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Abstract

Background: There is general consensus that consumption of dietary fermentable fiber improves cardiometabolic

health, in part by promoting mutualistic microbes and by increasing production of beneficial metabolites in the

distal gut. However, human studies have reported variations in the observed benefits among individuals consuming

the same fiber. Several factors likely contribute to this variation, including host genetic and gut microbial

differences. We hypothesized that gut microbial metabolism of dietary fiber represents an important and differential

factor that modulates how dietary fiber impacts the host.

Results: We examined genetically identical gnotobiotic mice harboring two distinct complex gut microbial communities

and exposed to four isocaloric diets, each containing different fibers: (i) cellulose, (ii) inulin, (iii) pectin, (iv) a mix of 5

fermentable fibers (assorted fiber). Gut microbiome analysis showed that each transplanted community preserved a core of

common taxa across diets that differentiated it from the other community, but there were variations in richness and

bacterial taxa abundance within each community among the different diet treatments. Host epigenetic, transcriptional, and

metabolomic analyses revealed diet-directed differences between animals colonized with the two communities, including

variation in amino acids and lipid pathways that were associated with divergent health outcomes.

Conclusion: This study demonstrates that interindividual variation in the gut microbiome is causally linked to differential

effects of dietary fiber on host metabolic phenotypes and suggests that a one-fits-all fiber supplementation approach to

promote health is unlikely to elicit consistent effects across individuals. Overall, the presented results underscore the

importance of microbe-diet interactions on host metabolism and suggest that gut microbes modulate dietary fiber efficacy.

Introduction
Humans harbor diverse and dynamic microbial commu-

nities in their intestines that span the three domains of

life [1, 2]. These microbes play key roles on host biology,

including breakdown of complex dietary components,

vitamin production, energy harvesting, immune system

maturation, and protection against pathogens [2–4].

While many microbial functions are shared among gut

communities from unrelated individuals, large interper-

sonal differences have also been reported [1]. Factors

such as genetics, environment, and lifestyles contribute

to these differences [5, 6]. Identifying the consequences

of this variation as it relates to host immune responses,

drug effectiveness, and metabolism is key to better

understand how microbes modulate human biology and

for successful implementation of precision medicine and

personalized nutritional strategies.

Metabolic disease represents a major health challenge

worldwide, with an estimate prevalence of 20–25% of
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the world’s adult population [7, 8]. A large number of

studies indicate that the gut microbiota influences the

development of metabolic syndrome [9–13]. Gut mi-

crobes exacerbate metabolic disease in part by activating

inflammatory pathways, and by producing compounds

from diet that dysregulate host signaling and metabolism

[14–17]. Microbes can also play protective roles against

metabolic disease. A large body of evidence suggests that

microbes and microbial metabolites derived from dietary

fiber, including short-chain fatty acids (SCFAs), mediate

some of the beneficial effects associated with dietary

fiber consumption [18–20].

Dietary fiber are edible carbohydrate polymers with at

least three monomeric units that are resistant to host di-

gestive enzymes and not broken down or absorbed in

the small intestine [21]. The chemical structure of a fiber

determines important physicochemical properties in-

cluding its solubility and viscosity. Dietary fibers can be

divided into soluble and insoluble forms [22, 23]. Insol-

uble forms such as cellulose have a fecal bulking effect,

and resist metabolization by gut microbes, particularly in

monogastric hosts. Dietary fibers that microbes can use

for carbon and energy are also referred as microbiota-

accessible carbohydrates (MACs) [24]. MACs, such as

inulin, pectin, and resistant starches, are broken down

and metabolized through complex mechanisms by differ-

ent gut bacteria [25]. Multiple lines of evidence suggest

that dietary MACs have important effects on the ecology

of the gut ecosystem [26]. MACs can support the growth

of beneficial bacteria, promote intestinal barrier func-

tion, lower systemic inflammation [27], and prevent

some of the detrimental effects caused by high-fat diet

[28]. Microbial metabolism of MACs also promotes hep-

atic fatty acid metabolism at least in part via production

of acetate, which serves as precursor for hepatic synthe-

sis of fatty acids and related glycerophospholipid species

[29].

While epidemiological studies support the notion that

consumption of dietary fiber is generally beneficial for

metabolic and cardiovascular health [30], results of in-

terventions in humans vary widely. Several studies indi-

cate that there is a large degree of interpersonal

variation in the benefits attained among individuals re-

ceiving the same dietary fiber intervention [31–36]. In

some cases, these inconsistent effects of fiber on host

metabolism across subjects have been linked to differ-

ences in the gut microbiota of the consumers [32, 36]

and potential microbial biomarkers for responsiveness to

specific dietary interventions have been identified [34,

35, 37]. One study identified a higher Prevotella/Bacter-

oides ratio associated with improved glucose homeosta-

sis in response to barley kernels in humans and

demonstrated that Prevotella copri modulates glucose

homeostasis in mice [35].

The studies described above suggest that interindivid-

ual differences in the gut microbiota may influence host

metabolic responses to dietary fiber in humans. We

sought to further examine this hypothesis using a tract-

able animal model and defined dietary fiber interven-

tions. We colonized genetically identical germ-free (GF)

mice with two distinct human fecal communities and

fed them isocaloric diets containing different types of

fiber. We found that the two transplanted communities

elicited divergent metabolic epigenetic and transcrip-

tional responses to the same dietary fiber. Furthermore,

differences between mice colonized with these two com-

munities varied depending on the type of fiber the ani-

mals consumed. Lastly, we identified candidate taxa and

metabolites associated with these host phenotypes.

Results and discussion
Identifying fecal microbiomes with distinct metabolic

potential

We sought to identify two human gut communities that

upon engraftment in mice exhibit significantly distinct

metabolic capacities. We used fecal specimens from a

cohort of previously analyzed samples obtained from

adults in their mid-seventies [38]. We initially selected

eight fecal samples that showed significant compos-

itional differences (Fig. S1A, B) and used them to

colonize eight groups of adult male GF C57BL/6 mice (n

= 2–4/fecal sample). Mice were fed a semi-purified diet

containing an assortment of diverse, commonly con-

sumed, commercially available fibers (i.e., assorted fiber)

that included resistant starch (RS) type 2 and 4, short-

chain fructo-oligosaccharides (scFOS), inulin, and pectin

(total fiber content 10% w/w; Table S1). This diet—as

well as all the other diets used in this study, were formu-

lated to mimic human consumption while maintaining a

defined and reproducible composition. We used 10% w/

w dietary fiber and 35% kcal derived from fat as it is

comparable to the intake level of dietary fiber in US

adults from 2001 to 2010 based on the National Health

and Nutrition Examination Survey (NHANES) data [39,

40]. This was calculated by gram of fiber per 1000 kcal

intake estimated for humans and adjusted to typical

mouse caloric consumption. Animals were placed on

this diet 1 week prior to colonization and maintained for

two additional weeks after inoculation. Comparison of

16S rRNA gene analysis of cecal samples obtained from

transplanted animals clustered by donor (Fig. S1C).

Transplanted bacterial communities were more similar

to that of their donor than to any other human sample

in the dataset (Fig. S1D). Recovery of genera of at least

0.02% relative abundance in at least one of the samples

associated with each human subject (i.e., donor and

mouse fecal pellets) was 59.2% ± 10.8 (Fig. S1E) and

accounted for 85 ± 14% of the relative abundance of the
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community from the donor (Fig. S1F). The transplanted

communities also exhibited differences in alpha diversity

(Fig. S1G). Furthermore, as expected from this variation,

transplanted communities also differed in their capacity

to produce SCFAs (Fig. S2). There was a ~ 4-fold range

in the levels of cecal butyrate among the eight groups

despite all animals consuming the same diet (Fig. S2A).

Butyrate is known to vary widely among humans and

has been linked with beneficial health effects on the host

[41, 42]. Additionally, we used PICRUSt2 to predict the

functional profiles of the 8 transplanted communities

using 16S rRNA gene data [43, 44]. Principal coordinates

analysis (PCoA) using Bray Curtis dissimilarity (Fig. S3)

shows clear separation among most communities sug-

gesting distinct functional capabilities of engrafted

microbiomes. Following these analyses, we selected two

markedly different communities: samples 1 and 8, from

here on referred as SubA (i.e., fecal community from

subject A) and SubB (i.e., fecal community from subject

B) respectively, based on differences in alpha diversity,

predicted metabolic properties, and capacities to pro-

duce butyrate, to examine how variation in gut commu-

nity composition modulate host responses to different

types of fiber. The donors of these samples are over-

weight (BMI = 30), have no history of type II diabetes,

cancer, or heart disease, and have self-reported con-

sumption of a standard western-type diet.

Effects of dietary fiber on host metabolic outcomes is

influenced by gut microbial community

Six- to eight-week-old male GF C57BL/6 mice were

placed on the assorted fiber diet described above for 1

week, and subsequently colonized via oral gavage with

fecal communities SubA or SubB (n = 30–36 mice/com-

munity, n = 66). Mice colonized with these two commu-

nities were maintained on the same diet for 2 weeks to

allow the engrafted microbiomes to stabilize. After this

stabilization period, mice colonized with each commu-

nity were divided into four treatments (Fig. 1) and re-

ceived one of four isocaloric diets (n = 7–10 mice/

community/diet) that differed on the type of fiber they

contained: (i) cellulose (non-fermentable fiber), (ii) inu-

lin, (iii) pectin, or (iv) assorted fiber described above

(Fig. 1). We selected cellulose as a source fiber that is

mostly not accessible to microbes in the mouse gut. This

diet served as a control, to define baseline differences

between mice colonized with the two communities that

were independent of interactions with MACs. We chose

inulin and pectin as the former is commonly used as a

prebiotic in the USA, while the latter has been proven to

Fig. 1 Study design. Six to eight-week-old C57BL/6 GF male mice were placed on irradiated diet containing a mix of five fibers (assorted fiber

diet; Af); a week later mice were colonized with one of two different human fecal samples SubA, SubB. Bedding and wires with food were

exchanged between cages of mice colonized with the same community to minimize cage effects. Two weeks after colonization gnotobiotic mice

received one of four isocaloric diets that vary by the type of fiber (10% w/w): cellulose (C), inulin (I), pectin (P), and assorted fiber (Af). Mice were

maintained in these diets for 4 weeks
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support growth of a wide variety of gut microbes [45],

and it is commonly used as a dietary supplement. We

also chose these two dietary fibers due to their distinct

structures, including differences in basic units, linkages,

and degree of polymerization. We colonized all mice in

the same diet (assorted fiber diet) to favor consistent en-

graftment of mice inoculated with the same community.

Furthermore, the assorted fiber diet has the same total

amount of dietary fiber as the rest of the treatment

groups used in this study, but with more diversity in fer-

mentable substrates, which we reasoned would support

engraftment of taxa relevant to all dietary treatments. In-

clusion of this group in the experimental phase of the

study also served as a control to inform whether this diet

used during the colonization period drives major differ-

ences between mice colonized with the two communities

used in the study.

We compared metabolic phenotypes of animals colo-

nized with the two different communities consuming

each of the diets described above (Table S2). We found

significant effects of diet, gut community, and their

interaction on host adiposity as determined by epididy-

mal fat pad weight (normalized by body weight) (two-

way ANOVA P < 0.01). Diet and community, but not

their interaction, also showed significant effect on liver

triglycerides (TG) (two-way ANOVA P < 0.05), whereas

diet and its interaction with gut community showed a

significant effect on serum glucose levels (two-way

ANOVA P < 0.05; Table S2). Remarkably, while the pec-

tin diet had an overall beneficial effect on metabolic phe-

notypes relative to non-fermentable cellulose (i.e.,

reduced adiposity and liver TG) for SubA-colonized

mice, this diet was less favorable for SubB-colonized ani-

mals, which showed the strongest benefits on the inulin

fiber (Fig. 2, Table S2). We also assessed whether there

were significant differences in these phenotypes between

mice colonized with the two different communities that

were exposed to the same diet through pairwise compar-

isons using Wilcoxon rank sum test. In the cellulose

diet, SubB-colonized mice showed lower levels of adi-

posity compared to mice colonized with SubA, whereas

there were no statistical differences in the levels of liver

TG and fasting serum glucose between these groups

(Fig. 2). In the inulin diet, mice inoculated with SubB

showed decreased adiposity, decreased liver TG, and

lower serum levels of fasting glucose relative to animals

colonized with SubA. In contrast, pectin-fed mice colo-

nized with SubB accumulated more fat mass relative to

SubA-colonized counterparts (Fig. 2a), whereas serum

glucose and liver TG were comparable between the two

community groups. Lastly, mice colonized with SubB

showed significantly lower levels of adiposity than those

colonized with SubA in the assorted fiber diet, whereas

serum glucose and liver TG were comparable between

the two groups (Fig. 2). Altogether, these results under-

score the importance of microbe by dietary fiber interac-

tions on host metabolism and suggest that gut microbes

modulate responses to dietary fiber.

Dietary fibers cause significant restructuring of SubA and

SubB communities

16S rRNA gene sequences were generated from cecal

samples collected from the mice described above (Tables

S3 and S4). PCoA of unweighted UniFrac distances—a

metric sensitive to taxonomic phylogenetic distances

that does not consider abundance—of these samples

show a clear clustering by donor community (Fig. 3a)

and less by diet, supporting the notion that all four diets

support colonization of similar assemblages for both

communities. In all diets, mice colonized with the same

donor preserved a core of common species that differen-

tiated it from mice colonized with the other community

(Fig. S4A). Nevertheless, there were concomitant subtle

richness and pronounced abundance variations within

each donor community across the different fiber treat-

ments (Fig. S4). PCoA of weighted UniFrac distances be-

tween both communities in the four different diet

treatments (Fig. 3b) shows that SubA and SubB post-

intervention microbiomes (i.e., microbiome in each diet)

cluster separately; however, the inulin diet appeared to

be the treatment that separated the two communities

the most (Fig. S5). Furthermore, the two communities

shifted consistently in response to the same fibers (Fig.

3b), suggesting that related taxa from both communities

are responding similarly to a given diet and that the dif-

ferent fibers have distinct effects on abundance of the

taxa. PERMANOVA on weighted and unweighted Uni-

Frac distances between engrafted microbiomes derived

from the two communities for each dietary fiber inter-

vention showed that these are different in all four diet

comparisons (P < 0.05). Each diet resulted in a unique

set of differences between the two microbial communi-

ties and included phyla-level variations. Remarkably, the

Firmicutes:Bacteroidetes (F/B) ratio was significantly in-

creased in SubB-colonized mice consuming inulin and

assorted fiber relative to SubA-colonized animals in

these diets respectively, whereas the F/B ratio was higher

in animals colonized with SubA consuming the cellulose

diet relative to SubB counterparts, and there was no dif-

ference in this ratio between the two communities for

mice consuming the pectin diet (Fig. S6A, B).

We used linear discriminant analysis effect size (LEfSe)

analysis to identify bacterial taxa significantly contribut-

ing to the differences observed between post-

intervention microbiomes for each diet [46] (Fig. 3c; Fig.

S7). In the cellulose diet, SubA-colonized mice showed

higher overall abundance of Firmicutes, Bacteroidetes,

and Actinobacteria, whereas in SubB-colonized animals
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Verrucomicrobia and Proteobacteria exhibited increased

abundance. Interestingly, phylum level comparisons be-

tween the two communities yielded similar differences

for the inulin and assorted fiber-fed mice. Animals colo-

nized with the SubB community showed higher levels of

Firmicutes, Actinobacteria, and Proteobacteria, whereas

mice colonized with SubA had higher relative abundance

of Bacteroidetes in both diets. At the genus level, SubB-

colonized animals showed higher relative abundance of

Bifidobacterium in these two diets, whereas mice harbor-

ing the SubA microbiome showed increased levels of Eu-

bacterium, Bacteroides, Butyricimonas, Lactococcus, and

Ruminococcus (Ruminococcaceae) relative to SubB-

colonized animals (P < 0.05). In the pectin diet, mice

colonized with the SubB microbiome showed higher

levels of the Proteobacteria phylum and higher levels of

the Akkermansia, Faecalibacterium, Eubacterium, and

Clostridium genera whereas SubA-colonized mice

showed higher levels of the Lachnospiraceae family and

Dorea genus (P < 0.05); some of the changes observed in

pectin (e.g., Holdemania, Lachnospiraceae, and Eubac-

terium) exhibit the opposite pattern seen in mice fed

inulin (Figs. S7 and S8).

It is also important to note that some of the genera

that showed diet-specific differences between communi-

ties were only detected in one of the communities; these

included Bifidobacterium, Clostridium, and Faecalibac-

terium, all detected only in SubB-colonized mice. Inter-

estingly, while the bifidogenic effect of inulin has been

well documented [47], in our study the assorted fiber

Fig. 2 Gut microbiome impact on host metabolic phenotypes in different dietary fibers. Phenotypes were measured after 6 weeks colonization

and 4 weeks of specific dietary fiber exposure (~ 15 weeks old). a Epididymal fat pad weight expressed a percentage of body weight (n = 7–10/

community/diet). b Liver triglycerides levels (n = 7–10/community/diet). c Serum glucose levels (arbitrary units) as measured by UPLC/MS/MS

(untargeted metabolomics platform; n = 6/community/diet). Wilcoxon rank sum test was conducted to examine whether two samples are likely

to derive from the same population. Box plots represent median, interquartile range, minimum and maximum value in the data, and potential

outliers. *P < 0.05, ns = not significant. SubA, magenta; SubB, yellow
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diet, which has only 2% inulin, supported significantly

higher levels of this genus than the inulin diet, which

contains 10% w/w inulin. However, assorted fiber

diet also contains scFOS and resistant starch—both

known to have bifidogenic effects [48]. It is also possible

that the inclusion of additional substrates opens niche

opportunities for taxa that would otherwise compete

with Bifidobacteria for inulin.

Gas chromatography-based quantification analyses re-

vealed dietary fiber-specific differences in cecal levels of

the SCFA acid butyrate and valerate, whereas levels of

acetate and propionate were comparable between
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Fig. 3 Dietary fibers cause significant restructuring of transplanted human-derived microbial communities. 16S rRNA gene sequence analysis of

cecal communities of gnotobiotic mice colonized with SubA and SubB exposed to diets containing cellulose (orange), inulin (purple), pectin

(pink), or assorted fiber (green). a, b Principal coordinates analysis (PCoA) of unweighted and weighted UniFrac distances, respectively. SubA

community is represented by squares and SubB by circles. c Cladograms generated using LEfSe analysis; comparison results are presented for the

two communities in each diet, colors distinguish taxa differences between SubA (magenta) and SubB (yellow) communities. Diet is indicated in

each of the four cladograms (C = cellulose, I = inulin, P = pectin, Af = assorted fiber). d Genus/family level relative abundances of taxa. Taxa that

showed significant differences in relative abundance through the interventions are marked with an asterisk (Kruskal-Wallis test and LDA P < 0.05)
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communities for each diet (Fig. S9). Butyrate was signifi-

cantly increased in the cecum of SubB-colonized mice

consuming cellulose, pectin, and assorted fiber relative to

the SubA-colonized animals consuming the same diets

(Fig. S9B). Valerate was significantly higher in the gut of

SubA-colonized animals in all diets except assorted fiber,

whereas cecal levels of the branched-chain fatty acids

(BCFA) isovalerate and isobutyrate were higher in SubA-

colonized mice relative to SubB counterparts in the cellu-

lose diet (P < 0.05; Fig. S9E). Altogether, these results illus-

trate the divergent effects of dietary fibers on microbial-

derived SCFA and BCFA production, which is in consist-

ent with previous work [49, 50].

SubA and SubB were selected based on their distinct

abilities to produce butyrate when transplanted to mice

fed the assorted fiber diet (Figs. S2 and S9B). While pre-

vious work suggests that butyrate has a protective role

against metabolic disease [40, 51], comparisons of cecal

butyrate levels between mice colonized with the two

communities for each diet tested did not fully explain

differences in the observed metabolic phenotypes, sug-

gesting that butyrate is not a major contributor to the

phenotypic differences observed between SubA- and

SubB-colonized mice (Fig. S9B, Fig. 2). However, Pear-

son correlation analysis across all mice in the study re-

vealed that cecal levels of butyrate were negatively

associated with adiposity (r = − 0.4682 P = 0.003); simi-

lar results were seen for cecal levels of acetate (r = −

0.3595 P = 0.0266) and total SCFA (r = − 0.3226 P =

0.0483). No significant associations were detected be-

tween any of the SCFAs and the other phenotypes mea-

sured. These results suggest that while butyrate and

potentially acetate may influence adiposity, there are

likely other microbial, community-specific, fiber type-

dependent metabolites or microbial signals that modu-

late their effects on this phenotype.

Post-intervention microbiomes mediate community

effects on metabolic outcomes

We sought to evaluate the potential mediating role of

post-intervention microbiomes in the SubA/B commu-

nity effects on metabolic outcomes (adiposity, liver TG,

and serum glucose) within each diet group. We focused

this analysis on the cellulose, inulin, and pectin dietary

fiber interventions, as these included a single type of

fiber, as opposed to the assorted fiber which included a

mixture of several fibers (RS type 2 and 4, scFOS, inulin,

and pectin). We first performed association tests be-

tween post-intervention microbiomes (beta-diversity)

and host metabolic phenotypes using PERMANOVA. In

the inulin diet, post-intervention microbiomes showed

differences in beta-diversity associated with changes in

liver TG (P < 0.05) and glucose phenotypes (P < 0.01),

whereas differences between the two microbiomes in

pectin-fed mice were associated with variation in the

adiposity phenotype (P < 0.05). We then assessed the

mediation effect of the gut microbiome in the relation-

ship between communities and host metabolic pheno-

types. The distance-based mediation test showed

significant mediation effect of overall diversity of micro-

biome for the glucose outcome in the inulin-fed group

(unweighted UniFrac and Jaccard P < 0.05). To identify

mediator taxa, we applied a causal mediation model on

each internal node of the taxonomy tree (Table S5). For

the adiposity outcome, we found the Proteobacteria

phylum, the Bacteroidales order, and the Christensenel-

laceae family as mediators in pectin-fed mice (P < 0.05).

For the serum glucose outcome, we found Clostridiales

order in inulin-fed mice (P < 0.05). Altogether, these

analyses further support the notion that dietary fiber-

microbe interactions modulate metabolic phenotypes

and highlight potentially relevant taxa.

Gut microbiome-dietary fiber interactions modulate

blood metabolites

Gut microbes influence host metabolism at least in part

by modulating nutrient availability and through the pro-

duction of a myriad of metabolites, many of which reach

systemic circulation [14–17]. We sought to examine

whether the gut microbial differences described above

between mice colonized with SubA and SubB in the four

diets resulted in changes in host metabolism as assessed

by metabolomics of serum samples. We applied

ultrahigh-performance liquid chromatography-tandem

mass spectroscopy (UPLC–MS/MS) to quantify 774

compounds in serum from the 8 groups of mice de-

scribed above (6 samples/community/diet) (Table S6).

Two-way ANOVA analysis between SubB- and SubA-

transplanted mice, identified 1 serum metabolite in the

cellulose diet, 235 in the inulin diet, 160 in the pectin

diet, and 19 in the assorted fiber diet that showed sig-

nificant differences between the two communities (P <

0.05, false discovery rate (FDR) adjusted-P < 0.1). A large

fraction of these metabolites also showed a significant

diet by community interaction (P < 0.05; Table S6). For

the purpose of generating hypotheses, all metabolites

showing P < 0.05 were used for further analyses. Ani-

mals consuming inulin and pectin diets showed the lar-

gest number of significant changes in biochemicals

between the two communities. Inspection of the differ-

entially abundant biochemicals within each diet revealed

diet-specific changes in metabolites related to amino

acids and lipid metabolic pathways, including alanine-

aspartate, histidine, lysine, tyrosine, leucine-isoleucine-

valine, urea cycle: arginine and proline, methionine-

cysteine-taurine, fatty acids, endocannabinoid, and

sphingolipid metabolic pathways (Fig. 4, Table S6).

These results support the notion that consumption of
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dietary fiber elicits individual responses on blood metab-

olites that are influenced by differences in the gut

microbiome.

Amino acids and lipid metabolic pathways associate with

host phenotypes

We tested whether levels of serum metabolites were as-

sociated with host metabolic outcomes. We used the dy-

namic tree cut method in weighted correlation network

analysis (WGCNA, Fig. S10; Table S7) to define modules

of tightly correlated serum metabolites. The associations

between these modules and host metabolic phenotypes

are shown in Fig. 5a. Candidate biochemicals that belong

to these enriched pathways are listed in Table S6. The

turquoise module is positively correlated with adiposity

(r = 0.66, P = 8e−07), liver TG (r = 0.43, P = 0.003), and

serum glucose (r = 0.45, P = 0.002), whereas the blue

module yielded negative correlations with adiposity (r =

− 0.47 P = 0.001) and liver TG (r = − 0.38 P = 0.01).

The red module showed highest association with the

glucose phenotype (r = 0.46 P = 0.002). Pathway enrich-

ment analysis revealed significant over-representation of

metabolites related to sphingomyelins, phosphatidylcho-

line (PC), and hexosylceramides pathways in the tur-

quoise module whereas the blue module was enriched

for metabolites in the gama-glutamyl amino acid,

branched-chain amino acid (BCAA), urea cycle, glutam-

ate, lysine and tryptophan pathways and the red module

in fatty acid metabolism (acyl glycine), purine metabol-

ism ((Hypo)Xanthine/Inosine containing), and acetylated

peptides (Fig. 5b).

Sphingomyelins (turquoise module) are strongly asso-

ciated with adiposity, TG, and glucose levels. These me-

tabolites are increased in SubB-colonized mice in the

pectin diet, which exhibited increased adiposity relative

to SubA-colonized mice. Previous work indicates that

Fig. 4 Gut microbiome variation directs changes in serum levels of amino acid and lipid metabolites. Heatmap indicating fold-changes in the

abundance of amino acid and lipid metabolites in serum from mice colonized with SubA and SubB communities for each diet as determined by

ultrahigh-performance liquid chromatography-tandem mass spectroscopy (UPLC–MS/MS). Biochemicals exhibiting a difference of at least 20%

between SubB and SubA are indicated for each diet; P < 0.05 (Two-way ANOVA). List of metabolites, P values, and fold-changes are listed in

Supplemental Table S6
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sphingolipids mediate cellular processes involved in

apoptosis, cell differentiation, and inflammation [52].

Furthermore, serum levels of sphingomyelins and cera-

mides have been associated with the development of

obesity [53]. Sphingomyelins can be hydrolyzed by

sphingomyelinases releasing phosphocholines and cera-

mides, leading to metabolic impairment [53]. Further-

more, most of the identified sphingomyelin-lipid

metabolism changes are within the pectin-fed group

(Tables S6 and S8). These results support the notion

that microbiome-fiber interactions modulate host levels

of sphingolipids and ceramides. This is consistent with

recent work suggesting that Bacteroides-derived sphin-

golipids in the intestine provide an endogenous source

of sphingolipids to the host [54].

As mentioned above, amino acids are enriched in the

blue module and largely contribute to the negative asso-

ciation observed between this module and adiposity,

liver TG, and glucose levels. These include histidine,

which was increased in SubB-colonized mice consuming

the inulin diet compared to SubA-colonized counter-

parts (Table S8). SubB-colonized animals in this diet ex-

hibited lower glucose and adiposity relative to the SubA-

colonized animals (Fig. 2). This is consistent with previ-

ous work showing that histidine supplementation results

in an improvement in insulin sensitivity and lower body

fat [55]. Several bacterial metabolites derived from histi-

dine were also increased in SubB-colonized mice in the

inulin diet compared to SubA-colonized animals, includ-

ing imidazole propionate (Table S6), which has been

linked to impaired insulin signaling and type II diabetes

in humans [15, 56].

BCAAs were also enriched in the blue module and de-

tected at higher levels in SubB-colonized mice in the

inulin diet compared to SubA-colonized animals. Previ-

ous reports indicated that BCAAs upregulate glucose

transporters and activate insulin secretion [57, 58]. How-

ever, there is also evidence that leucine and isoleucine

have a negative impact on metabolic health [59, 60], and

several studies have suggested that excessive intake of

amino acids could lead to inhibition of insulin signaling

[61]. Additionally, the bacterial metabolite derived of

tryptophan, indolepropionate [62], which we detected at

significantly higher levels in mice colonized with the

SubB community consuming inulin relative to SubA

counterparts, has been previously associated with
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increased dietary fiber intake and linked to reduced risk

of low-grade inflammation [63] and improved glucose

homeostasis [64]. Mice fed the cellulose diet showed vir-

tually no differences in the metabolites enriched in this

module. Gamma-glutamyl amino acids were also highly

enriched in the blue module. Gamma-glutamyl dipep-

tides are also involved in glutathione (GSH) metabolism,

which plays an important role in antioxidant defense,

and are produced when gamma-glutamyl transpeptidase

catalyzes the transfer of the gamma-glutamyl moiety of

glutathione to amino acids. Gamma-glutamyl transpepti-

dase is expressed in several mammalian tissues and in

bacteria [65, 66]. While the role of these metabolites on

metabolic health remains poorly understood, a recent

study showed gamma-glutamyl amino acids γ-glutamyl

cysteine and γ-glutamyl valine inhibit TNF-α signaling

in intestinal epithelial cells and reduce inflammation

[67]. Overall, these results suggest that circulating levels

of sphingolipids, amino acids, and gamma-glutamyl di-

peptides are impacted by interactions between microbes

and dietary fibers. Interestingly, these circulating metab-

olites also showed significant correlations with cecal

levels of acetate and butyrate (Fig. S11). While further

studies are needed to assess the role of these two SCFAs

in modulating the abundance of systemic metabolites,

both acetate and butyrate are known to impact many

facets of metabolism via interactions with G-protein

coupled receptors present in the gut and in the periph-

ery [20].

Connecting bacterial taxa, serum metabolites, and host

metabolic phenotypes

To identify bacterial taxa associated with metabolites, we

applied a log-contrast model with metabolites as the re-

sponse. The association analysis linking taxa and metab-

olite super-pathways show that the Firmicutes phylum is

involved in most associations, followed by Bacteroidetes

(Fig. 6). Interestingly, the genus Anaerotruncus is nega-

tively associated with metabolites of the lipid super-

pathway that includes fatty acids (long-chain saturated

and unsaturated, and branched), lysophospholipids, and

monacylglycerol. This genus is also positively associated

with metabolites of the amino acid and the nucleotide

super-pathways, including lysine, glycine, arginine-

proline metabolism, and the purine and pyrimidine.

Ruminococcus (Ruminococcaceae) is negatively associ-

ated with metabolites of the amino acid and the lipid

super-pathways, including BCAA, glutamate and trypto-

phan metabolism, fatty acids, purine, and gamma-

glutamyl amino acid, whereas Parabacteroides is nega-

tively associated with metabolites in the arginine-proline

and dihydroxy fatty acid pathways. Interestingly, Anaero-

truncus and Ruminococcus (Ruminococcaceae), along

with Parabacteroides, showed significantly higher

relative abundance in mice colonized with the SubA

community in the inulin diet, which exhibit higher adi-

posity, liver TG, and glucose compared to mice in the

same diet colonized with the SubB community (P < 0.01;

Fig. S8).

The Rikenellaceae family showed a strong positive as-

sociation with tryptophan and tyrosine metabolism and

a negative association with BCAA metabolism. Interest-

ingly, Rikenellaceae and Ruminococcaceae were also

positively correlated with cecal levels of BCFAs—the end

products of bacterial BCAA catabolism (Fig. S12). The

relative abundance of Rikenellaceae was significantly in-

creased in SubA-colonized mice consuming cellulose,

inulin, and assorted fiber and in SubB-colonized mice

consuming pectin, which exhibited worse metabolic out-

comes relative to the other community in their respect-

ive diets. This is consistent with previous reports

describing increased abundance of Rikenellaceae in

leptin-resistant obese and diabetic mice [68, 69]. More-

over, we found this family was positively associated with

genes in the glycerophospholipid metabolic process,

which generates lipids that can be packed in very low-

density lipoproteins [70]. The Bacteroides genus showed

a strong negative correlation with gamma-glutamyl

amino acids, and it was detected at significantly higher

levels in SubA-colonized animals except when animals

were fed pectin (P < 0.05). Eubacterium was negatively

associated with plasmalogens and positively associated

to purine metabolism. As discussed above, this genus

was also more abundant in SubA-colonized mice con-

suming inulin diet relative to SubB-colonized counter-

parts, and in SubB-colonized mice consuming pectin

diet relative to SubA-colonized animals in the same diet.

In both cases, the increased levels of Eubacterium were

associated with less favorable metabolic outcomes (Fig. 2

and Fig. S8). Altogether, these results link changes in

levels of bacterial taxa differentially represented in the

two communities across the different diets with alter-

ations in systemic levels of metabolites and host meta-

bolic phenotypes.

Dietary modulation of gut microbiome influences impact

of gut communities on hepatic gene expression

The liver receives a large fraction of its blood supply

through the portal circulation, which is the direct venous

outflow of the intestine. As such, the liver is continu-

ously exposed to gut microbial-derived products, includ-

ing SCFAs and bacterial toxins [71]. Differences in

abundance of microbial metabolites, including SCFAs,

have been linked to changes in global host epigenetic

states and gene expression [72]. Epigenetic states of

chromatin are reflected in the covalent post-translational

modifications (PTMs) on histone proteins. We found

that colonization of mice with SubA and SubB
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communities affected covalent post-translational modifi-

cations (PTMs) on histone proteins (Supporting infor-

mation, Figs. S13 and S14). To test directly whether

these differences were linked to changes in hepatic gene

expression, we performed RNA sequencing (RNA-seq)

analysis. Tests of differential gene expression yielded lar-

ger number of significantly regulated genes between the

two communities for the inulin and pectin dietary inter-

ventions (Fig. 7), while cellulose-fed mice showed the

least number of differences. Only 26 genes were differ-

entially expressed between the two communities in

cellulose-fed mice, compared to 228 genes in inulin, 123

in pectin, and 48 in the assorted fiber diets (P < 0.05 and

FDR adjusted-P < 0.05; Fig. 7a, Table S9).

Linear model fit test for over-representation of gene

ontology (GO) among differentially expressed genes in

biological process (BP), molecular function (MF), and

cellular component (CC) categories as well as

Fig. 6 Association network between gut microbiota and blood metabolites. Association strength is denoted by width of the lines; red lines show

positive association while blue ones show negative. Phylum of taxa is indicated by colored boxes and metabolite super-pathway (listed in

Supplemental Table 5) by colored circles. Anaerotruncus (Firmicutes) is the genus with the largest number of negative associations with the lipid

super-pathway, while the family Chistensenellaceae (Firmicutes) has the largest number of positive associations with metabolites in the same

super-pathway. Enterobacteriaceae family (Proteobacteria) is the taxa with more positive associations with the amino acid super-pathway
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enrichment analysis on Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways revealed divergent re-

sults between dietary interventions (Table S10). Among

the transcripts expressed at lower levels in SubB-relative

to SubA-colonized mice in the cellulose diet, there were

genes associated with regulation of phosphorylation and

protein modification. SubB-colonized animals consum-

ing inulin diet showed lower levels of expression of

genes associated with amino acid metabolism, fatty acid

metabolic process, peroxisome components, oxidoreduc-

tase activity, and peroxisome proliferator-activated

receptor (PPAR) signaling pathway relative SubA-

colonized counterparts. Upregulated genes in SubB-

colonized mice were associated with ribosome

biogenesis, RNA metabolic process, and protein process-

ing in endoplasmic reticulum. Mice consuming assorted

fiber diet showed some similarities in the enrichment of

differentially expressed genes as those in the inulin diet.

Genes downregulated in SubB-relative to SubA-

colonized mice fed inulin and assorted fiber diets

showed overlapping GO terms including oxidative stress,

regulation of cellular ketone metabolic process, lipid

metabolic process, fatty acid metabolic-catabolic process

and lipid modification, fatty acid oxidation, long-chain

fatty acid metabolic process, and oxidoreductase activity.

In the pectin diet, mice colonized with SubB expressed

higher levels of genes involved in cofactor, vitamins, and

nucleotide metabolism; fatty acid metabolism,
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oxidoreductase activity, carbohydrate and valine, leucine

and isoleucine metabolism (Fig. 7b, Table S10). These

include six genes encoding cytochrome P450, some of

which are known to play important roles in the synthesis

of steroid hormones (Cyp2a4, Cyp17a1) and xenobiotic

metabolism (Cyp2a5) [73, 74]. Surprisingly, SubA-

colonized animals in the pectin diet—which show lower

levels of adiposity (Fig. 2a) relative to SuB-colonized

mice—exhibited higher levels of expression of genes in-

volved in immune system process, inflammatory re-

sponse, phagocytic cup and vesicle cellular component,

cytokine receptor activity and binding, and infection

pathways. Previous work has shown that the overall

health effects of consumption of MACs such as inulin

and pectin can be context dependent. Long-term con-

sumption of pectin or inulin by Toll-like receptor 5

(TLR5) KO mice, which show innate immune deficien-

cies and gut microbiome alterations, results in liver

inflammation and hepatocellular carcinoma [75].

Altogether, these results suggested that the gut micro-

biome is a differential factor that modulates hepatic gene

expression. Furthermore, data suggests that the impact

of the gut microbiome on liver gene expression is influ-

enced by the type of dietary fiber consumed.

Liver gene expression is associated with host metabolic

phenotypes

WGCNA was applied to the normalized read count data

obtained from RNA-Seq analysis. Fourteen gene mod-

ules, each clustering highly co-expressed genes, were

identified (each module was assigned a different color;

Fig. S15, Table S11). We performed correlation analysis

between the phenotypic data and the calculated eigen-

gene—defined as the first principal component of the

expression matrix of the corresponding module—for

each module identified (Fig. 8a). The blue module and

adiposity showed the strongest association (r = 0.74, P =

2e−07). We narrowed down possible relevant genes con-

tributing to this module by performing biological

process GO and KEGG pathway analysis enrichment

(Fig. 8b, c). In total, 614 out of the 677 transcripts in the

blue module mapped into biological process gene ontol-

ogy. These showed significant enrichment in several pro-

cesses including the fatty acid metabolic process, acute

inflammatory response, long-chain fatty acid, and unsat-

urated fatty acid metabolic process (P < 0.05 and FDR

adjusted-P < 0.05). Pathway enrichment analysis of 266

genes with KEGG annotation in this module yielded sig-

nificant enrichment in pathways that included PPAR
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signaling, inflammatory mediator regulation of transient

receptor potential (TRP) channels, fatty acid degrad-

ation, and linoleic acid metabolism (P < 0.05 and FDR

adjusted-P < 0.05).

When only considering genes in the blue module with

significant positive association to each phenotype, we

observed 209, 151, and 107 genes for adiposity, liver TG,

and glucose, respectively (P < 0.05). The GO biological

process analysis for this set of genes in the blue module

showed that throughout the measured phenotypes, the

fatty acid metabolic process was the gene ontology with

more gene counts, followed by long-chain fatty acid

metabolic process, xenobiotic metabolic process, and

epoxygenase P450 pathway. The statistically significant

(P < 0.05 and FDR adjusted-P < 0.05) enriched KEGG

pathways associated with the measured phenotypes were

retinol metabolism, chemical carcinogenesis, PPAR sig-

naling pathway, steroid hormone biosynthesis, linoleic

acid metabolism, biosynthesis of unsaturated fatty acids,

and fatty acid elongation. Nucleoside, ribonucleoside

and purine nucleoside bisphosphate metabolic process,

and fatty acid degradation are the GO terms and KEGG

pathways that were enriched in the association with adi-

posity and liver TG (Fig. S16), whereas inflammatory

mediator regulation of TRP channels and pyruvate me-

tabolism pathways are enriched among the genes associ-

ated with glucose levels.

Gene expression in liver is associated with abundance of

gut bacterial taxa

The association analysis linking taxa and liver gene ex-

pression modules showed that the Firmicutes phylum is

involved in most associations, followed by Bacteroidetes

(Fig. 9). Interestingly, Anaerotruncus cluster has the high-

est number of gene associations (334), followed by Alis-

tipes (105), Butyricimonas (58), and Christensenellaceae

(49) (Table S12). This association network revealed an

overall positive association between Anaerotruncus with

genes belonging to the lipid metabolic process, and a

negative association with genes belonging to purine ribo-

nucleotide and nucleoside metabolic process, cholesterol

biosynthetic process, cellular lipid, fatty acid and phospho-

lipid biosynthetic process, and response to cytokines.

Interestingly, serum metabolomics data shows an overall

negative association of this genus with metabolites of the

lipid super-pathway (Fig. 6), suggesting that these taxa

may play a role in host lipid metabolism. Alistipes was

positively associated with genes in the lipoprotein biosyn-

thetic process clustered in the turquoise module, whereas

Butyricimonas was overall negatively associated with im-

mune system processes. Previous work has found the

Anaerotruncus and Alistipes genera enriched in genetically

obese (ob/ob) mice exhibiting severe glycolipid metabol-

ism disorders relative to wild type and ob/ob mice

consuming inulin with improved metabolic parameters

[76, 77]. Abundance of these two genera was also linked

with consumption of high-fat diets in humans [78–80].

Altogether, these studies suggest that Anaerotruncus and

Alistipes may directly or indirectly contribute to the me-

tabolism of dietary fats and fiber types and community

context influence this dynamic. Furthermore, the strong

correlations between intestinal microbes, hepatic gene ex-

pression, and host metabolic phenotypes provide potential

connections between dietary fiber-microbes-health that

warrant further examination.

Conclusion
Human and mouse studies encompassing genetically di-

verse populations have shown that host’s genetic vari-

ation impacts all facets of physiology including

responses to diet [81]. However, it is now clear that

these populations also contain a significant amount of

genetic variation derived from their largely individual as-

sociated microbiomes. Previous work in humans showed

that dietary supplementation of resistant starch increases

fecal butyrate levels, but with remarkable interindividual

variation [50]. Furthermore, a recent study suggested

that individual gut microbiota differences can be used to

predict post-prandial glycemic responses to specific

foods [82]. While these studies provide strong support

to the notion that the gut microbiome is a major source

of variability that influences responses to diet, dissecting

the effects of microbial vs. host genetic variation while

controlling environmental exposure is practically impos-

sible to achieve in human studies. Modeling this vari-

ation in GF mice provides the opportunity to unravel

the effects of host genetics from environmental and mi-

crobial exposures allowing the discovery of causal rela-

tionships between microbes and host phenotypes [76,

77]. Using this approach, we demonstrate that consump-

tion of the same dietary fiber by genetically identical

mice harboring different human-derived microbiomes

can lead to different host metabolic outcomes (Fig. 2).

Remarkably, these phenotypic responses varied as a

function of the type of fiber present in the diet and were

associated with changes in cecal and blood metabolites,

and hepatic gene expression.

A recent study using antibiotics and PEG treatment to de-

plete the mouse indigenous gut microbiota, followed by

transplant of human fecal microbiota from four obese donors

into these animals which were fed a high-fat diet, showed

that host metabolic effects in response to inulin supplemen-

tation varied as a function of the human community used to

colonize the mice [83]. This work also identified several gen-

era including Barnesiella, Bilophila, Butyricimonas, and sev-

eral Alistipes amplicon sequence variants (ASVs) positively

correlated with adiposity and/or hepatic steatosis whereas

Akkermansia, Raoultella, and Blautia were negatively
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correlated with at least one of these metabolic outcomes in

the transplanted mice. Some of these findings are consistent

with our results, e.g., Alistipes and Butyricimonas were de-

tected at lower levels in SubB-colonized subjects in the inulin

diet relative to SubA-colonized mice in the same diet,

whereas Akkermansia was detected at higher levels in SubB-

colonized in this diet, which showed an overall healthier

metabolic profile than SubA-colonized counterparts.

Interestingly, higher basal levels of Akkermansia were de-

tected in the gut microbiomes of obese individuals that bene-

fited from a dietary inulin intervention, (i.e., responders)

relative to non-responders of the same treatment [83]. Fur-

thermore, higher baseline levels of Akkermansia were also as-

sociated with better clinical outcomes among individuals

with metabolic syndrome subjected to a calorie-restricted

diet [84]. Further studies are needed to establish the causal

Fig. 9 Taxa associated with liver transcriptomic modules. Association strength is denoted by width of the lines, red lines show positive association

while blue ones show negative. Phylum level classification of the taxa is marked by colored boxes and transcriptomic weighted correlation network

analysis (WGCNA) module by colored circles. Anaerotruncus (Firmicutes) and Alistipes (Bacteroidetes) are the taxa with the most associations with the

clustered genes
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relationship between Akkermansia and enhanced response

to this MAC and to identify potential molecular/microbial

players involved.

The results presented here, combined with the work

discussed above, suggest that the efficacy of dietary in-

terventions such as prebiotics depends on the gut micro-

biota of the consumer and one-fits-all approaches to

promote health are unlikely to elicit consistent effects

across individuals. Identifying gut microbial biomarkers

associated with beneficial responses to common inter-

ventions may help to stratify subjects into more effective

personalized treatments.

While ascertaining causal mechanisms explaining differ-

ences in host metabolic phenotypes between microbiomes

for each diet is beyond the goal of the current study, our re-

sults illustrate how introduction of MACs promote divergent

host phenotypes caused by the two gut communities. This

result has implications not only for personalized nutrition ap-

proaches but is also relevant for animal studies in the nutri-

tion field. The use of AIN93-based purified diets [85] that

contain cellulose as the sole source of fiber is common prac-

tice in nutrition studies. These diets are useful tools for the

field, but their lack/low levels of dietary MACs might not

support gut bacterial taxa that are relevant to the process

studied. While there is not sufficient evidence to prescribe

the use of a particular fiber or a specific combination of dif-

ferent fibers, the presented results describe some of the con-

sequences of their inclusion or lack thereof. Furthermore,

inclusion of some fermentable fibers in rodent diets will en-

able conditions that are more representative of human and

rodent nutrition.

A major limitation of the study is that only two communi-

ties were compared. While these showed clear organismal

and functional differences (Figs. S1 and S3) and elicited dis-

tinct host metabolic phenotypes, they likely capture a small

fraction of the variability observed among human gut micro-

biomes. Expanding this study to include a wider range of

communities, including samples from subjects with extreme

diets, markedly different lifestyles, or different health status

may expand the range of responses to dietary fiber mediated

by gut microbes. Additionally, our study did not characterize

the degree to which each of the fibers was metabolized by

the two communities. Identifying gut signatures associated

with desired health outcomes in response to specific fibers

may reveal biomarkers of beneficial diet-microbiome interac-

tions that guide personalized nutrition approaches. In con-

clusion, the present study underscores the importance of the

gut microbiome as a differential factor that contributes to in-

dividual variation in metabolic responses to dietary fiber.

Methods
Dietary formulation

The four diets used during this study contained 35% kcal

fat, 20% kcal protein, 45% kcal carbohydrate, and

different fiber type which equals 10% weight. A non-

fermentable fiber, cellulose (Solka Floc), was used as

control while inulin [Oliggo-Fiber Inulin instant

(100010911); Cargill, Minneapolis, MN], pectin (PE1006;

Gojira Fine Chemicals, LLC, Bedford Height, OH), and a

formulation of assorted fibers which contained 23.4 g/kg

inulin, 21.5 g/kg short-chain fructooligosaccharide (i.e.,

scFOS, NUTRAFLORA®, Ingredion Inc., Westchester,

IL), 33.3 g/kg resistant starch type 2 (HI-MAIZE® 260,

Ingredion Inc., Westchester, IL), 23.5 g/kg resistant

starch type 4 (Fibersym®, MPG, Atchison, KS), 23.5 pec-

tin, as sources of fermentable fibers (Table S1). Experi-

mental diets were manufactured and sterilized via

irradiation by Envigo (10% cellulose diet; TD.170720,

10% inulin diet; TD.170721, 10% pectin diet; TD.170725,

and assorted fiber diet; TD.170726).

Gnotobiotic husbandry

All experiments involving gnotobiotic mice were per-

formed under protocols approved by the University of

Wisconsin-Madison Animal Care and Use Committee.

All germ-free (GF) C57BL/6 mice were maintained in a

controlled environment in plastic flexible film gnoto-

biotic isolators under a strict 12-h light/dark cycle and

received sterilized water and chow (LabDiet 5021;

LabDiet, St. Louis, MO) ad libitum. A week prior to

colonization, mice were switched to the assorted fiber

diet. GF status of mice was confirmed prior to starting

the experiment using culture-dependent methods. No

turbidity was observed when feces collected from the

mice were inoculated in a panel of rich media and incu-

bated at 37 °C aerobically and anaerobically for a week.

Colonization of germ-free mice and dietary fiber

interventions

Screening phase protocol

Richness and diversity metrics (i.e., alpha and beta) ob-

tained from previous publication [38] plus Faith’s phylo-

genetic diversity (calculated using QIIME 2 [86]) were

used to describe 8 Wisconsin Longitudinal Study (WLS)

samples selected for this study [87]. All donors were

adults between 70 and 82 years old, (6 men, 2 women)

with reported body mass index interval was between 23

and 38. Fecal suspensions were prepared under anaer-

obic conditions in Hungate tubes. A ~ 0.5-cm piece of

frozen fecal aliquot straw technique (FAST) straw

material were resuspended in 5 ml mega media as previ-

ously described [16, 88]. Adult 6–8-week-old male

C57BL/6 GF mice (total n = 23) were inoculated by oral

gavage with ~ 200 μl of fecal suspension (n = 2–4 mice/

sample), after being fed with an assorted fiber diet (see

below) for a week in sealed positive pressure individually

ventilated cages (IVCs; Allentown). Each cage contained

2–4 mice. Upon inoculation, mice were maintained on
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the same assorted fiber diet for 2 more weeks. Cecal

contents were collected for SCFAs and 16S rRNA gene

sequencing analysis from each of the 8 gnotobiotic

groups.

Study design

The two fecal communities exhibiting the highest (SubB) vs.

lowest (SubA) butyrate-producing activity were then selected

for subsequent experiments. Both samples belonged to indi-

viduals of the same sex (males), similar age (76.5 ± 1 years

old), BMI = 30, and with no history of diabetes, cancer, or

heart disease. Three-day diet recall indicates that both sub-

jects consumed a typical western diet. Fecal samples from

SubA and SubB were inoculated into 7–9-week-old GF male

mice (n = 30–36 mice/community) consuming assorted fiber

diet as described above. All gnotobiotic mice continued with

the same irradiated assorted fiber diet for two more weeks

(stabilization period). Bedding and wires with food were ex-

changed between cages of mice colonized with the same

community to minimize cage effects. Mice were then

switched to one of the four diets described above: cellulose,

inulin, pectin, and assorted fiber (n = 7–10 mice/commu-

nity/diet), and maintained in these diets for another 4 weeks.

Animals were euthanized after 4 h of fasting.

Measurements of short-chain fatty acids (SCFA)

SCFA analysis of mouse samples

Cecal levels of SCFAs were measured as previously de-

scribed [19]. Briefly, a mixture of 10 μl of internal stan-

dards (200mM for mice and 20mM for human each;

acetic acid-D4, Sigma-Aldrich no. 233315; propionic

acid-D6, Sigma-Aldrich no. 490644; and butyric acid-D7,

CDN isotopes no. D-171) was subsequently added,

followed by 20 μl of 33% HCl and 1ml diethyl ether.

The vials were sealed, vortexed vigorously for 3 min, and

then centrifuged (4000g, 10 min). The upper organic

layer was transferred to another vial and a second di-

ethyl ether extraction was performed. After combining

the 2 ether extracts, a 60 μl-aliquot was removed, com-

bined with 2 μl N-tert-butyldimethylsilyl-N-methyltri-

fluoroacetamide (Sigma-Aldrich no. 394882) in a GC

auto-sampler vial with a 200 μl glass insert, and incu-

bated for 2 h at room temperature. Derivatized samples

(1 μl) were injected onto an Agilent 7890B/5977A GC/

MSD instrument with an Agilent DB1-ms 0.25 mm × 60

m column with a 0.25-μm bonded phase. A discontinu-

ous oven program was used starting at 40 °C for 2.25

min, then ramping at 20 °Cmin−1 to 200 °C, then ramp-

ing at 100 °Cmin−1 to 300 °C and holding for 7 min. The

total run time was 18.25 min. Linear column flow was

maintained at 1.26 ml min−1. The inlet temperature was

set to 250 °C with an injection split ratio of 15:1. Acqui-

sition B.07.02.1938. The m/z values of monitored ions in

mice cecal measurements were as follows: 117 (acetic

acid), 120 (acetic acid-D4), 131 (propionic acid), 136

(propionic acid-D6), 145 (butyric acid), and 152 (butyric

acid-D7). Concentrations were normalized to milligrams

of cecal contents.

Measurements of branched-chain fatty acids (BCFA)

Levels of BCFA were quantified in cecal samples collected

from mice exposed to the four different diets used in the

study (n = 66; n = 7–10 per community/dietary fiber inter-

vention) using the headspace GC analysis method. Frozen,

weighed samples (~ 70mg) were added to chilled 20-ml

headspace vials (Restek, Bellefonte, PA) containing 2.0 g

NaHSO4, distilled water (300 μl—sample weight), and 1.0ml

of 60 μM 2-butanol (internal standard; added just prior to

the sample). Vials were crimp sealed immediately after sam-

ple addition and vortexed periodically to disperse and mix

the contents. Headspace GC analyses were performed using

a Shimadzu (Columbia, MD) HS-20 headspace sampler con-

nected to a Shimadzu GC-2010 Plus GC equipped with a

SH-Stabilwax column (30m, 0.25mm ID, 0.10 μm df) linked

to a FID. Samples were equilibrated with shaking to 80 °C for

20min, pressurized to 80 kPa for 3min prior to column in-

jection (2ml injection loop, load time 0.2min, sample and

transfer line temperature 150 °C, 1:15 split ratio, N2 column

flow 1.2ml/min), with a column temperature program start-

ing at 40 °C/2min, increased to 200 °C (20 °C/min), held 2

min, decreased to 120 °C (20 °C/min), decreased to 40 °C

(40 °C/min), and stabilized 1min prior to the subsequent in-

jection. The GC cycle time was approximately 23min. Stand-

ard mixtures were prepared and analyzed by the same

method, and peak areas determined using Shimadzu Lab

Solution software (version 5.92), with adjustment for fecal

sample size.

Tissue collection and analysis

Blood was collected via cardiac puncture of anesthetized

mice following a 4-h fast. Serum was obtained by centri-

fugation and stored at − 80 °C. Cecal contents, liver, and

gonadal fat pads were collected at the time of euthan-

asia, snap frozen in liquid nitrogen, and stored at −

80 °C until analysis. Glucose was measured using

ultrahigh-performance liquid chromatography-tandem

mass spectroscopy (UPLC–MS/MS) by Metabolon.

Liver triglyceride measurements

Liver triglycerides (TG) were quantified as previously de-

scribed [19, 89]. Briefly, between 30 and 40 mg of frozen

liver tissue was homogenized in 30ml of 2:1 chloroform:

methanol and disrupted using a bead beater (BioSpec

Products, Barlesville, OK; maximum setting for 6 min at

room temperature). Samples were incubated overnight

at 4 °C with gentle agitation and 1ml of 4 mM MgCl

was added for phase separation. The organic solvent

(500 μl) was left to evaporate overnight and the dried
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lipids were reconstituted in 200 μl butanol:triton- × 114

mix (3:2 vol:vol). TG content was determined by colori-

metric assay from Sigma (Sigma, F6428), according to

the manufacturer’s instructions and expressed in nano-

mole per gram of wet tissue for final concentration.

Statistical analysis of mouse phenotypes

To assess differences on metabolic phenotypes measured

between microbiota communities within each dietary

intervention and between the same microbiota across

different diets, we performed a nonparametric test and

use permutation approach to obtain the P value for two-

group comparison through Wilcoxon rank sum test.

Homogeneity of variance was tested using Levene’s test

(P > 0.05) previous to performing a two-way ANOVA to

investigate the effect of dietary intervention, transplanted

microbiota community, and their interaction on each

phenotype (P < 0.05).

16S rRNA gene sequencing

Genomic DNA was extracted from cecal contents using

a bead-beating protocol [76]. Briefly, ~ 50mg of fecal

pellet sample were resuspended in a solution containing

500 μl of extraction buffer [200 mM Tris:HCl (pH 8.0),

200 mM NaCL, 20 mM EDTA], 210 μl of 20% SDS,

500 μl phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:

1) (Invitrogen 15593-049), and 500 μl of 0.1-mm diam-

eter zirconia/silica beads. Samples were mechanically

disrupted using a bead beater (BioSpec Products, Barles-

ville, OK; maximum setting for 3 min at room

temperature), followed by centrifugation, recovery of the

aqueous phase with 60 μl 3 M NaAcetate, and precipita-

tion with isopropanol. QIAquick 96-well PCR Purifica-

tion Kit was used to remove contaminants. Isolated

DNA was eluted in 10mM Tris (pH 8.0) buffer and was

stored at − 20 °C until further use.

Amplification of 16S rRNA genes (V4) was done from

DNA by PCR using unique 8-bp barcodes on the for-

ward and reverse primers and fused with Illumina se-

quencing adapters [90]. Each sample was amplified in

duplicate in a reaction volume of 12.5 μl using KAPA

HiFi HotStart DNA polymerase (KAPA Biosystems, Wil-

mington, MA, cat. # KK2602), 10 μM of each primer,

and ~ 12.5 ng of genomic DNA. PCR was carried out

under the following conditions: initial denaturation for

3 min at 95 °C, followed by 25 cycles of denaturation for

30 s at 95 °C, annealing for 30 s at 55 °C and elongation

for 30 s at 72 °C, and a final elongation step for 5 min at

72 °C. PCR products were purified with the QIAquick

96-well PCR Purification Kit and then quantified using

Qubit dsDNA BR Assay kit (Invitrogen, Oregon, USA).

Samples were equimolar pooled and sequenced on the

Illumina MiSeq 2 × 250 bp platform.

Sequences were processed using QIIME 2 pipeline

[86]. Demultiplexed 250 bases paired-end sequences

were imported using Casava 1.8 format and denoised

using DADA2 [91, 92] to obtain amplicon sequence vari-

ant (ASV) table. Singletons (ASV present < 2 times) and

ASVs that are present in less than 10% of the samples

were discarded. Greengenes [93] reference sequences

(clustered at 99% similarity) were used to train a naïve

Bayes taxonomy classifier to further annotate ASVs

taxonomically. ASVs were then collapsed based on

genus or lowest-level (i.e., family, order, class, phylum)

taxonomy possible. An even sampling depth of 5795 and

33,714 sequences per sample was used for assessing

alpha- and beta-diversity measures in the screening and

study phase, respectively. Shannon diversity Index and

Faith’s phylogenetic diversity (PD) was used to measure

alpha diversity. Beta-diversity was calculated using prin-

cipal coordinates analysis (PCoA), Jaccard, and weighted

and unweighted UniFrac metrics [94]. Weighted UniFrac

distances between microbiota communities were tested

by pairwise PERMANOVA using Qiime2 beta-group-

significance command with the -p-pairwise parameter

[95]. Also, linear discriminant analysis (LDA) effect size

(LEfSe Galaxy Version 1.0) was performed to each

microbiota pair (SubA and SubB) for each dietary fiber

intervention to elucidate significantly different abun-

dances of bacterial taxa. The parameters used for these

analyses were set with default P value (α = 0.05) and

LDA score of 2.0 [46].

PICRUSt2 was used to predict functional content or

microbiome 16S rRNA genes [43, 44] using QIIME2

generated data. An even sampling depth of 3,919,286

gene counts was used to rarefy all samples to further

analyze diversity using Bray Curtis analysis.

Untargeted metabolomics of serum samples

Untargeted mass spectrometry data was collected at

Metabolon Inc from 100 μl serum samples of 6 ran-

domly selected mice in each treatment. The 48 samples

were prepared using the automated MicroLab STAR sys-

tem (Hamilton Company). Recovery standards were

added and protein, dissociate small molecules bound to

protein or trapped in the precipitated protein matrix

were removed. To recover chemically diverse metabo-

lites, proteins were precipitated with methanol under

vigorous shaking for 2 min (Glen Mills GenoGrinder

2000) followed by centrifugation. The resulting extract

was divided into five fractions: two for analysis by two

separate reverse-phase UPLC–MS/MS methods with

positive ion mode electrospray ionization (ESI), one for

analysis by reverse-phase UPLC–MS/MS with negative

ion mode ESI, one for analysis by HILIC/UPLC–MS/MS

with negative ion mode ESI, and one sample was re-

served for backup. Samples were placed briefly on a
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TurboVap (Zymark) to remove the organic solvent. The

sample extracts were stored overnight under nitrogen

before preparation for analysis.

Ultrahigh-performance liquid chromatography-tandem

mass spectroscopy (UPLC–MS/MS)

All methods utilized a Waters ACQUITY ultra-

performance liquid chromatography system and a

Thermo Scientific Q-Exactive high-resolution/accurate

mass spectrometer interfaced with a heated ESI source

and an Orbitrap mass analyzer operated at 35,000 mass

resolution. The sample extract was dried and then

reconstituted in solvents compatible to each of the four

methods. Each reconstitution solvent contained a series

of standards at fixed concentrations to ensure injection

and chromatographic consistency. One aliquot was ana-

lyzed using acidic positive ion conditions, chromato-

graphically optimized for more hydrophilic compounds.

In this method, the extract was gradient eluted from a

C18 column (Waters UPLC BEH C18-2.1 × 100mm,

1.7 μm) using water and methanol, containing 0.05%

perfluoropentanoic acid and 0.1% formic acid. Another

aliquot was also analyzed using acidic positive ion condi-

tions; however, it was chromatographically optimized for

more hydrophobic compounds. In this method, the ex-

tract was gradient eluted from the same aforementioned

C18 column using methanol, acetonitrile, water, 0.05%

perfluoropentanoic acid, and 0.01% formic acid and was

operated at an overall higher organic content. Another

aliquot was analyzed using basic negative ion optimized

conditions using a separate dedicated C18 column. The

basic extracts were gradient eluted from the column

using methanol and water, amended with 6.5 mM am-

monium bicarbonate at pH 8. The fourth aliquot was

analyzed via negative ionization following elution from a

HILIC column (Waters UPLC BEH Amide 2.1 × 150

mm, 1.7 μm) using a gradient consisting of water and

acetonitrile with 10 mM ammonium formate, pH 10.8.

Raw data was extracted, peak-identified, and QC proc-

essed using Metabolon’s hardware and software. Com-

pounds were identified by comparison to library entries

of purified standards or recurrent unknown entities

based on retention time/index, mass to charge ratio (m/

z), and chromatographic data, and peaks were quantified

using area-under-the-curve.

Statistical analysis

The dataset comprises a total of 774 biochemicals. Metabolic

profiles were quantified in terms of relative abundance and

median scaled to 1. Following log transformation and imput-

ation of missing values, if any, with the minimum observed

value for each compound, two-way ANOVA contrast were

used to identify biochemicals that differed significantly be-

tween experimental groups. An FDR adjusted-P value (i.e., q-

value) is calculated to take into account the multiple compar-

isons that normally occur in metabolomic-based studies, and

all metabolites with q-value < 0.05 were included.

RNA-seq analysis

Mouse liver tissue samples were submitted to the Uni-

versity of Wisconsin Biotechnology Center (UWBC)

Gene Expression Center for total RNA extraction. In a

96-well format, tissue samples were lysed using QIAzol

Lysis Reagent (Qiagen, Hilden, Germany) and the Tis-

sueLyser. Following phase separation by centrifugation,

the aqueous phase was recovered, ethanol was added,

and the solution was added to an RNeasy 96 Universal

Tissue plate. Plate was processed following the RNeasy

96 Universal Tissue protocol. An on-column DNase

treatment step was included. RNA was eluted in

nuclease-free water. Each sample was quantified and an-

alyzed on a NanoDrop One Spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA) and Agilent 2100

Bioanalzyer (Santa Clara, CA, USA) for purity and integ-

rity, respectively.

Total RNA samples that met the Illumina sample in-

put guidelines were prepared according the TruSeq®

Stranded mRNA Sample Preparation Guide (Rev. E)

using the Illumina® TruSeq® Stranded mRNA Sample

Preparation kit (Illumina Inc., San Diego, CA, USA). For

each library preparation, mRNA was purified from 1000

ng total RNA using poly-T oligo-attached magnetic

beads. Subsequently, each poly-A-enriched sample was

fragmented using divalent cations under elevated

temperature. The mRNA fragments were converted to

double-stranded cDNA (ds cDNA) using SuperScript II

(Invitrogen, Carlsbad, CA, USA), RNaseH, and DNA Pol

I, primed by random primers. The ds cDNA was purified

with AMPure XP beads (Agencourt, Beckman Coulter).

The cDNA products were incubated with Klenow DNA

Polymerase to add an “A” base (Adenine) to the 3′ end

of the blunt DNA fragments. DNA fragments were li-

gated to unique dual index (UDI) adapters (IDT for Illu-

mina- TruSeq RNA UD Index- catalog 20022371, IDT

for Illumina - Nextera DNA Unique Dual Indexes, Set A

and custom synthesized UDIs), which have a single “T”

base (Thymine) overhang at their 3′ end. The adapter-

ligated DNA products were purified with AMPure XP

beads. Adapter-ligated DNA was amplified in a Linker

Mediated PCR reaction (LM-PCR) for 10 cycles using

Phusion TM DNA Polymerase and Illumina’s PE gen-

omic DNA primer set followed by purification with

AMPure XP beads. Finally, the quality and quantity of

the finished libraries were assessed using an Agilent

DNA1000 chip (Agilent Technologies, Inc., Santa Clara,

CA, USA) and Qubit® dsDNA HS Assay Kit (Invitrogen,

Carlsbad, CA, USA), respectively. Libraries were stan-

dardized to 2 nM. Paired-end 2 × 150 bp sequencing
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was performed, using standard SBS chemistry on an Illu-

mina NovaSeq6000 sequencer. Images were analyzed

using the standard Illumina Pipeline, version 1.8.2.

High-quality reads were obtained after removal of

adaptor sequences and high content of unknown bases.

Filtered reads were mapped to mouse genome reference

GRCm38.p6 from Ensemble (release 97) database using

Spliced Transcripts Alignment to Reference tool (STAR,

v2.7.2a). Further quantification of mapped transcript

reads to the reference was performed using feature-

Counts tool (v1.6.4). Readcount data was analyzed for

differential gene expression using edgeR Bioconductor

package (version 3.28.0) performing the generalized lin-

ear model quasi-likelihood F-test from empirical Bayes

methods to estimate gene-specific biological variation

[96]. Quasi-likelihood method accounts for uncertainty

in dispersion estimation, therefore, gives stricter error

rate control which makes it ideal for differential expres-

sion analyses of our RNA-seq data [96]. Filtering of low

expressed genes was performed by keeping counts in a

minimum number of samples computed through the

built-in function “filterByExpr”. Normalization for RNA

composition effect was performed in order to compare

relative changes in expression levels between conditions

using trimmed mean of M-values (TMM) between each

pair of samples [97]. Biological and technical variability

estimation was performed by analyzing sample repli-

cates. Negative binomial generalized linear models were

fitted and tagwise dispersion estimates were obtained

using Cox-Reid profile-adjusted likelihood method in

order to determine differential expression. Differentially

expressed genes (DEGs) were obtained after filtering by

logarithmic fold-change 1 and − 1, P value 0.05, and

false discovery rate (FDR adjusted-P) 0.05, yielding 55,

573 genes in total. Gene Ontology (GO) functional en-

richment analysis for biological process (BP), cellular

component (CC), molecular function (MF), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) path-

ways was obtained as part of the downstream proced-

ure to interpret the differential expression of genes.

We performed Gene Ontology and KEGG pathways

enrichment analyses for the differentially expressed

genes. The resulting gene representation data was

then filtered to include only GO terms or KEGG

pathways with at least 10 annotated genes; a mini-

mum of 5 genes that were significantly regulated and

a P value (≥ 5).

Mass spectrometry analysis of post-translational

modification (PTM) of histones from liver

Tissue fractionation and histone extraction and label-free

chemical derivatization from liver

Tissue fractionation and histone acid extraction was per-

formed using previously published protocols [72, 98].

Briefly, 50–100 mg of frozen mice liver tissue (n = 32, 4

samples per treatment) was dounce-homogenized on ice

in a hypotonic lysis buffer containing histone deacetylase

and protease inhibitors, followed by the centrifugation to

pellet nuclei. Histones were acid extracted, and a Brad-

ford assay was performed to quantify protein yield. In

total, 5 μg of dried histone extract was then subjected to

hybrid chemical derivatization [99] using heavy acetic

anhydride. This procedure was followed by trypsiniza-

tion for 4 h and derivatization of newly generated pep-

tide N-termini with phenylisocyanate (PIC). Finally,

labelled histones were desalted using C18 stage tips.

Nano-liquid chromatography and electrospray ionization

tandem MS

For each sample, derivatized histone peptides were

injected onto a Dionex Ultimate3000 nanoflow HPLC

with a Waters nanoAcquity UPLC C18 column (100 m ×

150mm, 3 m) coupled to a Thermo Fisher Q-Exactive

mass spectrometer at 700 nL/min. Mobile phase con-

sisted of water + 0.1% formic acid (A) and acetonitrile +

0.1% formic acid (B). Histone peptides were resolved

with a 2-step linear gradient of 2 to 25% mobile phase B

over 60 min followed by 25 to 40% mobile phase B over

15 min. Data was acquired using data-independent ac-

quisition (DIA) mode. The mass spectrometer was oper-

ated with a MS1 scan at resolution = 35,000, automatic

gain control target = 1 × 106, and scan range = 390–

910 m/z, followed by a DIA scan with a loop count of

10. DIA settings were as follows: window size = 10 m/z,

resolution = 17,500, automatic gain control target = 1 ×

106, DIA maximum fill time = AUTO, and normalized

collision energy = 30. For each cycle, one full MS1 scan

was followed by 10 MS2 scans using an isolation window

size of 10 m/z.

Histone PTM quantification

EpiProfile 2.0 was used for quantification of histone PTMs

[100]. The R script provided by Denu lab (https://github.

com/DenuLab/HistoneAnalysisWorkflow) was used to per-

form data cleaning, normalization, statistical analysis, and

visualization.

Data processing for microbiome, metabolome, and

transcriptome

Normalization/transformation/filtering

For the taxa that were unclassified at the genus level,

their identities at higher levels were used. We combined

all ASVs belonging to the same genus and filtered out

the genera that appear in fewer than 20% of total sam-

ples, leaving 5 phyla, 11 classes, 11 orders, 25 families,

and 45 genera. For the metabolome data, we normalized

biochemicals by using inverse normal transformation

and transformed variables that did not follow a normal
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distribution (Shapiro-Wilk test P < 0.05) were removed,

resulting in 712 biochemicals. The RNA-seq data were

normalized with voom methodology [101]. The voom

method estimates the mean-variance relationship and

computes appropriate observation-level weights to trans-

form count data to log2-counts per million. We used

median absolute deviation to measure the variability of

each gene because two genes without notable variance

between samples will be highly correlated. As a heuristic

cut-off, the top 5000 most variant genes had been used

in the downstream analysis.

Weighted correlation network analysis (WGCNA) for

metabolome and transcriptome

In order to group the biochemicals that were highly cor-

related, we built the co-expression network using

WGCNA [102]. The WGCNA is an efficient and robust

method in grouping metabolomic and transcriptomic

data [103, 104] and allowed us to summarize each mod-

ule by its module eigenvalue. A one-sided Fisher test

was used to determine if a pathway was enriched within

the turquoise and blue modules in metabolomic data. P

values were then adjusted using Benjamini-Hochberg

method, and a cut-off of P < 0.05 and FDR adjusted-P <

0.05 were chosen to determine if a pathway was signifi-

cantly enriched. We used Pearson’s correlation between

expression profile of each gene and module eigenvalue

to identify module membership. Using the module

eigenvalue, the module-traits relationships were esti-

mated by calculating Pearson’s correlations between the

module eigenvalue and the traits of interest. We consid-

ered 0.90 as a correlation cut-off to choose soft-

thresholding power and set the minimal module size as

20. For metabolome, the metabolites were clustered into

8 modules plus 43 unclustered metabolites. The trans-

formed values of the unclustered metabolites were com-

bined with standardized module eigenvalues in the

following analysis. For the transcriptome data, 14 mod-

ules (defined as clusters of highly interconnected genes)

were identified by using DynamicTree Cut algorithm.

WGCNA led to 14 different modules by using Dynamic-

Tree Cut algorithm. Over-representation of genes in the

blue module was characterized based on gene ontology

biological process and KEGG pathways using clusterPro-

filer [105].

Microbiome association with host -omics

We applied the sparse linear log-contrast model [106] to

pinpoint important genera that are associated with indi-

vidual metabolite/gene. In this model, the host omics

variable is the response and the genus-level microbial

taxa are compositional covariates. The sparse linear log-

contrast model respects the compositional nature of the

microbiome data and avoids choosing an arbitrary

reference taxon, in which the unit-sum constraint on the

compositional vector is translated into the zero-sum

constraint on the association coefficients across taxa in

log ratio scale. In our analysis, we used 10-fold cross val-

idation to choose the tuning parameter. To obtain stable

selection results, we generated 100 bootstrap samples

and used the same cross validation procedure to select

the genera. We also followed the stability selection ap-

proach [107] to assess the stability of the selected gen-

era, where 100 subsamples of half sample size were

taken to compute the selection probabilities. In the asso-

ciation network (Figs. 6 and 9), we kept genera with sta-

bility selection probability larger than 0.85 and filter out

the lowly associated genera which the absolute value of

coefficient is less than 0.1.

Causal mediation analysis

We performed mediation analyses to investigate how the

post-intervention gut microbiome/metabolites/gene ex-

pressions may mediate the effect of fecal colonization on

various phenotypes (adiposity, liver TG, glucose) under a

given diet. We employed the causal mediation model

with batch effects as confounder, SubA/B microbial

communities as exposure, and different phenotypes as

outcome. All the mediation effect hypotheses were

tested by using the resampling method. Below we de-

scribed two approaches for testing microbiome medi-

ation effects on the global community level and on the

subcompositions defined on the taxonomy tree. For the

metabolites and genes, we applied mediation analysis to

the corresponding WGCNA modules.

Beta-diversity mediation analysis for microbiome

For beta-diversity distance matrices, we performed the

distance-based mediation test by using the MedTest

package in R language [108]. The Jaccard and un-

weighted UniFrac distance matrices were calculated

based on the rarefied genus-level abundance matrix (rar-

efied to the minimum sequence depth) to reduce poten-

tial sequence depth-dependent bias.

Tree-based mediation analysis microbiome

We used maximum round error 0.5 to replace 0 [109] in

full-composition abundance matrix, then calculated the

sub-composition relative abundance matrix for each

high-rank internal node. We removed extremely rare

taxa (only detected in 10% of the observations or less).

We selected the most abundant taxa in the relative

abundance matrix as the reference taxa and took addi-

tive logarithm transformation on the compositional data

so that the transformed data could be considered as

multivariate variables. Finally, we applied the causal me-

diation model on each high-rank internal node in the

taxonomy tree.
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Metabolite module/gene module mediation analysis

In order to identify the microbial community status ef-

fect on different phenotypes which were transmitted

through the metabolite modules/gene modules, we ap-

plied causal mediation model by considering the corre-

sponding WGCNA modules as multiple independent

mediators.
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Additional file 1: Fig. S1. Screening phase. 16S rRNA gene sequence

analysis of fecal samples from human donors and recipient mice. A.

Principal Coordinates Analysis (PCoA) of unweighted UniFrac (uwUF)

distances from eight human fecal samples collected for Wisconsin

Longevity Study. B. Bacterial relative abundance summarized at the

phylum level. C. Percentage of genera shared between each donor fecal

sample and its corresponding recipient mice cecal samples. Number of

mice colonized for each fecal donor is reported under each bar. D.

Percent relative abundance of the fecal donor community captured in

the mouse cecal samples. E. UwUF distances between donor fecal

samples and each engrafted cecal community. Averages of distances

between corresponding human donor-mouse engrafted community are

indicated as DONOR. Average of uwUF distances between non-matched

donor-mouse community are indicated as OTHER. F. PCoA of uwUF dis-

tances of the eight human fecal samples engrafted in the mouse cecum.

Circles with the same colors indicate biological replicates colonized with

the same community. G. Alpha-diversity as determined by Faith’s phylo-

genetic diversity of each of the eight engrafted communities. ***P <

0.001.

Additional file 2: Fig. S2. Variation in cecal short-chain fatty acids

among transplanted communities. Cecal levels of (A) butyrate; (B) acetate;

and (C) propionate (μmoles/g wet weight) for each the eight trans-

planted groups of mice described in Fig. S1.

Additional file 3: Fig. S3. Variation in predicted metabolic capacity

among engrafted gut communities. Principal Coordinates Analysis (PCoA)

of Bray Curtis dissimilarity using the PICRUSt2 predicted metabolic

functions of the eight transplanted human microbiota samples used in

this study. Circles with the same colors indicate biological replicates

colonized with the same community.

Additional file 4: Fig. S4. Characterization of transplanted communities

in mice. 16S rRNA gene sequence analysis of engrafted cecal

communities. Germ-free mice were colonized with SubA or SubB and

exposed to one of four diets containing a different type of fiber; (i) Cellu-

lose; (ii) Inulin; (iii) Pectin; or (iv) Assorted fiber. A. Heatmap showing pres-

ence/absence of bacterial taxa in the gut of transplanted animals across

the four different diets. Red indicates presence and black absence. Each

column represents an individual mouse. B. Alpha diversity (Shannon

Index) of SubA and SubB communities after dietary intervention. *P <

0.05, **P < 0.01, ***P < 0.001 ****P < 0.0001.

Additional file 5: Fig. S5. Differences in gut microbiota between SubA-

and SubB-colonized animals across the different diets used. Weighted

UniFrac distances between fecal microbiomes of SubA and SubB colo-

nized mice. The UniFrac matrix was permuted 999 times; n = 7-10 ani-

mals/microbiome/diet.

Additional file 6: Fig. S6. Individual effect of dietary fibers on

Firmicutes to Bacteroidetes ratio. Comparison of Firmicutes and

Bacteroidetes between engrafted SubA and SubB communities across

different diets. A. Relative abundance of Bacteroidetes (white) and

Firmicutes (black) in SubA (magenta) and SubB (yellow) colonized mice

for each dietary fiber intervention. B. Firmicutes:Bacteroidetes ratio in

SubA (magenta) and SubB (yellow) for the four dietary interventions. *P <

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Additional file 7: Fig. S7. Linear discriminant analysis Effect Size (LEfSe)

summary. List of taxa differentially abundant between gut community

SubA (magenta) and SubB (yellow) in the four diets. LDA score (log 10) is

indicated at the bottom of each graph.

Additional file 8: Fig. S8. Relative abundance of gut bacterial taxa for

SubA and SubB. Box plots indicating relative abundance of taxa of

interest relevant to the diversity, association, and mediation analyses. This

figure shows relative abundance of taxa that has at least one significant

difference between SubA and SubB within a dietary intervention. SubA is

represented with the color magenta and SubB with the color yellow. *P

< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Additional file 9: Fig. S9. Short Chain Fatty Acids (SCFA). Cecal levels

of (A) acetate; (B) butyrate, (C) propionate and total SCFA (umoles/g wet

wt) E. valerate and Branched-chain Fatty Acids (BCFA) Isobutyrate and Iso-

valerate of SubA (magenta) and SubB (yellow) by diet. Wilcoxon test

comparison *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Additional file 10: Fig. S10. Dendrogram of serum metabolites from

transplanted mice. Clustering dendrograms of 712 serum metabolites

with dissimilarity based on topological overlap, together with assigned

module colors. There are 9 modules that cluster different numbers of

metabolites.

Additional file 11: Fig. S11. Correlations between Short Chain Fatty

Acids and blood metabolites. Correlation matrix between metabolites

consensus modules and cecal SCFAs from mice described in Fig. 1.

Modules were determined based on patterns of co-abundance of metab-

olites using weighted correlation network analysis (WGCNA). Each of the

modules was labelled with a unique color as an identifier. Each module

was tested for correlation with each cecal SCFA quantified. Within each

cell, upper values are correlation coefficients between module and the

phenotypes; lower values are the corresponding FDR adjusted-P values. B.

Pathways enriched in the yellow, blue and turquoise modules as deter-

mined by Fisher’s test.

Additional file 12: Fig. S12. Branched-Chain Fatty Acids and taxa cor-

relation. The heatmap shows all correlations (P < 0.05) using Spearman

method between BCFA and taxa in each dietary intervention.

Additional file 13: Fig. S13. Gut community-mediated epigenetic

changes in liver are sensitive to dietary fiber. Abundance of histone Post-

Translational Modifications (PTMs) on H3 lysines (K9, K14, K27, and K36).

A. H3K9K14 peptide. B. H3K27K36 peptide (n = 4/community/diet). *P <

0.05, **P < 0.01; ac, acetylated; unmod, unmodified; meth1,2,3, mono- di-

and try- methylated respectively; pr, propionylated.

Additional file 14: Fig. S14. Effect of gut community on liver histone

post-translational modifications (PTMs). Heatmap show relative difference

in abundance for each histone PTM quantified in liver for mice colonized

with the two communities (Log2 fold-change of SubB/SubA) in each diet.

*P < 0.1, **P < 0.01, ***P < 0.001 (n = 3-4/condition). ac, acetylated;
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unmod, unmodified; meth1,2,3, mono- di- and try- methylated respect-

ively; pr, propionylated.

Additional file 15: Fig. S15. Dendrogram of liver transcripts from

transplanted mice. Clustering dendrograms of genes with dissimilarity

based on topological overlap, together with assigned module colors.

There are 14 modules that cluster different numbers of transcripts.

Additional file 16: Fig. S16. Gene Ontology and KEGG pathway

enrichment of transcripts in the blue module associated with metabolic

phenotypes. A. Biological Process GO and KEGG enrichment of blue

module associated with adiposity, B. Association with liver triglycerides. C.

Association with glucose. Gene counts and FDR adjusted-P values are

indicated for each enrichment box.

Additional file 17: Table S1. Diets used in the study.

Additional file 18: Table S2. Statistical analysis of metabolic

phenotypes in transplanted mice.

Additional file 19: Table S3. Relative abundance of bacterial ASVs

detected in mice. 16S rRNA gene sequence analysis of cecal samples

from gnotobiotic mice colonized with SubA or SubB communities

consuming one of four diets containing different types of fiber; (i)

Cellulose; (ii) Inulin; (iii) Pectin; or (iv) Assorted fiber for four weeks.

Additional file 20: Table S4. Relative abundance of bacterial genera

detected in mice. 16S rRNA gene sequence analysis of cecal samples

from gnotobiotic mice colonized with SubA or SubB communities

consuming one of four diets containing different type of fiber; (i)

Cellulose; (ii) Inulin; (iii) Pectin; or (iv) Assorted fiber for four weeks. Taxa

summarized at the genus level.

Additional file 21: Table S5. Mediation analysis results. For each

dietary fiber intervention associated phenotype a mediator type was

evaluated.

Additional file 22: Table S6. List of serum metabolites measured in

transplanted mice. Fold-change (FC) between SubB and SubA is indicated

as follow: darker green indicates FC < 1 with P ≤ 0.05, lighter green indi-

cates FC < 1 with 0.05 < P < 0.1, darker read indicates FC ≥ 1 with P ≤

0.05, and lighter red indicates FC ≥ 1 with 0.05 < P < 0.1. Two-Way

ANOVA main effects: Community, diet, and their interaction are indicated

in blue shaded cells when significant (P ≤ 0.05) ANOVA effect; light blue

shaded cells indicate 0.05 < P < 0.10.

Additional file 23: Table S7. Weighted Correlation Network Analysis

assignment of serum metabolites into modules. Abbreviations: MS,

Metabolite Significance; p.MS., P-value of Metabolite Significance; MM,

module membership; p.MM P-value of the module membership.

Additional file 24: Table S8. Serum metabolites contained in the blue

and turquoise modules. Metabolites (biochemicals) are organized by

pathways. Fold-change between SubB and SubA is indicated for the four

diets as follow: darker green indicates FC < 1 with P ≤ 0.05, lighter green

indicates FC < 1 with 0.05 < P < 0.1, darker read indicates FC ≥ 1 with P

≤ 0.05, and lighter red indicates FC ≥ 1 with 0.05 < P < 0.1. The last two

columns show metabolite significance (MS) which reports the association

of each metabolite with each phenotype and the corresponding P-value

(p.MS).

Additional file 25: Table S9. Liver gene expression analysis. List of

genes differentially expressed in the liver from mice colonized with SubB

vs. SubA communities. (LogFC > 1 and < -1, P and FDR adjusted-P <

0.05).

Additional file 26: Table S10. Analysis of differentially expressed genes

in liver. Number of differentially regulated genes contained in each listed

KEGG pathway and Gene Ontology Term.

Additional file 27: Table S11. Weighted Correlation Network Analysis

assignment of liver transcripts. Abbreviations: GS, Gene Significance;

p.MS., P-value of Gene Significance; MM, module membership; p.MM for

the P-value of the module membership.

Additional file 28: Table S12. List of liver transcripts associated with

bacterial taxa. bcv.prob denotes the probability of specific taxa being

selected in log-contrast model based on 100 bootstrap samples; stab.-

prob denotes the probability of specific taxa being selected in log-

contrast model based on 100 subsamples of half sample size. refitted.coef

denotes the coefficient estimation in the log-contrast model based on se-

lected taxa listed in this table.

Additional file 29. Supplemental results. Effects of microbiota-fiber

interactions on liver histone posttranslational modifications.
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