 3

Firmicutes Lachnospiraceae Coprococcus eutactus 96 2.6–2.7 22–59 2

Firmicutes Lachnospiraceae Dorea longicatena 95–99 2.4–3.2 28–54 2

Firmicutes Lachnospiraceae Eubacterium rectale 97–99 2.2–2.8 22–91 5

Firmicutes Lachnospiraceae Fusicatenibacter saccharivorans 96–97 2.7–2.9 42–82 3

Firmicutes Lachnospiraceae Roseburia sp CAG 45 96–98 2.6–2.7 63–138 3

Firmicutes Ruminococcaceae Faecalibacterium prausnitzii 91–99 2.1–2.5 28–123 4

Firmicutes Ruminococcaceae Faecalibacterium sp CAG 74 98–99 2.8–3.0 40–133 3

Firmicutes Ruminococcaceae Gemmiger formicilis 94–97 2.3–2.7 25–89 2

Firmicutes Ruminococcaceae Ruminococcus bromii 98–99 1.9–2.0 28–40 2

Firmicutes Ruminococcaceae Ruminococcus sp 91–99 2.3–2.7 24–107 4

Firmicutes Ruminococcaceae Ruminococcus torques 92–95 2.2–2.3 24–61 2

Verrucomicrobia Akkermansiaceae Akkermansia muciniphila 98 2.8–2.9 105–325 2

Table 4. Metagenome Assembled Genomes (MAGs). Summary of high quality MAGs present in at least two 
samples (see times observed).

Total V2 V3 V4 V6-V7 V7-V8 Other

Faeces

AE1235 739819 3.2 40.2 14.3 21.6 18.8 1.9

AE1236 450511 2.9 43.6 15.0 20.6 16.0 2.0

AE1237 767495 4.1 36.0 14.4 17.6 24.8 3.2

AE1238 740788 3.6 38.5 14.5 20.6 21.0 1.8

AE1239 997171 5.9 36.1 14.2 24.2 17.6 2.0

AE1240 458735 2.4 39.0 13.5 17.3 24.8 2.9

AE1241 590541 3.5 40.0 14.0 19.6 21.0 1.9

AE1242 467170 3.4 37.8 14.7 19.7 22.6 1.9

AE1243 386045 3.3 41.0 14.6 21.0 18.1 2.0

Tissue

AE1235 321453 4.3 61.1 14.2 15.1 4.5 0.9

AE1236 621908 8.3 46.8 16.7 18.7 8.7 0.8

AE1237 726770 8.2 43.8 17.5 18.4 11.0 1.1

AE1238 735109 7.4 42.3 18.7 17.8 11.5 2.3

AE1239 577808 6.8 49.1 16.5 20.7 6.2 0.8

AE1240 601785 9.5 42.3 19.1 21.4 6.6 1.0

AE1241 649667 7.9 45.7 17.3 24.9 3.4 0.8

AE1242 589330 5.4 50.4 16.6 23.2 3.6 0.9

AE1243 447223 7.0 48.0 19.4 16.7 8.1 0.8

Table 5. Targeted 16S data. Percentage of 16S reads covering each region in the corresponding sample.
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Source Sample ID Region Input Output Filtered (%) Denoised (%) Chimeras (%)

Stool

AE1235 v2 23675 18409 16.27 2.99 2.98

AE1235 v3 297069 204763 14.80 0.26 16.01

AE1235 v4 105530 72361 26.79 1.17 3.47

AE1235 v6v7 160139 118416 14.27 1.74 10.04

AE1235 v7v8 139431 102517 23.41 1.19 1.87

AE1236 v2 13177 10091 20.25 3.00 0.17

AE1236 v3 196436 148363 12.94 0.30 11.22

AE1236 v4 67353 46528 28.87 1.27 0.78

AE1236 v6v7 92647 71073 13.38 1.78 8.13

AE1236 v7v8 72100 55878 18.57 1.26 2.66

AE1237 v2 31697 22779 21.13 2.02 4.98

AE1237 v3 276040 201847 14.04 0.34 12.50

AE1237 v4 110375 82233 19.16 0.98 5.36

AE1237 v6v7 135004 91005 16.34 1.28 14.98

AE1237 v7v8 190178 126317 18.27 0.72 14.59

AE1238 v2 26631 21196 14.94 3.29 2.18

AE1238 v3 285027 206419 12.46 0.37 14.74

AE1238 v4 107172 80701 19.20 1.72 3.77

AE1238 v6v7 152748 111924 11.94 2.03 12.76

AE1238 v7v8 155514 111841 18.88 1.02 8.19

AE1239 v2 58730 46507 14.39 1.74 4.68

AE1239 v3 359574 251532 15.33 0.24 14.48

AE1239 v4 141973 103323 21.22 1.19 4.82

AE1239 v6v7 241379 173393 11.71 1.53 14.93

AE1239 v7v8 175774 130720 18.40 1.03 6.20

AE1240 v2 11200 8381 16.34 4.73 4.10

AE1240 v3 179016 123229 16.20 0.47 14.50

AE1240 v4 62106 47971 18.49 1.67 2.60

AE1240 v6v7 79313 50315 17.02 3.24 16.30

AE1240 v7v8 113851 83697 18.19 1.64 6.65

AE1241 v2 20533 15287 18.88 3.23 3.43

AE1241 v3 236319 164152 15.45 0.40 14.68

AE1241 v4 82470 62916 20.12 1.63 1.96

AE1241 v6v7 115842 83998 13.58 2.75 11.16

AE1241 v7v8 124095 89112 19.74 1.26 7.19

AE1242 v2 16093 12590 16.98 3.80 0.98

AE1242 v3 176603 116141 17.49 0.39 16.36

AE1242 v4 68441 51756 19.43 1.91 3.03

AE1242 v6v7 91881 67003 16.06 2.16 8.86

AE1242 v7v8 105442 81780 15.77 1.39 5.28

AE1243 v2 12651 9882 16.73 3.60 1.56

AE1243 v3 158164 112772 13.44 0.37 14.89

AE1243 v4 56432 40641 24.63 1.38 1.97

AE1243 v6v7 81212 57972 13.32 2.92 12.38

AE1243 v7v8 69949 52240 19.07 2.26 3.99

Tissue

AE1235 v2 13680 10741 18.41 1.69 1.39

AE1235 v3 196304 144394 11.75 0.23 14.46

AE1235 v4 45755 35944 20.18 0.42 0.84

AE1235 v6v7 48383 39295 15.96 0.67 2.16

AE1235 v7v8 14445 11208 21.16 0.97 0.28

AE1236 v2 51480 42622 15.80 0.50 0.91

AE1236 v3 291280 226960 11.57 0.16 10.35

AE1236 v4 103690 79166 22.58 0.21 0.86

AE1236 v6v7 116437 101656 11.56 0.19 0.94

AE1236 v7v8 53800 40664 20.83 0.57 3.01

AE1237 v2 59739 48980 14.92 0.61 2.47

Continued
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Statistical analysis. For the statistical analysis of the bacterial abundance data, we used compositional data 
analysis methods31.

Count matrices of the classi�ed taxa were subjected to central log ratio (CLR) transformation a�er removing 
low-abundance features and including a pseudo-count. Here, we used the codaSeq.filter, cmultRepl and 
codaSeq.clr functions from the CodaSeq and zCompositions packages. Principal components analysis 
(PCA) biplots were generated from the central log ratios using the prcomp function in R.

Data Records
�e raw sequence data generated in this work were deposited into the European Nucleotide Archive (ENA). 
Faecal metagenomic sequences are available under accession PRJEB3309832. Faecal 16S sequences are available 
under accession PRJEB3341633 and tissue 16S sequences are available under accession PRJEB3341734. Human 
sequences were removed from whole shotgun samples as previously described prior to the ENA submission.

Technical Validation
Prior to analysis, shotgun sequencing reads were subject to quality and adapter trimming as previously described. 
Moreover, reads were deduplicated to avoid compositional biases caused by PCR duplicates. Quality control and 
denoising of 16S reads was performed within the DADA2 denoising pipeline and not as an independent data 
processing step.

In order to validate the 16S variable region assignment, we selected reads that were assigned to a species by 
the assignSpecies function in DADA2, which searches for unambiguous full-sequence matches in the SILVA 
database. �ese pre-processed 16S reads were aligned to a full length 16S gene from those species in the SILVA 
database (version 132, gene codes shown in Table 7). �e reads mapped consistently in regions within the 16S 
gene in agreement with the variable region assigned by our pipeline. �at is, each read was assigned between the 

Source Sample ID Region Input Output Filtered (%) Denoised (%) Chimeras (%)

Tissue

AE1237 v3 318023 228121 12.38 0.16 15.73

AE1237 v4 126872 94309 24.77 0.14 0.76

AE1237 v6v7 133901 111136 13.67 0.33 3.00

AE1237 v7v8 79930 58141 23.29 0.52 3.46

AE1238 v2 54373 43554 16.29 0.82 2.79

AE1238 v3 311029 227554 13.57 0.24 13.03

AE1238 v4 137377 106679 20.87 0.32 1.16

AE1238 v6v7 130753 112947 11.57 0.26 1.79

AE1238 v7v8 84391 62281 23.08 0.60 2.52

AE1239 v2 39380 32759 14.47 0.86 1.49

AE1239 v3 283485 206573 11.36 0.16 15.61

AE1239 v4 95146 74237 20.74 0.24 1.00

AE1239 v6v7 119410 102233 11.41 0.35 2.63

AE1239 v7v8 35846 27409 19.80 1.07 2.66

AE1240 v2 57468 45978 16.02 0.77 3.20

AE1240 v3 254594 182648 13.86 0.23 14.17

AE1240 v4 115056 89991 20.65 0.13 1.01

AE1240 v6v7 129027 106387 15.19 0.33 2.03

AE1240 v7v8 39782 30472 20.14 0.62 2.63

AE1241 v2 51322 42185 16.15 0.85 0.80

AE1241 v3 297068 231915 12.17 0.10 9.66

AE1241 v4 112313 85034 22.84 0.29 1.16

AE1241 v6v7 161575 140379 12.25 0.20 0.67

AE1241 v7v8 22036 16680 20.72 1.37 2.22

AE1242 v2 31761 26112 16.67 1.04 0.07

AE1242 v3 297138 233551 12.07 0.12 9.21

AE1242 v4 97818 76855 20.07 0.17 1.18

AE1242 v6v7 136577 116654 12.59 0.26 1.74

AE1242 v7v8 21025 16087 21.35 0.86 1.28

AE1243 v2 31236 25427 16.92 1.12 0.56

AE1243 v3 214598 161786 12.69 0.26 11.66

AE1243 v4 86913 69844 18.09 0.45 1.10

AE1243 v6v7 74483 65530 10.91 0.53 0.58

AE1243 v7v8 36358 28409 18.68 1.01 2.18

Table 6. DADA2 results. Total amount of reads entering the pipeline and passing all the quality controls are 
indicated, as well as percentages of reads �ltered in each step.
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start and end loci reported in Table 7, and corresponding to the estimated 16S variable region for the particular 
microbe species genomes. �ese results suggest that our read level 16S region assignment was largely correct.

To de�ne the taxonomic structure of the microbiome, we compared three di�erent classi�er algorithms 
which are based on full genome k-mer matching (Kraken2), protein-level read alignment (Kaiju) or gene 
specific markers (MetaPhlAn2) (Fig. 1a). A common core microbiome structure was observed regard-
less of the taxonomic classi�er method. However, particular deviations in relative abundance were observed 
between these methods. To estimate the microbiome community structure di�erences, we performed a PCA 
of CLR-transformed data, which revealed a clear clustering by the taxonomic classi�cation method (Fig. 2b). 
Importantly, however, Kraken2 and Kaiju family-level classi�cations clustered samples in the same order 
along the second component, which likely re�ects consistency in classi�cation despite of the method used.

Both variable regions analysed and the source material (faeces or tissue) revealed di�erential distributions 
of the bacterial taxa (Fig. 1b). Indeed, when analysing CLR-transformed taxonomic pro�les, samples clustered 
mostly by source material (Fig. 2a). Notably, the V7-V8 data showed the largest deviation in principal compo-
nents from all other variable regions (Fig. 2a).

So�ware Use Version

Bowtie2 Human reads mapping 2.3.4 36

Samtools Extraction of non-human reads 1.8 37

FASTQC Reads quality assessment 0.11.7 38

Clumpify Removal of duplicate reads 38.26 39

BBDuk Quality and adapter trimming 38.26 39

Kraken Taxonomic classi�cation of shotgun reads 2.0.8-beta 40

Bracken Re-estimation of taxonomic pro�les 2.2 41

MetaPhlAn2 Taxonomic classi�cation of shotgun reads 2.7.8 42

Kaiju Taxonomic classi�cation of shotgun reads 1.6.3 43

HUMAnN2 Functional pro�ling of shotgun reads 0.11.1 44

metaSPADES Metagenomic assembly 3.13.1 45

metaBAT Binning of sca�olds 2.12.1 46

checkM Bins quality assessment 1.0.12 47

PhyloPhlAn2 Taxonomic classi�cation of bins 0.35 48

Reformat Generation of lower coverage samples 38.26 39

DADA2 (R) Denoising of 16S reads 1.10.1 49

IdTaxa (R) Taxonomic classi�cation of 16S sequences 2.10.1 50

vegan (R) Computation of alpha diversity 2.5.3 51

zCompositions (R) Compositional data analysis 0.99.3 52

CoDaSeq (R) Compositional data analysis (https://github.com/ggloor/CoDaSeq) 1.2.0

Table 8. Bioinformatic tools. So�ware versions and related resources.

Region Species Start End

v2 F. nucleatum 134 389

v2 R. gnavus 108 362

v2 B. vulgatus 110 364

v2 B. fragilis 108 361

v3 B. vulgatus 330 540

v3 B. fragilis 327 537

v4 F. nucleatum 531 818

v4 R. gnavus 500 788

v4 B. vulgatus 522 810

v6v7 F. nucleatum 944 1207

v6v7 R. gnavus 917 1177

v6v7 B. vulgatus 936 1194

v6v7 B. fragilis 933 1193

Table 7. 16S alignment validation. Region(s) covered by 16S reads with exact matches to the SILVA 
database. �e �rst column represents the region(s) called by our pipeline, while the third and fourth show 
the exact matching positions in the SILVA database. �is shows consistency between the variable region 
called by our pipeline and the expected position it occupies along the 16S gene. SILVA IDs: B. fragilis: 
FQ312004.3243020.3244552; B. vulgatus: CP000139.2183533.2185042; F. nucleatum: AE009951.530422.531923; 
R. gnavus: AZJF01000012.178214.179732.
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Altogether, a clear di�erence in community structure was observed between 16S and shotgun sequences from 
the same faecal sample (Fig. 2c). Regardless, samples were displayed in the same order on the second component, 
which indicated consistency of the detected microbial signature.

Finally, we subsampled original high quality reads for lower coverage and computed alpha diversity at 
di�erent taxonomic and functional levels in order to estimate the sequencing depth necessary to capture the 
observed microbial diversity in a given sample (Fig. 3).

Fig. 2 Ordination. Principal components analysis of the datasets a�er central log ratio transformations of the 
family-level classi�cations. (a) 16S data, where each sample data was strati�ed by region and source material. (b) 
Shotgun data, classi�ed using Kraken2, Kaiju and MetaPhlAn2. (c) 16S data from faeces (only V4 region) and 
shotgun data (classi�ed using Kraken2).
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�ese alpha diversity pro�les demonstrated a gradual drop in diversity as sequencing coverage decreased. �is 
drop in coverage was more noticeable in features with higher diversity, particularly at species level or when using 
gene families (UniRef90). Altogether, in the case of species, sequencing coverages as low as 1 million read pairs 
appeared to capture the taxonomic diversity present in a sample, in line with previous �ndings35. In this study, 
we demonstrate that our high-coverage dataset from nine participants sustained su�cient sequencing depth to 
capture the majority of the known bacterial taxa and functional groups present in the samples.

Usage Notes
For reproducibility purposes, sequencing data was deposited as raw reads. However, human sequencing reads 
were removed from the dataset prior to uploading in order to prevent participants’ identi�cation. �us, reads 
need to be trimmed and, if necessary, deduplicated, before being reutilized.

For 16S data, reads have been uploaded without any manipulation. Hence, reads from di�erent variable 
regions are present in the same FASTQ �le. We suggest researchers to run the reads classi�cation scripts in order 
to choose variable regions for the analysis. Following that, reads will still need to be quality controlled, either 
directly or by denoising algorithms such as DADA2.

Code availability
So�ware versions used are listed in Table 8.

Code for sequence quality control and trimming, shotgun and 16S metagenomics pro�ling and generation of �gures  
in this paper is freely available and thoroughly documented at https://gitlab.com/JoanML/colonbiome-pilot.  
�is repository includes instructions for the analysis and reproduction of the �gures on this paper from the 
publicly available samples, as well as pipelines used for the analysis. �is repository is arranged in folders, each 
containing a README:

• qc: Scripts for quality control and preprocessing of samples
• analysis_shotgun: Scripts to run so�wares for metagenomics analysis
• regions_16s: In-house scripts for splitting IonTorrent reads into new FASTQ �les
• analysis_16s: DADA2 pipeline adapted to this dataset
• assembly: Scripts to run the assembly, binning and quality control so�ware
• figures: Scripts used to generate the �gures in this manuscript
• shannon_index_subsamples: Scripts used to compute alpha diversity in subsampled FASTQs
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Fig. 3 Alpha diversity. Shannon index was calculated at di�erent taxonomic levels (species, genus, phylum, top 
row) as classi�ed by Kraken2 and functional (gene families: UniRef90, functional groups: KEGG orthogroups 
and metabolic pathways: MetaCyc, bottom row) levels as classi�ed by HUMAnN2 by number of read pairs. Five 
random samples were created at each level.
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