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Abstract

Overweight and obesity are associated with several cardiometabolic risk factors, 

including insulin resistance, type 2 diabetes, low-grade inflammation and liver diseases. 
The gut microbiota is a potential contributing factor regulating energy balance. However, 

although the scientific community acknowledges that the gut microbiota composition 
and its activity (e.g. production of metabolites and immune-related compounds) are 

different between healthy subjects and subjects with overweight/obesity, the causality 
remains insufficiently demonstrated. The development of low-grade inflammation and 
related metabolic disorders has been connected with metabolic endotoxaemia and 

increased gut permeability. However, the mechanisms acting on the regulation of the 

gut barrier and eventually cardiometabolic disorders are not fully elucidated. In this 

review, we debate several characteristics of the gut microbiota, gut barrier function and 

metabolic outcomes. We examine the role of specific dietary compounds or nutrients 
(e.g. prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich diet) as well as 

different metabolites produced by the microbiota in host metabolism, and we discuss 
how they control several endocrine functions and eventually have either beneficial or 
deleterious effects on host health.

Introduction

Obesity is linked with many cardiometabolic risk factors, 
such as insulin resistance, type 2 diabetes, and non-
alcoholic fatty liver disease (NAFLD). Although lowering 
body weight is effective for alleviating several of these 
metabolic abnormalities, prevention remains the greatest 
challenge. Among the different factors contributing to the 
regulation of energy balance, the microorganisms that 
reside in the human gut (called the gut microbiota) have 

received increasing attention. Initially, the gut microbiota 
was studied because of its association with classical 
infectious diseases, such as gut infections (Escherichia coli, 
Shigella), acute colitis, Crohn’s disease, and inflammatory 
bowel disease (IBD) (Macpherson & Harris 2004, Voth & 
Ballard 2005, Frank et al. 2007, Lupp et al. 2007), but in 
the last 2 decades, it has been investigated also because 
of functions beyond those of pathogens (Backhed et  al. 
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2004, Cani & Delzenne 2009). This incredible awareness 
of the potential of the gut microbiota is translated by 
more than 5000 publications in 2019 alone, many of 
which are dedicated to the study of the gut microbiota 
and cardiometabolic disorders associated with overweight 
and obesity. However, caution must be taken with regard 
to the causality raised in the literature (Lynch & Pedersen 
2016, Cani 2017, 2018). In this review, we specifically 
discuss different aspects of the link between the gut 
microbiota, gut barrier function and metabolic outcomes. 
We discuss the role of different metabolites produced 
by the microbiota in host metabolism and how specific 
nutrients may promote either beneficial or deleterious 
effects on host health.

Role of microbiota in the onset of 
metabolic diseases

In 2004, pioneering work from Jeffrey Gordon and 
his team showed that mice lacking a microbiota (i.e. 
germ-free mice) were characterized by specific energy 
metabolism and even resistance to diet-induced obesity 
(Backhed et  al. 2004, 2007). In the same period, we 
identified a causal association between the gut microbiota 
and the development of low-grade inflammation and 
insulin resistance associated with obesity and lipid-rich 
diets (i.e. a high-fat diet, HFD) (Cani et  al. 2007). We 
found that some constituents of gram-negative bacteria, 
such as lipopolysaccharides (LPS), were the key factors 
triggering the onset of low-grade inflammation and 
insulin resistance (Cani et  al. 2007). By using different 
animal models (i.e. genetic, diet-induced obesity and 
diabetes models), we discovered that these animals had 
an increased level of circulating LPS, a condition termed 
metabolic endotoxaemia (Cani et al. 2007). This finding 
has since been confirmed in several human studies (Amar 
et al. 2008, Gummesson et al. 2011, Lassenius et al. 2011, 
Laugerette et al. 2011, Monte et al. 2012, Pussinen et al. 
2011, Horton et al. 2014, Jayashree et al. 2014, Radilla-
Vazquez et al. 2016, Gomes et al. 2017) (Fig. 1). Since this 
discovery, other pathogen-associated molecular patterns 
(PAMPs) (e.g. flagellin and peptidoglycans) have also 
been shown to play a fundamental role in the regulation 
of similar metabolic pathways (Vijay-Kumar et al. 2010, 
Chassaing et al. 2014, Denou et al. 2015). Over the years, 
thriving literature has demonstrated that alterations in 
gut microbiota composition and function are widely 
associated with the development of metabolic diseases, 

especially obesity and type 2 diabetes (T2D), in humans 
(Cotillard et al. 2013, Karlsson et al. 2013, Le Chatelier 
et al. 2013, Pedersen et al. 2016). In this context, faecal 
microbiota transplantation (FMT) has recently emerged 
as a good option to assess the causal relationship between 
the gut microbiota and the onset of metabolic diseases 
(Vrieze et al. 2012, Le Roy et al. 2013, Kootte et al. 2017). 
In addition, an increasing number of studies are seeking 
to identify specific microbial signatures in the gut and 
liver that could predict the onset and/or severity of 
metabolic disorders, such as liver diseases (Michail et al. 
2015, Boursier et  al. 2016, Wang et  al. 2016, Sookoian 
et al. 2020). In addition to changes in the gut microbiota, 
it was discovered that the barrier function of the gut 
also played a key role (for a review: Cani 2018, Cani 
et  al. 2019). Because gut microbes are located close to 
intestinal epithelial cells, gut barrier function must be 
highly efficient to prevent the enteric microbiota and 
potent immunostimulatory molecules from entering 
the circulation. However, the gut barrier must also be 
permissible to allow uptake of essential nutrients and 
fluids. This delicate balance is part of a multifaceted 
system controlled through intricate mechanisms. Over 
the last decade, the role of gut barrier function has been 
investigated, and numerous studies have discovered 
that maintaining an adequate gut barrier requires finely 
tuned mechanisms that are dependent on the microbial 
composition. More precisely, the gut barrier is composed 
of several physical and chemical components. A single 
layer of epithelial cells that display densely packed 
microvilli (brush border) and are joined at their apical 
side by tight junction proteins (TJPs,e.g. zonula occludens 
1 (ZO-1), occludin, and claudins) act as the transcellular 
barrier. This monolayer is renewed constantly (every 4–5 
days due to Intectin and Cyclin D1) and is covered by a 
protective mucus layer that is impregnated with several 
immune factors (e.g. antimicrobial factors) produced by 
the host. Together, the mucus layer and the different 
antimicrobial factors (e.g. C-type lectin, primarily 
regenerating islet-derived 3-gamma, Reg3γ, several 
defensins, lysozyme C and phospholipases) contribute 
to maintaining gut microbes at a certain distance from 
intestinal epithelial cells (Hooper & Macpherson 2010, 
Bevins & Salzman 2011, Pott & Hornef 2012) (Fig. 1). 
Maintaining the integrity of the gut barrier is critical 
and avoids structural and functional disorganization 
of the intestine that can lead to several disorders. IBD 
is the hallmark example of compromised gut barrier 
function (Wehkamp et  al. 2008, Stange & Schroeder 
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2019). Altered mucus function and chemical defence 
by defensins are characteristic of ulcerative colitis and 
Crohn’s disease, respectively (Salzman et  al. 2010, 
Johansson et al. 2014). It is important to note that the 
antibiotic action of specific defensins is reinforced by 
their proteolytic fragmentation into shorter peptides 
and thereby constitutes an interesting way to modulate 
gut barrier function (Ehmann et al. 2019). Defects in this 
line of defence have also been correlated with metabolic 
diseases. By using metaproteomic resources, Zhang  et al. 
showed that several AMPs are depleted in the faeces 
of T2D subjects in comparison to those in prediabetic 
and healthy subjects (Zhong et  al. 2019). In addition 

to the innate immune system, the adaptive immune 
system is another important contributor; for example, 
immunoglobulin A (IgA) is able to inhibit bacterial 
penetration into the host mucus and mucosal tissue 
(Macpherson et al. 2012).

Therefore, gut barrier function is a very complex 
and multifaceted mechanism (Fig. 1), and alterations 
in this line of defence are the first signal that allows 
the penetration of bacteria and thereby contributes 
to a local inflammatory response (e.g. IBD) and/or 
metabolic disorders (e.g. T2D) (reviewed in Konig et al. 
2016, Wells et al. 2017, Stange & Schroeder 2019, Paone 
& Cani 2020).

Figure 1
The gut barrier is composed of several physical and chemical components The mucus layer (1) acts as a physical barrier to keep the local microbiota at a 

distance. It is impregnated with factors that provide additional antibacterial activity (2). Epithelial cells (3), joined together by tight junction proteins (4), 

are the primary gatekeepers and are renewed every 4–5 days. Immune cells (5) serve as the body’s border patrol and limit the inner body’s exposure to 

allergens, pollutants, viruses, bacteria, and parasites. Disruption of the gut barrier (right) is associated with alterations in microbiota composition (I), 

reduction in mucus layer thickness and consistency (II), disruption of TJPs (III), impaired cell renewal (IV), increased permeability (V), translocation of 

PAMPS and pathogens (endotoxaemia) (VI) and inflammation (VII). ZO-1, Zonula occludens-1; JAM, junctional adhesion molecule; PAMPs, pathogen-
associated molecular patterns; MMP, matrix metalloproteinase.
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Effect of specific nutrients on the microbiota 
composition and their impact on health 

‘beneficial' vs ’deleterious’ effects

Maintaining normal intestinal barrier function is an 
essential aspect of human health. The growing significance 
of gut barrier integrity and concomitant translocation of 
bacteria and bacterial components raises the question of 
how we can improve gut barrier function. This aspect 
is of particular interest since alteration of intestinal 
homeostasis (gut microbiota composition and gut barrier 
function) directly or indirectly (via microbial-produced 
metabolites) disturbs the production and secretion of 
gut endocrine hormones, thereby triggering metabolic 
diseases (Fig. 2). The most obvious strategy to maintain 
gut barrier integrity is to maintain a healthy nutritional 
status, as it has been shown that certain dietary patterns 
are associated with improved health (e.g. a Mediterranean 
vs Western diet), whereas high-fat, high-sugar diets or 
diets depleted of certain nutrients, such as zinc, glutamine 
and tryptophan, could compromise gut barrier integrity 
(see below the section deleterious effects).

Dietary patterns are dominant factors in shaping 
the gut microbiota. Therefore, understanding the key 
mechanisms involving the different components of our 
diet are a challenge that needs to be met. Effectively 
manipulating the microbiota can reduce low-grade 
intestinal inflammation and improve gut barrier integrity, 
thereby reducing plasma glucose and serum lipid levels, 
ultimately resulting in weight loss and decreased insulin 
resistance (Dray et  al. 2007, Cani et  al. 2009a, Parnell 

& Reimer 2009, Dewulf et  al. 2013). This constitutes a 
promising and feasible approach, and several dietetic 
concepts, including prebiotics as well as probiotics, are 
currently being researched (Reid et al. 2019, Sanders et al. 
2019). Traditionally, the quality and quantity of fatty 
acids and dietary fibres are denoted as crucial modulators 
of the gut microbiota composition (Devkota et al. 2012, 
Caesar et al. 2015, Lam et al. 2015, Just et al. 2018, Makki 
et al. 2018); however, it is now clear that other potential 
actors, including many different metabolites, are involved 
(Wikoff et al. 2009, Holmes et al. 2011, Zierer et al. 2018). 
In the next section of this review, we will focus on specific 
nutrients or food additives that are currently used in the 
Western diet. We focus first on the ‘beneficial’ factors and 
then the ‘deleterious’ factors.

Beneficial effects

Gut permeability and prebiotics

Since the beginning of the 2000s, the expansion of original 
scientific work has tended to show that the modulation of 
the gut microbiota population by prebiotics has a major 
impact on human health (Roberfroid et al. 2010). This is 
particularly the case for fermentable dietary fibres, such as 
inulin-type fructans that include inulin and oligofructose 
(Gibson et al. 2017), which are known to improve glucose 
homeostasis (Cani et  al. 2006, Roberfroid et  al. 2010). 
Evidence suggests a potential link between the intake of 
prebiotics and the modulation of gut permeability. The 
increased use of prebiotics to improve insulin sensitivity 

Figure 2
Gut barrier dysfunction has systemic 

consequences. Disruption of the gut barrier leads 

to metabolic endotoxaemia and impaired 

production of circulating gut hormones. This 

phenomenon translates to metabolic disorders in 

various organs.
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and/or reduce food intake in metabolic disorders is well 
described in animal models and in humans (reviewed in 
Delzenne et al. 2011).

Animal models
Deciphering the mode of action of prebiotics on insulin 
sensitivity or energy homeostasis is still a competitive 
research topic. In 2004, we discovered that the colonic 
fermentation of a specific prebiotic called oligofructose 
(i.e. an inulin-type fructan) had the capacity to modulate 
endogenous production of appetite-controlling gut 
hormones (Cani et al. 2004). Indeed, both oligofructose 
and inulin have the capacity to reduce dietary intake 
in rodents by a mechanism that involves anorexigenic 
and orexigenic gut hormones, that is, an increase in 
glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) 
concentrations in the intestine and a decrease in the 
orexigenic hormone ghrelin concentration (Cani et  al. 
2004, Delzenne et  al. 2005). Prebiotics are generally 
known for their health benefits, but some recent papers 
bring nuances to the debate. Singh   et  al. showed that 
mice fed a compositionally defined diet (CDD) enriched 
with inulin developed hepatocellular carcinoma (HCC) 
through a mechanism dependent on the gut microbiota 
(Singh et al. 2018). These results are in line with another 
study showing that inulin, when incorporated into a 
CDD, exacerbated colitis in mice exposed to dextran 
sulphate sodium (DSS) (Miles et al. 2017). Although this 
effect has been observed in very specific animal models, 
these findings prove the importance of the dietary 
context in the effects of prebiotics in general. Regarding 
their mechanisms of action, many questions remain, 
but it is well known that due to their utilization by 
specific bacteria (i.e. fermentation), prebiotic fibres are 
transformed into different bacterial metabolites, such as 
short-chain fatty acids (SCFAs) (Koh et  al. 2016). These 
SCFAs act on a specific family of G-coupled protein 
receptors (GPCRs) called GPR41 and GPR43 (Le Poul et al. 
2003) and trigger the secretion of gut peptides involved 
in the regulation of appetite, energy homeostasis and 
glucose metabolism (Brooks et  al. 2017). However, this 
mechanism is still debated since Zou  et al. showed that 
SCFAs and GPR43 are dispensable in the beneficial effects 
of inulin on HFD-induced low-grade inflammation and 
metabolic syndrome (Zou et al. 2018). They demonstrated 
that IL-22, which is already known to protect against 
several intestinal infections (Zheng et al. 2008, Zhong et al. 
2019), is involved in fortification of the intestine through 
increased epithelial cell proliferation, thus contributing to 
protection against HFD-induced disorders.

In 2006, we demonstrated that the anti-diabetic 
action of oligofructose required a GLP-1 signalling 
pathway. Indeed, blocking the GLP-1 receptor by using 
pharmacological agents or using GLP-1 receptor knockout 
mice abolished the anti-diabetic effect of oligofructose 
(Cani et al. 2006). Treatment of obese and diabetic mice 
with oligofructose is associated with changes in the gut 
microbiota that rescue intestinal permeability. This 
physiological effect is associated with a restoration of 
the distribution and localization of the TJPs ZO-1 and 
occludin, thereby reinforcing the gut barrier, decreasing 
the LPS concentration in the portal vein and eventually 
reducing hepatic steatosis and systemic inflammation 
(Cani et  al. 2009b, Everard et  al. 2011). Importantly, 
blocking the GLP-2 receptor, a gut peptide increased 
by prebiotics and regulating epithelial cell proliferation 
and the gut barrier, abolished the effects of prebiotics 
on the gut barrier. This last result shows that prebiotics 
have the capacity to reduce low-grade inflammation and 
contribute to reducing insulin resistance. In addition, 
mice lacking the receptor GPR43 do not respond to 
prebiotic fibres, thereby showing the link between SCFAs, 
specific gut peptides and metabolism (Brooks et al. 2017). 
However, recent data also suggest that not all fermentable 
dietary fibres exert their effects on either the gut barrier 
or glucose metabolism by similar mechanisms and likely 
not only via SCFAs and gut peptides (Van Hul et al. 2020). 
Indeed, the reduction in HFD-induced obesity, fat mass 
accumulation and glucose intolerance with oligofructose 
and soluble corn fibre involves a distinct remodelling of 
the gut microbiota and subsequent different SCFA profiles.

Therefore, although some mechanisms of action 
have been identified, it has also been established that gut 
microbes exert other functions via, for example, the release 
of other biological factors (such as neurotransmitters, 
bioactive lipids, gases) that also have an impact on gut 
physiology and contribute to the cross-talk observed 
between gut microbes and the host (review in Cani & 
Knauf 2016, Rastelli et al. 2018, 2019).

Humans
Although numerous data have been obtained in animals, 
human data also support that changing the gut microbiota 
by using fermentable fibres modifies gut peptide 
production (i.e. GLP-1, PYY, and Ghrelin) (Cani et  al. 
2009a, Parnell & Reimer 2009). Other studies have also 
confirmed the key role played by SCFAs in the beneficial 
effects, suggesting that they may be due to increased 
plasma levels of the enteroendocrine hormones PYY and 
GLP-1 (Freeland & Wolever 2010, Chambers et al. 2015). 
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In addition to their effects on gut peptides, inulin-type 
fructans exert beneficial effects on glucose metabolism in 
humans, including an improvement in fasting glycaemia, 
hyperinsulinaemia, HOMA-IR and HbA1c (Rao et al. 2019, 
Zhang et al. 2020). Several recent studies also found that 
a mix of prebiotics (i.e. inulin/oligofructose) correlated 
with bacterial-related metabolites (phosphatidylcholine, 
lactate and others) and to a specific gut microbiota 
composition that could explain the beneficial effect on 
glucose metabolism (Dewulf et al. 2013, Hiel et al. 2019, 
Rodriguez et al. 2020).

The results obtained regarding satiety and food intake 
are more discussed in humans. In 2018, Korczak and 
Slavin showed that fructan fibres used at a dose less than 
10 g/day did not modify satiety or food intake (Korczak & 
Slavin 2018). The authors claimed that these fibres could 
not be used as the sole satiating agent since their impact on 
food intake is observed only at very high doses (>16 g/day)  
and when used for a long period (12–16 weeks).

Overall, the impacts of prebiotics on food consumption, 
glucose metabolism and body weight in humans are less 
significant than those observed in rodents.

Gut permeability and polyphenols

In addition to dietary fibres, plant-derived polyphenols 
represent other important substrates for the gut 
microbiota. Like dietary fibres, they are catabolized by 
and may influence the intestinal microbial ecosystem. 
In recent decades, polyphenols and their metabolites 
have gained attention for their promising beneficial 
health effects, which are generally attributed to their 
antimicrobial, antioxidant and anti-inflammatory 
properties (Anhe et  al. 2019). Recent studies also show 
the role of plant polyphenols in the regulation of the 
intestinal barrier. An overview of the main evidence 
from in vitro and in vivo studies supporting the role of 
polyphenols in modulating gut barrier permeability was 
the subject of a recent publication and will not be repeated 
here (Bernardi et al. 2020). At present, it remains largely 
unknown how polyphenols exert their beneficial effects. 
They may be mediated by the microbial production 
of bioactive polyphenol-derived metabolites and/or 
by the modulation of the gut microbial community 
itself. However, several hypotheses have been proposed 
regarding how polyphenols influence the gut barrier. For 
example, polyphenols may improve barrier function by 
regulating oxidative stress through the downregulation 
of reactive oxygen species (ROS). Another mechanism 
by which polyphenols could exert their activity is by 

targeting different members of the NF-κB pathway or by 
antagonizing its activation. This pathway is responsible 
for the transcriptional induction of pro-inflammatory 
cytokines, chemokines and additional inflammatory 
mediators in different types of innate immune cells. By 
interfering with this signalling, polyphenols prevent 
the disassembly of TJPs and restore barrier integrity. 
Polyphenols also reinforce gut barrier function and 
morphology through the maintenance of the epithelial 
mucus layer in different mouse models of defective gut 
epithelium (Pierre et al. 2013, Rodríguez-Daza et al. 2020). 
However, many other pathways have also been suggested 
as potential polyphenol targets, many of which cross-talk 
with each other (reviewed in Yang et  al. 2017), making 
this a complex issue to disentangle and highlighting 
the diversity within the polyphenol family. Indeed, in 
a comparative study using polyphenols derived from 
different sources (grapes or cinnamon), we demonstrated 
that both polyphenol extracts produced similar metabolic 
outcomes and that both improved gut barrier integrity via 
different underlying mechanisms (Van Hul et al. 2018).

When discussing the health-promoting effects of 
polyphenols, it is important to consider their phenolic 
composition, bioavailability, distribution, metabolism 
and elimination. All of these parameters vary importantly 
from one study to another and explain, among others, 
strong interindividual variations (Teng & Chen 2019, 
Boccellino & D’Angelo 2020). The composition of 
polyphenol-rich solutions (e.g. sugar, fibre, and impurities) 
is not fully known in preclinical and clinical studies, and 
it remains difficult to determine the exact contribution 
of polyphenols rather than other components to the 
observed effects. Therefore, some efforts need to be made 
to standardize the chemical forms of dietary polyphenols 
used in preclinical and clinical studies to fully assess the 
effect of polyphenols on gut barrier function and health.

Deleterious effects

Impact of high-fat diets on the gut barrier

Chronic excess dietary fat not only increases systemic 
exposure to potentially pro-inflammatory free fatty 
acids but also disrupts gut barrier function by several 
mechanisms. First, a HFD can directly increase gut barrier 
permeability because both saturated and unsaturated 
fatty acids can impair the expression and distribution of 
TJPs. Moreover, lipid-rich diets facilitate the physiological 
absorption of LPS via the formation of chylomicrons 
(Ghoshal et  al. 2009). This phenomenon will trigger 
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an immune response and enhance the secretion of 
pro-inflammatory factors (e.g. cytokines), which will 
then disrupt TJPs. This activity will in turn increase the 
permeability and leads to the leakage of even more LPS, 
resulting in a vicious circle (Yoshida et al. 2001, Fujiyama 
et al. 2007, Cani et al. 2008, Hamilton et al. 2015, Luck 
et al. 2015, Kawano et al. 2016, Zou et al. 2018). It has also 
been proposed that saturated fatty acids directly bind to 
toll-like receptor 4 (TLR-4) in the intestine via the adaptor 
protein fetuin A, thereby suggesting that saturated fatty 
acids may directly increase the production of inflammatory 
markers (Pal et  al. 2012) and contribute to alteration of 
the gut barrier. In contrast, mucus integrity has been 
positively associated with fatty acid synthase (FAS), a rate-
limiting enzyme of fat-producing lipogenesis (Wei et  al. 
2012). Defective intestinal lipogenesis in the absence of 
FAS is detrimental to the palmitoylation of Muc2, a key 
component of the mucus layer. These findings highlight 
the importance of lipid sources (dietary fat vs de novo 
synthetized fat) in gut barrier function.

The HFD has become the gold standard for the study 
of the relationship between gut function and obesity 
(Buettner et  al. 2007). It is now well accepted that a 
HFD leads to alterations in gut microbiota composition 
and gut barrier function. However, caution should be 
exercised with regard to the composition of diets. The 
amounts of fibres, one of the main substrates used by the 
gut microbiota, differ among chow diets and are often 
greater than those found in HFDs (Pellizzon & Ricci 
2018). Pioneering studies were performed using fibre-
rich chow diets as a control and demonstrated for the 
first time that mice fed a HFD displayed increased gut 
permeability not only because of an alteration of TJPs 
but also because of an alteration of the intestinal mucus 
layer, further participating in gut barrier dysfunction 
and endotoxaemia (Cani et al. 2007, Everard et al. 2013, 
Gulhane et al. 2016). Since then, many works have been 
carried out with compositionally defined diets (CDDs) 
as a control, which mirror the composition of HFDs 
(excluding fat) (Chassaing et al. 2015b, Jensen et al. 2016, 
Dalby et al. 2017). While exposure to the CDD (vs chow 
diet) induced significant alterations in the gut microbiota 
composition and in the intestine morphology, this effect 
is not sufficient to induce obesity and glucose intolerance 
that are characteristic of HFD feeding, thereby suggesting 
that gut microbiota alterations do not necessarily 
determine the onset of obesity (Dalby et al. 2017).

In addition to the mechanisms described above, dietary 
fat may also induce gut barrier dysfunction via alteration 
of the luminal bile acid profile. For example, dietary fat 

increases the concentration of deoxycholic acid (DCA), 
which is very hydrophobic and capable of disrupting cell 
membranes, whereas it reduces the concentration of the more 
hydrophilic and membrane-stabilizing ursodeoxycholic 
acid (UDCA) (Stenman et  al. 2012). In addition, BA has 
been shown to modulate gut permeability by affecting tight 
junction structure (Raimondi et  al. 2008, Suzuki & Hara 
2010, Stenman et al. 2012). All these mechanisms support 
the notion that the HFD induces health disorders through 
an alteration of the gut environment.

The effects of sweeteners

In addition to the higher fat and sugar content, the 
Western-type diet is made up of ultra-processed food 
containing a large number of food additives (Carocho et al. 
2014). Among them, sweeteners are widely present to make 
food more palatable and stable. Despite their approbation 
by regulatory agencies, artificial sweeteners are not all safe, 
and some of them present adverse health effects. Saccharin, 
sucralose and aspartame induced glucose intolerance 
more than glucose did (with saccharin having the most 
pronounced effect) through an alteration in the composition 
and function of the gut microbiota (Suez et  al. 2014). 
Mice exposed to saccharine exhibited glucose intolerance 
associated with increased Bacteroides and decreased 
Clostridiales abundance. Metagenomic analysis revealed 
an enrichment in pathways targeting lipopolysaccharide 
biosynthesis, thereby revealing the potential mechanism 
by which sweeteners enhance susceptibility to T2D (Suez 
et al. 2014). In the same study, the authors demonstrated 
a positive correlation between the consumption of 
sweeteners and metabolic parameters such as HBA1c and 
glucose in humans. In another study that linked sweeteners 
with the gut microbiota, the authors reported that several 
‘beneficial’ bacteria, such as Bifidobacterium, Lactobacillus 
and Bacteroides, were depleted in animals exposed to a 
combination of sweeteners and maltodextrin (Abou-Donia 
et al. 2008). Given that sweeteners are able to bind sweet-
taste receptors that are essential for the release of incretins, 
a large number of studies have aimed to investigate the 
potential of sweeteners as agents to trigger the secretion 
of gut endocrine hormones. Although sweeteners (mainly 
sucralose) have been reported to stimulate the release of 
GLP-1 in several enteroendocrine cell lines (Jang et al. 2007, 
Margolskee et  al. 2007, Kidd et  al. 2008, Geraedts et  al. 
2011), oral exposure in mice and humans failed to show  
the same effects (Brown et  al. 2009, Fujita et  al. 2009,  
Ma et al. 2009, Ford et al. 2011, Steinert et al. 2011). Recently, 
two studies aimed to investigate the role of sweeteners in gut 
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barrier integrity. The authors demonstrated that artificial 
sweeteners disrupted gut barrier function by increasing 
intestinal permeability and apoptosis in vitro (Santos et al. 
2018, Shil et  al. 2020). Shil   et  al. proposed that sweet-
taste receptors were involved in this phenomenon since 
mice deleted for one of these receptors (T1R3) exhibited  
attenuated gut hyperpermeability (Shil et  al. 2020).  
Given the presence of conflicting results regarding the 
effects of artificial sweeteners, additional studies on the 
topic have to be conducted to truly appreciate the safety 
of these additives.

The effects of emulsifiers

Another class of common additives is emulsifiers, which 
help to stabilize emulsions of liquids (such as mixes of 
oil and water). Emulsifiers are widely used, but some 
findings raise questions about their safety. In particular, 
carboxymethylcellulose (CMC) and polysorbate 80 (P80), 
two major emulsifiers, have been intensively studied for 
their capacity to trigger metabolic disorders. It has been 
demonstrated that CMC targets the microbial environment 
by promoting bacterial overgrowth in mice and that P80 
enhances the translocation of E. coli in intestinal-derived 
M-cells (Swidsinski et al. 2009, Roberts et al. 2010). A few 
years later, Chassaing   et  al. showed that CMC and P80 
exposure predisposed mice to low-grade inflammation 
and metabolic syndrome and enhanced susceptibility to 
colitis in Il10-/- mice by a mechanism involving alteration 
of the mucus layer (Chassaing et al. 2015a). Indeed, they 
discovered that the use of specific emulsifiers changes the 
penetrability of the mucus by different bacteria, thereby 
increasing the close vicinity of microbial cells with 
intestinal epithelial cells. In this pioneering work, they 
demonstrated that the gut microbiota plays a major role 
since transferring the microbiota from emulsifier-treated 
mice to germ-free mice reproduced the alteration of the gut 
barrier with an altered mucus layer, increased disruption 
of TJPs and induced metabolic endotoxaemia (Chassaing 
et al. 2015a). Similarly, in the absence of the microbiota, the 
mice were protected against emulsifier-induced gut barrier 
dysfunction, low-grade inflammation and eventually 
the onset of metabolic disorders. These findings are 
strengthened by ex vivo studies showing that CMC and p80 
exposure in a human gut microbiota simulator (M-SHIME) 
enhanced the pro-inflammatory potential by increasing the 
levels of bioactive flagellin through a mechanism involving 
the gut microbiota (Chassaing et al. 2017). Moreover, germ-
free mice receiving this altered gut microbiota recapitulated 
all the metabolic disorders listed above, thereby confirming 

the involvement of the gut microbiota in mediating the 
deleterious effects of emulsifiers on health. In addition to 
the potential implication of the gut microbiota, a recent 
study proposed that emulsifiers might alter food intake by 
modulating the expression of neuropeptides (i.e. increase 
in appetite-stimulating AgRP and decrease in appetite-
suppressing α-MSH), thereby suggesting that emulsifiers 
may endanger health by modulating the gut-to-brain axis 
(Holder et al. 2019).

The effect of fructose-rich diets

The consumption of fructose soared across the world 
after the introduction of high-fructose corn syrup in the 
food industry in 1960. The overconsumption of fructose 
is strongly correlated with metabolic disorders, such as 
obesity, T2D, hepatic steatosis and cardiovascular diseases 
(Ouyang et al. 2008, Stanhope & Havel 2009, Malik et al. 
2010). At the intestinal level, fructose alters gut barrier 
integrity by several mechanisms. First, chronic fructose 
intake is associated with a drop in the levels of TJPs in the 
duodenum, especially occludin and Claudin-1 (Ritze et al. 
2014, Zhou et  al. 2014, Ochoa et  al. 2015, Jegatheesan 
et al. 2016, Volynets et al. 2017). Because they observed 
an increase in serum endotoxin levels (i.e. metabolic 
endotoxaemia) and transcriptional activation of bacterial 
toll-like receptors, the authors proposed that fructose in 
combination with fat altered the gut barrier, leading to the 
translocation of bacterial products and thereby promoting 
hepatic inflammation (Spruss & Bergheim 2009, Ochoa 
et al. 2015, Mazzotti et al. 2016). As observed with a high-
fat diet, fructose intake alters mucus integrity by reducing 
mucus thickness (Rahman et  al. 2016, Volynets et  al. 
2017). Interestingly, Rahman et  al  showed that F11r-/- 
mice exhibited all the features of NASH (hepatic steatosis 
with lobular inflammation and ballooning), in contrast 
to similarly fed WT mice, suggesting that disrupted gut 
barrier function is instrumental for the progression of 
hepatic steatosis to NASH (Rahman et al. 2016).

Because enteroendocrine cells express the fructose 
transporter GLUT5 (Reimann et  al. 2008, Parker et  al. 
2009), it is assumed that they adapt to the production of 
gut hormones as a function of fructose concentrations. 
However, the effect of fructose on gut hormones is 
still under investigation. In humans, fructose is able to 
stimulate CCK, PYY and neutrotensin (NTS) in a manner 
similar to that of glucose and GLP-1 to a lesser extent. 
However, fructose has no effect on GIP kinetics in both 
humans and rodents, suggesting that fructose acts on GIP 
and GLP-1 in different ways (Kuhre et al. 2014).
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Role of specific microbial metabolites in 
triggering metabolic diseases

We have shown that modulation of the microbiota itself 
is sufficient to affect host metabolism. Via its contribution 
to the production of bioactive metabolites, such as organic 
compounds (e.g., nitric oxide (NO), carbon oxide, indole, 
ammonia, and hydrogen sulfide), branched-chain amino 
acids (BCAAs) and SCFAs and their derivatives, the gut 
microbiota is also able to use these channels to influence 
peripheral metabolism (Koh et  al. 2016, Pedersen et  al. 
2016, Tomasova et al. 2016). As discussed in the chapter 
focused on prebiotics, most of the studies focused on the 
regulation of glucose tolerance and insulin signalling by 
SCFAs through a mechanism involving the endogenous 
production of GLP-1 and PYY.

However, the gut microbiota produces a multitude of 
metabolites, many of which enter the bloodstream and 
may have an impact on specific metabolic pathways as 
well. These include metabolites that are derived from 
the gut-driving metabolism of amino acids, and of these, 
trimethylamine (TMA) is the best documented. TMA 
is produced by the gut microbiota from dietary choline 
and carnitine and is converted into trimethylamineoxide 
(TMAO) by flavin-containing monooxygenase 3 (FMO3) in 
the liver. TMAO is strongly associated with the development 
of cardiovascular diseases and insulin resistance in 
humans (Wang et al. 2011, Bennett et al. 2013, Tang et al. 
2013, Shih et al. 2015). Moreover, insulin-resistant mice 
lacking hepatic insulin receptor (LIRKO) exhibited an 
upregulation of Fmo3 and subsequent increased levels 
of TMAO (Miao et  al. 2015). Consistently, knockdown 
of Fmo3 in LIRKO mice prevented hyperglycaemia and 
atherosclerosis by suppressing FOXO1 protein expression 
and activity (Miao et al. 2015).

Another microbially produced amino acid-derived 
metabolite involved in the development of insulin 
resistance is imidazole propionate, which results from the 
histidine degradation pathway. Imidazole propionate is 
increased in individuals with type 2 diabetes (T2D) and 
impairs glucose tolerance and insulin signalling in HFD-
fed mice by a mechanism involving inhibition of insulin 
receptor substrate (IRS) through activation of the p38y/
p62/mTORC1 pathway (Koh et al. 2018).

Recently, the role of indolepropionic acid (IPA), a 
microbiota-produced deamination product of the amino 
acid tryptophan, has also been described. IPA is a bioactive 
compound that binds to pregnane X receptor (PXR) and 
aryl hydrocarbon receptor (Ahr) to exert effects on gut 
barrier integrity and glucose homeostasis (Zelante et  al. 

2013, Venkatesh et  al. 2014, Hubbard et  al. 2015, Agus 
et al. 2018). IPA has been described as inversely correlated 
with type 2 diabetes in humans (Tuomainen et al. 2018). 
In animals, data are controversial because IPA improved 
glucose metabolism and metabolic endotoxaemia in 
Sprague–Dawley rats (Abildgaard et al. 2018, Konopelski 
et al. 2019, Zhao et al. 2019), but its supplementation in 
mice fed a Western diet had no effect on glucose and lipid 
metabolism (Lee et al. 2020).

Taken together, these data on the different microbial 
metabolites illustrate their importance and pleiotropic 
roles in the functional capacity of the gut microbiota.

General conclusions and perspectives

Gut microbiota research has undoubtedly broadened 
our view on how metabolic pathways are regulated in 
an organism. However, despite the substantial technical 
progress made in the field, we still lack a real gold-
standard analysis method. Most of the strategies rely on 
complementary approaches (i.e. taxonomic profiling, 
gene counts, and functional metagenomics), often in 
combination with metabolomics (i.e. analysis of the 
different metabolites produced by the microbiota). There 
is, however, a necessity for further technical advances, 
and many interrogations are still debated (Cani 2018). For 
example, while most of the studies use relative abundancies 
to evaluate microbial composition, the quantification 
of the absolute number of bacteria (i.e. cell counts or 
microbial load) may be an important aspect to take into 
account when exploring taxonomic changes. Jeroen Raes 
and his team have revealed new perspectives by showing 
that the relative quantification vs absolute quantification 
of gut bacteria could completely change the conclusions 
related to the association between specific bacteria and 
either health or diseases (Vandeputte et  al. 2017). Their 
study strongly argues that most of the previous works 
using only relative proportions of microbes are possibly 
not capturing the entirety of a health situation. One 
striking example highlighted by the team is that the 
abundance of Bacteroides is connected with colitis (Crohn’s 
disease) only after using relative abundance and not when 
using quantitative microbiota analysis (Vandeputte et al. 
2017). Furthermore, these data emphasize the limitations 
of using relative abundance analysis since they can lead to 
specious interpretations.

Additionally, given the number of potential 
combinations of bacteria/metabolites and host genes/
susceptibilities, it is difficult to generalize all the findings 
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discussed in this review. For example, Prevotella copri, which 
produces succinate, has been associated both positively 
and negatively with insulin resistance in two dietary 
approaches (Kovatcheva-Datchary et  al. 2015, Pedersen 
et  al. 2016). Therefore, the effects of specific microbial 
signatures and subsequently produced metabolites can 
differ drastically depending on the type of diet used  
(HFD or fibre-rich chow diet). The scientific community 
agrees on the fact that we have to progressively move 
towards personalized medicine, and it is likely that 
nutritional approaches will also need to be tailored to 
individual needs.

Finally, while there is little doubt about the 
existence of a causal link between gut microbes and 
energy homeostasis, further studies are still warranted, 
for example, to characterize the numerous interactions 
between microbes and different nutrients. Only then 
will it one day be possible to target the gut microbiota to 
address obesity and related disorders.
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