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Abstract

Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of
morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut
microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although
correlations have been shown between CAD and the gut microbiota, demonstration of potential causal
relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect
causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the
immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel
microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to
shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and
incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision
preventative and therapeutic strategies for CAD.

Key points

� The causal relationship between gut microbiota and

CAD development has yet to be confirmed.

� It is imperative to understand the potential direct

and indirect causal roots between gut microbiota

and CAD development via microbial metabolites

and interaction with the immune system.

� Dynamic elements including our diet and

demographic factors such as age, sex, and ethnicity

can also affect our gut microbiota and CAD

development and complicate this matter.

� Interdisciplinary approaches are required to shed

light on the factors involved in the modulation of

gut microbiota and its association with CAD

development.

� Elucidating the system-level multifaceted web of fac-

tors involved in microbiome-mediated mechanisms

and human health and disease can guide novel pre-

ventative and therapeutic interventions for CAD.

Introduction
High serum cholesterol (hypercholesterolemia) is a well-

documented risk factor for the most prevalent form of

cardiovascular disease (CVD) known as coronary artery

disease (CAD) [1–3], which is one of the leading causes

of morbidity and mortality worldwide [4, 5]. Other

established risk factors for CVD include hypertension,

diabetes mellitus, obesity, and a sedentary lifestyle [6].

The buildup of cholesterol-containing deposits (plaque)

inside the artery walls can lead to atherosclerosis [7],

which is expected to cause 12 million coronary deaths

annually by 2030 [8]. Hypercholesterolemia can have a

genetic origin [9, 10] and affect bodily functions that are

mainly responsible for cholesterol homeostasis in the

body, including de novo synthesis, catabolism in the liver

and secretion into bile, and intestinal absorption [11].
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Cholesterol in the body originates from two sources

and is synthesized de novo in the liver or can enter our

body via our diet and cholesterol-rich foods. About one

fourth of the cholesterol in the body comes from dietary

intake (exogenous) and the rest is synthesized de novo

(endogenous) via the mevalonate pathway [12, 13]. The

cholesterol synthesized within the body is classified as

either high-density lipoproteins (HDL) cholesterol or

low-density lipoproteins (LDL) cholesterol, the latter of

which can enter the circulatory system and becomes a

key marker of CAD [14]. By contrast, HDL cholesterol is

inversely associated with CAD [15] and has anti-

atherogenic functions by exerting anti-inflammatory and

anti-oxidative effects and promoting reverse cholesterol

transport (RCT), which can eliminate LDL cholesterol

[16]. However, HDL may lose its anti-atherogenic prop-

erties and becomes pro-atherogenic (dysfunctional)

under conditions such as inflammation, diabetes, and

oxidative stress [16]. Moreover, elevated LDL cholesterol

is a risk factor for CAD [17], which may be due to the

uptake of LDL cholesterol particles by macrophages that

leads to foam cells and atherosclerosis [18].

The gut lumen plays an eminent role in controlling

the body’s cholesterol balance and is responsible for ex-

ogenous intake via cholesterol absorption [19]. Luminal

cholesterol can come from different sources and is

mainly derived from (i) our diet, (ii) bile via the hepato-

biliary pathway [20], and (iii) de novo cholesterol via the

transintestinal cholesterol efflux (TICE) pathway [21, 22]

(Fig. 1a). In the liver, cholesterol is metabolized into bile

acid and is secreted into bile via the hepatobiliary path-

way where the ATP-binding cassette transporter, G5/

ATP-binding-cassette transporter G8 (ABCG5/G8),

plays a key role in cholesterol efflux from hepatocytes

into bile [23]. TICE is an alternative route to the

hepatobiliary pathway, where cholesterol from the blood

can directly enter enterocytes through LDL receptors

(LDL-R) and is effluxed by ABCG5/G8 and the ATP-

binding cassette transporter B1 (ABCB1a/b) into the

lumen [22]. The cholesterol content of the lumen is then

either absorbed into enterocytes via Niemann-Pick C1-

like 1 (NPC1L1) and incorporated into chylomicrons for

entry into the circulatory system [19], or is reduced by

gut microbiota to poorly absorbable coprostanol (5B-

Cholestan-3B-ol) [24–26], which is mostly excreted.

Aside from the complex interplay of numerous choles-

terol sources in the body, many other factors can affect

cholesterol balance and CAD development including our

gut microbiota. To date, associations between an altered gut

microbiome composition and metabolic disorders such as

obesity, diabetes mellitus, and CVD (independent of age,

sex, and host genetics) [27, 28], including atherosclerosis,

dyslipidemia, hypertension, and heart failure have been sug-

gested [29–31]. Such links can be through direct (via me-

tabolites) and indirect pathways (via the immune system)

[27, 32]. The adult human gastrointestinal tract harbors 100

trillion bacteria belonging to at least several hundred species

[33]. The gut microbiota plays multiple critical roles in the

maintenance of their host health, including helping host nu-

trition and energy harvest, intestinal epithelial homeostasi

s[34, 35], drug metabolism and toxicity [36], immune sys-

tem response [37], and protection from pathogens [38].

These microorganisms can also generate microbial products

such as uremic toxins [39], bile acids [40], trimethylamine-

N-oxide (TMAO) [41], short chain fatty acids (SCFA) [42],

lipopolysaccharides (LPS) [43], nitric oxide [44], vitamin K

[45], vitamin B complex [46], gut hormones [47], and neu-

rotransmitters [48], which can alter host metabolism and

affect bodily functions in health and disease states. Suscepti-

bility to atherosclerosis, for example, has been demonstrated

Fig. 1 Cholesterol, gut microbiota, and CAD. a Exogenous and endogenous sources of luminal cholesterol. b The multifaceted mechanisms
involved in CAD development. The gut microbiota can directly (via metabolites) and indirectly (via the immune system) lead to CAD
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to be transferable by microbiota transplantation in murine

models [49]. To date, many infectious agents have been

linked to atherosclerosis including Helicobacter pylori,

Cytomegalovirus, Hepatitis C virus, Chlamydia pneumoniae,

and Porphyromonas gingivalis [50]. Interestingly, a study by

Mitra et al. showed that microbiota displayed differences

between symptomatic and asymptomatic atherosclerotic

plaques, with asymptomatic plaques having an increased

abundance of host microbiome associated families including

Porphyromonadaceae, Bacteroidaceae, Micrococcacaea, and

Streptococcacaea [51]. In contrast, symptomatic atheroscler-

otic plaques contained an increased abundance of patho-

genic microbiome families including Helicobacteracaea,

Neisseriaceae, and Thiotrichacaea [51]. Moreover, gut

microbiota dysbiosis as a result of the disruption to the

overall state of gut microbiota has been associated with in-

creased inflammation, which is linked with the development

of atherosclerosis [52]. Recently, alterations in the gut

microbiota and its metabolites have also been associated

with hypertension and vascular dysfunction [53, 54]. Heart

failure has also been associated with specific gut microbial

species such as increased Escherichia coli, Klebsiella

penumoniae, and Streptococcus viridans [55]. One study has

shown that patients with symptomatic stroke and transient

ischemic attack have an altered gut microbiota with in-

creased opportunistic pathogens including Enterobacter,

Megasphaera, Oscillibacter, and Desulfovibrio [56]. Further-

more, the gut microbiota have the capacity to contribute to

substantial variation in blood lipid composition [57], which

can affect CAD development. For example, Firmicutes such

as Lactobacillus reuteri are associated with higher HDL

[58], whereas the genus Eggerthella is associated with de-

creased HDL cholesterol [57].

Currently, the causal relationship between the gut

microbiome and CAD development remains unclear

since many other demographic factors such as age, sex,

and ethnicity can not only affect gut microbiota and

cholesterol levels but also our diet, which is another

component affecting our gut microbiota and whole body

cholesterol levels. Thus, cholesterol regulation in the

body is a complex mechanism with factors that are

intertwined in a multifaceted system (Fig. 1b). Therefore,

further studies are needed to understand the underlying

mechanisms and identify which microbial strains or their

metabolites are responsible for CAD development. This

review will discuss the dynamic elements involved with

the gut microbiota and their effects on hypercholesterol-

emia and CAD development via direct and indirect

pathways. In addition, we will address the current chal-

lenges to prove causality, discuss the gaps in knowledge,

and propose the potential role of nanotechnology in

uncovering the underlying mechanisms involved in CAD

development and as well as a microbiome-targeted

therapeutic tool.

Effects of gut microbiota on CAD
Direct effect

Gut microbiota can directly affect hypercholesterolemia

and CAD development via metabolite production such

as bile acids, coprostanol, short chain fatty acids, and tri-

methylamine-N-oxide production.

Bile acid modulation

The gut microbiota can affect the regulation of cholesterol

metabolism in the liver [40, 59] and play a role in altering

bile acids that can influence systemic cholesterol levels [60]

(Fig. 2). Bile acids, formed by the rate-limiting enzyme chol-

esterol 7-alpha-hydroxylase (CYP7A1) [61], are the main me-

tabolites of cholesterol in the liver that help in the

absorption of fats, nutrients, and lipophilic vitamins [62] and

also the regulation of lipids, glucose, and energy metabolism

[63, 64]. Primary bile acids are conjugated to amino acids

taurine or glycine to form bile salts that are secreted into bile

and stored in the gallbladder until they are released into the

small intestine where they emulsify fats and forms micelles

which are absorbed into enterocytes [62]. In the gut, the pri-

mary bile acids such as cholic acid (CA) and chenodeoxy-

cholic acid (CDCA) become deconjugated by the gut

microbiota and bile salt hydrolase (BSH) to form secondary

bile acids, including deoxycholic acid (DCA), lithocholic acid

(LCA), and ursodeoxycholic acid (UDCA) [62, 65]. All conju-

gated and unconjugated bile acids in the lumen can be reab-

sorbed (95%) and transported back to the liver, except for

UDCA and LCA, which are mostly excreted in feces [61].

Signaling molecules such as bile acids in the gut can also ac-

tivate nuclear receptor farnesoid X receptor (FXR) and the

membrane G protein-coupled bile acid receptor Gpbar-1

(aka TGR5) [62]. Through this mechanism, bile acids can

downregulate bile acid synthesis [66], which can lead to in-

creased cholesterol levels. The order in which bile acids can

activate FXR are CDCA>DCA>LCA>CA [67]. FXR can in-

duce fibroblast growth factor 19 (FGF19), which activates

fibroblast growth factor receptor 4 (FGFR4) and suppresses

CYP7A1 to downregulate bile acid synthesis [68]. FXR can

also reduce bile acid uptake into hepatocytes and increase

biliary secretion of bile acid by increasing the expression of

ATP-binding cassette subfamily B member 11 (ABCB11)

[66, 69]. Primary and secondary bile acid ratios may be im-

plicated in hypercholesterolemia and CAD development. For

example, in a study by Myerhofer et al. [70], the plasma pri-

mary bile acids were reduced, and the ratio of secondary to

primary bile acids was higher in heart failure patients [70].

Bile acids can also play a role in cardiovascular function by

reducing heart rate through regulating channel conductance

and calcium dynamics in sin-atrial and ventricular cardio-

myocytes and regulating vascular tone [70]. In addition, we

propose that the gut microbiota modulating bile acid ratios,

if unbalanced and in an unhealthy state, could lead to re-

duced secondary bile acids, which can increase primary bile
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acids such as CDCA, activate FXR, downregulate bile acid

production, and thus increase cholesterol and CAD develop-

ment. Thus, the gut microbiota and the underlying mecha-

nisms involved need to be further investigated.

Coprostanol production

Certain gut microbiota have long been known to possess the

ability to convert absorbable cholesterol to coprostanol, a re-

duced non-absorbable sterol, which is excreted in feces [71–

73]. Coprostanol production in humans starts during the sec-

ond half of the first year of life [26] and is sex-dependent, with

young women being high converters compared to young

males [74]. Furthermore, currently, the rate of microbial

cholesterol-to-coprostanol conversion in human populations

is believed to be bimodal, with high converters showing al-

most complete cholesterol conversion and low converters with

coprostanol representing less than one third of the fecal neu-

tral sterols content [75, 76]. To date, isolated cholesterol-

reducing strains have been limited to the genera of Eubacter-

ium (E. coprostanoligenes) and Bacteroides (Bacteroides sp.

strain D8) [77, 78], but many remain to be uncovered. Using

animal models, the oral administration of E. coprostanoligenes

resulted in a significant decrease of plasma cholesterol concen-

tration in dietary-induced hypercholesterolemic rabbits that

lasted for at least 34 days after the last bacterial feeding [79].

For human models, there have been many studies on choles-

terol metabolism in the gut [25, 26, 75, 77, 80], and an inverse

relationship between the human serum cholesterol and

coprostanol/cholesterol ratio in the human feces has been sug-

gested [77, 81, 82]. However, these studies employed very

small sample sizes with a limited variation of sample popula-

tions lacking diverse demographic backgrounds and included

unsuccessful attempts to isolate specific microbial strains re-

sponsible for the coprostanol/cholesterol conversion. In

addition, the genes or enzymes involved in the cholesterol

conversion to coprostanol in the gut remain unknown [83].

Short chain fatty acid production

SCFAs are a microbial-derived metabolite that are formed

due to the fermentation of complex carbohydrates [42, 84]

Fig. 2 Multifaceted mechanisms affecting CAD. Exogenous and endogenous sources of luminal cholesterol and diet, and the gut microbiota
mechanisms involved in affecting the immune system and CAD development
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(Fig. 2) affecting a range of host processes such as host-

microbe signalling, energy utilization, and control of co-

lonic pH with consequent effects on the microbiota com-

position and gut motility [85]. The most abundant SCFAs

are acetate, propionate, and butyrate [84]. Bacteroidetes

phylum members can yield acetate and butyrate, whereas

Firmicutes phylum can lead to butyrate [86]. SCFAs are also

positively correlated with Alistipes putredinis, Bacteroides

spp., Roseburia, Eubacterium rectale, and Faecal prausnitzii

[87]. Furthermore, they play an integral part in maintaining

the intestinal barrier integrity by regulating the expression of

tight junction proteins [88]. SCFAs can also lower serum

lipid levels by blocking cholesterol synthesis and/or redirect

them to the liver [89]; therefore, they have been suggested as

a protective element in CAD development. SCFA-producing

bacteria have also been reduced in certain CAD cases [29,

30] as well as in gut dysbiosis of patients with hypertension

[30, 90] via activation of G protein-coupled receptors 41

(GPR41) [91]. Thus, their role in the body and their targets

require further investigation.

Trimethylamine-N-oxide production

Dietary choline, betaine, phosphatidylcholine, lecithin,

and L-carnitine [92–94] are involved in the production

of TMAO, a risk factor for CAD development [40, 93]

(Fig. 2) that come from many sources, including red

meat, egg, fish, brassica vegetables, peanuts, and soybean

[95]. Specifically, increased TMAO levels have been as-

sociated with an increased risk of death and non-fatal

myocardial infarction or stroke [96]. The gut microbiota

also play a role in TMAO production via (a) choline

production and (b) the intermediate molecule trimethy-

lamine (TMA) production. Only recently has the gut

microbiota’s ability to produce choline via phospholipase

D (PLD) enzyme been found [97]. The microbiome-

derived TMA molecule can pass into host circulation

and travel to hepatocytes, where it is metabolized to

TMAO [94] by flavin containing monooxygenase (FMO)

enzyme encoded by the FMO gene in the liver, kidney,

and other tissues [98]. High TMAO production can con-

sequently affect lipids [41] and lead to a 43% higher

CAD risk due to the reduction of RCT and alteration in

bile acid transport, composition, and pool size [92, 93,

99]. TMAO is also associated with C-reactive protein

(CRP) and endothelial dysfunction in the setting of in-

creased gut permeability and is related to increased

serum levels of LPS endotoxin [100]. In addition, it can

also lead to calcium release and platelet hyperreactivity

[101], which can affect CAD development.

The gut microbiota can heavily influence TMAO pro-

duction. Healthy individuals have high TMAO produ-

cing microbes and a ratio of 2:1 for Firmicutes to

Bacteroidetes [102]. TMA production has been found in

102 genomes covering 36 species, and TMA producers

include Firmicutes, Proteobacteria, Actinobacteria, and

absent in Bacteroidetes [95]. Firmicutes including Anaero-

coccus, Clostridium, Desulfitobacterium, Enterococcus,

Streptococcus, and Proteobacteria including Dseulfovibrio,

Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas,

Actinobacter, and Citrobacter have been associated with

TMA production [100]. One study found that 8 species from

Firmicutes and Proteobacteria consumed > 60% of choline

for TMA production: Anaerococcus hydrogenalis, Clostrid-

ium asparagiforme, C. hathawayi, C. sporogenes, Escherichia

fergusonii, Proteus penneri, Providencia rettgeri, and Edward-

siella tarda [103]. Other gut microbiota associated with

higher TMAO production include Akkermansia, Sporobac-

ter, Prevotella [95], and Ruminococcus gnavus [104], which

are associated with atherosclerotic CAD. Thus, metabolites

including choline, TMA, and betaine can aid in predicting

CAD development. For example, probiotics or pharmaco-

logical intervention can be utilized in order to inhibit or

block specific microbial metabolic pathways to reduce

TMAO producing microbes [105].

Indirect effect

Gut microbiota can also lead to CAD development via an in-

direct pathway such as the manipulation of our immune sys-

tem (Fig. 2). Atherosclerosis is a chronic inflammatory

disease [7] triggered by atherothrombosis in which (a) super-

ficial erosion may lead to clot formation [106] or (b) ruptur-

ing of plaques damaged by cytokines, which can lead to

exposed coagulation systems resulting in inhibited blood

flow and inducing CAD [107]. Thus, macrophages and in-

nate immunity triggered by inflammation are implicated in

CAD [108]. For example, a high white blood cell (WBC)

count has recently been deemed a risk factor for CAD devel-

opment [109]. In addition, a study by Wang et al. identified

the IL-22 pathway as a novel target for therapeutic interven-

tion in metabolic diseases, since IL-22 can improve insulin

sensitivity, preserve gut mucosal barrier and endocrine func-

tions, decrease endotoxaemia and chronic inflammation, and

regulate lipid metabolism in liver and adipose tissues [110–

112]. In our body, oxidized LDL (oxLDL) can also exert pro-

atherogenic and pro-inflammatory effects by activating endo-

thelial cells, macrophages, and T cells [109, 113]. Macrophages

can engulf oxLDL and lead to inflammatory cytokines such as

tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-

1β), IL-6, IL-18, IL-37, and foam cells, which can exacerbate

CAD [109, 113, 114]. TNF-α has also been implicated in risk

factors of CAD including diabetes by activating protein kinase

C (PKC), which can increase the phosphorylation of insulin

receptor substrates resulting in their inactivation [115]. T cells

can also lead to pro-inflammatory cytokines IL-2, IL-12, and

interferon gamma (IFN-γ) [116], which are associated with ar-

terial stiffness [117]. Together, foam cells, T cells, and macro-

phages can lead to fatty streaks and consequently contribute

to CAD development [19].

Kazemian et al. Microbiome            (2020) 8:36 Page 5 of 17



The community structure of our gut microbiota can

greatly influence our immune system. For example, a

low gene count (LGC) of gut microbiota has been corre-

lated with high WBC counts [118], which as previously

stated is a risk factor for CAD. Among our gut micro-

biota, the presence of Lactobacillus reuteri has been spe-

cifically associated with high WBC count [119].

Individuals with LGC suffer from metabolic disturbances

resulting in dyslipoproteinemia and pro-inflammatory

status, which can lead to CAD [120]. An LGC is also as-

sociated with a high CRP level [118] with low Oscillibac-

ter, Faecalibacterium, and Ruminococcus correlating with

high CRP levels [121, 122]. The expression of pattern rec-

ognition receptors (PRRs) like TLRs in the intestine is also

modulated by gut bacteria that help the host navigate be-

tween pathogens through pathogen-associated molecular

patterns (PAMPs) and commensal bacteria, as well as the

activation of immune sensory cells [123, 124]. Further-

more, our microflora can affect regulatory T (Treg) cells,

and their reduction can exacerbate infection outcomes

[125] and heighten the risk of autoimmune diseases [126],

allergies [127], and cancers [128]. Prevotella, for example,

can mediate inflammatory response via toll-like receptor 2

(TLR2) activation, which can lead to inflammation and T-

helper cell 17 (Th17) immune response [120]. The disease

progression of myocarditis (an inflammatory heart dis-

ease) into lethal cardiomyopathy can depend on cardiac

myosin specific Th17 cells imprinted in the intestine by b-

galactosidase mimic peptides in commensal Bacteroides

thetaiotaomicron and B. faecis, which can promote inflam-

matory cardiomyopathy [129]. Clostridium cluster IV en-

hances Treg cell abundance and leads to the production

of anti-inflammatory molecules [130]. Thus, TLR2 is im-

plicated in CAD pathogenesis [131]. NOD/CARD, another

class of PRRs, can recognize stress responses and activate

inflammation caspase by activation of inflammatory cyto-

kines and/or activating immune system transcription fac-

tor NF-κB to result in the production of inflammatory

molecules [123]. A leaky gut can also result in the trans-

location of gut microbiota-derived components such as

PAMPs, including LPS [43], which can lead to the produc-

tion of pro-inflammatory cytokines [132]. Thus, assess-

ment of the gut microbiota can function as a potential

diagnostic marker so that a pro-inflammatory state can be

detected early to predict the risk of CAD development.

Gut microbiome metabolites such as SCFA can also

affect the immune system, exerting an anti-inflammatory

impact [133] through the activation of G protein-

coupled receptors 41 (GPR41), 43 (GPR43), and 109A

(GPR109A) [134] via induction of Treg cells controlled

by the forkhead box P3 (Foxp3) promoter [135]. In

addition, they can produce anti-inflammatory gut hor-

mones such as glucagon-like peptide 1 (GLP-1) [136].

Although SCFAs have many positive effects, their

production can also shift the bacterial balance and lead

to inflammation through activating the toll-like receptor

4 (TLR4) [137]. Therefore, their role in the immune sys-

tem needs to be further investigated. The gut

microbiome-derived TMAO can also affect our immune

system by activating TXNIP-NLRP3 inflammasomes

[138], leading to the expression of inflammatory markers

such as TNF-α, IL-6 [100, 139], IL-18, and IL-1B [138]

that can boost plaque development in arteries by gener-

ating cholesterol-packed foamy macrophages, ultimately

resulting in CAD [140] (Fig. 2). TMAO can also boost

PKC/NF-κB activation, elevating the expression of vas-

cular cell adhesion molecule 1 (VCAM-1) and monocyte

adhesion [141]. Aside from influencing HDL cholesterol

and anti-inflammatory properties [16], the gut micro-

biota and their associated metabolites can also affect the

immune system through a non-inflammatory induced

pathway. Primary (deconjugated by gut microbiota) and

secondary bile acids, for example, can inhibit NF-κb-

dependent transcription of pro-inflammatory cytokines

via FXR and TGR5 receptors [120]. The activation of

TGR5 can also protect against LPS-induced inflamma-

tion [142] and atherosclerosis [143]. In addition, certain

cytokines such as IL-10 can have a positive effect such

as by decreasing serum cholesterol and atherosclerotic

plaques in mice [144] through the increased uptake and

efflux of acetylated and oxLDL from atherosclerotic le-

sions via the induction of RCT [145]. This cytokine can

also lower total cholesterol by enhancing liver resident

Kupffer cells’ phagocytosis. These cells represent 80–

90% of macrophages in the body [146] and may be novel

targets for therapeutics. Dissecting complex interactions

between immune and metabolic systems will provide in-

sights into the biology underlying CAD and how current

and future therapies might influence metabolism.

Diet affecting the whole system

As previously discussed, one fourth of our bodily choles-

terol comes from dietary intake [12, 13]. This has led to

a growing debate on whether dietary cholesterol can

affect CAD development. Our diet can complicate mat-

ters by affecting cholesterol modulation and CAD devel-

opment directly via consuming cholesterol-rich foods

and indirectly via modifying the gut microbiota and their

community structure, bile acid production, coprostanol

production, SCFA production, and TMAO production.

For example, beneficial modifications of gut microbiota

caused by the Mediterranean diet have been shown to

ameliorate obesity, inflammation, CAD, and other re-

lated metabolic alterations [147, 148]. This diet puts

greater emphasis on fruits, vegetables, and legumes and

has been associated with increased SCFA levels [149]. In

addition, diet can affect the immune system by shifting

inflammatory responses that are linked with cholesterol
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modulation and CAD development (Fig. 3). A study by

Wilck et al. showed that high salt intake affects the gut

microbiome, particularly by depleting Lactobacillus mur-

inus and increasing Th17 cells and hypertension [150].

Supplementation with L. murinus blunted Th17 activa-

tion and ameliorated hypertension [150]. In addition,

Westernized diet composed of high unsaturated fat can

lead to increased Bacteroidetes and decreased Firmicutes

and Bilophila wadsworthia (sulfite reducing microorgan-

isms), compared to a diet composed of high saturated

fat that can lead to increased LDL cholesterol [151] and

B. wadsworthia, which is associated with dyslipidemia

and increased inflammation [87, 152, 153]. High protein

and high fat diets have also been associated with in-

creased Ruminococcus [154] and decreased Bacteroi-

detes, Clostridium coccoides, Bifidiobacterium, E. rectale,

Akkermansia municiphila [155–157], and increased bile

acid concentration in feces, including DCA concentra-

tions, which can cause liver cancer [155]. In addition,

these diets can activate TLR4 that are associated with in-

flammatory responses such as pro-inflammatory cyto-

kines, Th1, CD4, and T cells, leading to the

downregulation of Treg cells [158, 159]. During a high

fat diet-induced diabetes, bacteria from the intestine are

translocated towards tissues and the blood, which de-

pends on CD14 and NOD1 [160]. However, this

bacteremia can be reversed via a probiotic (Bifidobacter-

ium animalis), which can reduce the adherence and

translocation of bacteria as well as adipose tissue and in-

flammation occurring during diabetes [160]. In another

study, probiotic administration of Lactobacillus casei re-

duced bacterial translocation and altered the gut micro-

biota by increasing Clostridium coccoides, C. leptum, and

total Lactobacillus [161]. TMAO and SCFA production

can also vary, with omnivores producing more TMAO

compared to vegans [92], and high fiber diets leading to

higher SCFAs [152, 162] and increased gut bacterial di-

versity [162]. The notion of diet influencing cholesterol

in the body is a continuing debate that requires further

research. Although many studies have indicated a direct

relationship between high dietary cholesterol and CAD,

other studies suggest that the clinical effect of choles-

terol in diet may be minor or negligible in disease devel-

opment [151, 163–165]. This debate is likely due to our

lack of understanding of the bodily system mechanisms

involved in managing cholesterol levels and as well as

the normal gut microbiota that vary among individuals

and based on demographic and environmental factors.

Our diet can also have anti-inflammatory effects

through omega-2 (n-3) polyunsaturated fats that interact

with the transcription factor NF-κB and PPAR-Y, down-

regulate pro-inflammatory genes, and inhibit TLR4 acti-

vation, creating an anti-inflammatory response [166,

167]. Anthocyanin in our diet (e.g., blueberries), for ex-

ample, is an antioxidant that can affect the gut micro-

biota by increasing their diversity, which may reduce

inflammatory responses [168]. Pre- and pro-biotics have

also been thoroughly investigated and shown to improve

the gut environment by intestinal barrier enhancement,

regulation of immune functions, and the prevention of

pathogenic infections [169]. They have been associated

with decreased inflammation [170] and increased SCFA,

Bacteroidetes, Bifidiobacterium, and decreased Firmi-

cutes [171]. Orally administered probiotics can even re-

duce cholesterol by 22–33% due to BSH activity [172].

For example, probiotics Lactobacilli and Bifidobacteria

can deconjugate bile acid and increase excretion by (a)

increasing demand of cholesterol for de novo synthesis

of bile acid or by (b) reducing cholesterol solubility and

decreasing its absorption [65]. Although pre- and pro-

biotic usage is increasing in popularity, questions remain

with respect to specific immune and physiological effects

they may have on health and disease and thus further

studies are needed.

Microbiota, demographic factors, and CAD

In the era of precision medicine, a key challenge is to

bridge the gap in our knowledge about interactions

among demographic factors, the gut microbial compos-

ition, and the pathophysiology of the cardiovascular sys-

tem [173, 174]. Beyond environmental and social

differences between men and women (e.g., occupational

hazards, lifestyle, social stresses, and access to health-

care) that can contribute to gender differences in disease

development, sex chromosomes, and sex hormones can

also contribute to sex- and gender-related differences in

CAD [173, 175]. More specifically, sex differences in

lipid and lipoprotein metabolism have been shown re-

cently [176, 177], as well as sex-specific considerations

for the treatment of dyslipidemia [176]. Although CAD

is considered a “men’s disease,” a growing body of evi-

dence is also revealing the importance of CADs in

women and increasing the awareness of sex- and

Fig. 3 Microbiota, diet, and CAD. Diet directly and indirectly affects
cholesterol levels and CAD development via the consumption of
cholesterol-rich foods, can affect on the immune system, and lead
to the modulation of gut microbiota and their metabolites such as
bile acids, coprostanol, SCFA, and TMAO
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gender-related differences in the occurrence, diagnosis,

management, and outcomes of CADs [178, 179].

Women, for example, are more prone to this disease in

later stages of their life [173]. This may be due to

changes in hormones and menopause, which can affect

cholesterol rates with the cessation of estrogen produc-

tion, shifting lipoproteins toward LDL and away from

HDL cholesterol in women [180]. Sex-differences are

also associated with the overall gut microbiota structure

[181, 182], which as previously discussed is associated

with CAD development. For example, in a study by

Takagi et al., significant increases in genera Prevotella,

Megamonas, Fusobacterium, Megasphaera, Bifidiobacter-

ium, Ruminococcus, and Akkermansia were found in

males and females, respectively [182]. However, males

and females did not differ significantly in their microbial

diversity [182]. Studies based on sex- and gender-related

differences in gut microbial composition and CAD de-

velopment are still rare and need to be expanded in

number and depth [178].

Ethnicity differences, though often overlooked in stud-

ies, are known to affect hypercholesterolemia and CAD

development. Ethnicity differences can capture biological

variations derived from social, economic, and cultural

differences, human genetic variation, and biogeograph-

ical ancestry divergences, as well as lifestyle and dietary

differences [183]. Risk factors of CAD development in-

cluding smoking, blood pressure, obesity, and cholesterol

can also vary among different ethnicity groups [184,

185], resulting in certain groups having an earlier onset

and worse outcomes of CAD. For example, South Asians

are a high-risk ethnic group and have lower rates of

physical activity [186]. African Americans residing in the

USA also have a higher risk for CAD development, which

may be due to lifestyle, environmental factors, and socio-

economic factors such as lower education, higher poverty,

higher uninsured rates, and decreased access to healthcare

[187, 188]. In addition, African Americans also have a diet

with relatively higher sugar, higher sodium, and lower po-

tassium [187] contents that can lead to higher blood pres-

sure. In addition, ethnicity and dietary differences are

associated with variations in microbial composition and

abundance [181, 189, 190] and even more strongly with

gut microbiota than other factors such as genetics [191],

age, sex, and BMI [183]. For example, comparative studies

of the microbiome in rural and urban areas in healthy in-

dividuals have reported that populations residing in non-

Western and/or rural areas have a higher bacterial diver-

sity when compared with populations in America and

Europe [162, 192]. In another study by Deschasaux et al.,

there was a higher gut microbial diversity observed within

the Dutch population and the smallest diversity in South

Asians, with Ghanaians, Turks, and Africans in the middle

[193]. Increased Firmicutes and decreased Bacteroidetes

were also observed in the Dutch population, while in-

creased Actinobacteria was observed in the South Asian

populations [193]. The interplay between demographic

factors such as sex, age, and ethnicity and their links with

our diet, gut microbial composition, and CAD develop-

ment illustrate the complexity of our bodily factors in-

volved in health and disease states. Therefore, greater

research efforts are required to understand these factors

involved in gut microbial changes and CAD development.

Cholesterol in the body can also be affected by the

natural aging process, which is an uncontrollable risk

factor that can lead to the dysregulation of whole-body

cholesterol metabolism (Fig. 4) [194]. By 2030, 1 billion

individuals are projected to be over 65 years old [195].

Generally, the aging process is associated with progres-

sive deterioration in the structure and function of the

heart, as well as the vasculature that can contribute to

CAD development [196]. In addition, through the aging

process, LDL cholesterol levels can increase, and HDL

cholesterol levels can decrease [197], which can lead to

increased rates of CAD development. Other factors

caused by the aging process include decreasing CYP7A1

enzyme activity (decrease regulation of bile acid synthe-

sis), decreasing hepatic LDL cholesterol receptors (de-

crease LDL cholesterol clearance), and increasing

NPC1L1 (mediator of cholesterol absorption) [198, 199].

Aging also affects the gut microbial community due to

the accumulation of disorders, changes in diet, a de-

crease in exercise and mobility, and the use of certain

medications [121, 200]. However, contradictory findings

have also been found suggesting no significant differ-

ences in the gut microbial structure of participants from

various age groups [182, 201]. Overall, it is safe to

Fig. 4 Microbiota, aging, and CAD. Selected aging-related
mechanisms involved in systemic inflammation and adverse health
outcomes. SCFA short chain fatty acid, WBC white blood cells, HDL
high-density lipoprotein, LDLR low-density lipoprotein receptor,
CYP7A1 cholesterol 7-alpha-hydroxylase1, LDL low-density
lipoprotein, NPC1L1 Niemann-Pick C1-like1, ROS reactive
oxygen species
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conclude that aging is associated with increased gut dys-

biosis and is inversely associated with gut microbial di-

versity [202]. In addition, the abundance of genes

involved in SCFA production also decreases with age

[203]. Aging affects the immune system, with systemic in-

flammation being one of the hallmarks of aging and one

of the causes of increased risk for many age-associated

diseases including CAD, diabetes, and cancers [109]. Fur-

thermore, aging is modulated by a positive feedback loop

in which chronic systemic inflammation in older people is

associated with developing age-related diseases which then

lead to increased inflammatory responses through these

conditions as well [109]. For these reasons, the inclusion

of demographic factors such as age, sex, and ethnicity is a

must for studies in the era of precision.

Microbiota in precision medicine

Currently, many techniques can be utilized in order to

parse out gut microbiome associations with human im-

munology [204], neurology [205], and endocrinology

[206]. Due to such associations and their potential in

precision medicine [207], the human microbiome is be-

ing vastly studied as a therapeutic target using fecal

microbiota transplantation, probiotics, and prebiotics.

Albeit, for the majority of diseases, mechanistic insights

and translational applications are still scarce. The human

microbiome is compositionally and spatiotemporally

very fluid and intra- and inter-individual variations

within the microbiome can affect drug efficacy and side

effect profiles, either via direct biotransformation of

drugs or indirect mechanisms such as microbial interac-

tions with the host immune system. Herein, we discuss

multiple emerging strategies for the precise manipula-

tion of complex microbial communities to improve CVD

treatment outcomes. In the future, we anticipate a posi-

tive shift towards an inclusive view of precision medicine

that encompasses both human and microbial genomes

as well as their combined metabolic activities.

Microbiota and pharmacological therapy

Current modalities to treat hypercholesterolemia and

CAD include pharmaceuticals that can effectively reduce

cholesterol levels and are utilized for the treatment of

hypercholesterolemia and CAD prevention. Hydroxy-

methyl-glutaryl-coenzyme A (HMG-Co A) reductase in-

hibitors, also known as statins [208], can affect the rate-

limiting enzyme in cholesterol synthesis [209] and have

revolutionized the treatment of hypercholesterolemia.

This class of drugs has demonstrated significant abilities

to lower total cholesterol, LDL cholesterol, and triglycer-

ide, and increase HDL cholesterol by 18%, 25%, 11%,

and 5% as shown by various studies [210, 211]. Despite

statin’s efficacy, their effect on non-LDL cholesterol is

limited; therefore, other drugs targeting non-LDL

cholesterol may complement statins in reducing cardio-

vascular risks [208]. Ezetimibe, for example, is another

cholesterol-reducing drug that reduces LDL cholesterol

by decreasing intestinal absorption of dietary and biliary

cholesterol via blocking NPC1L1 [212]. In one random-

ized controlled human trial, ezetimibe (10 mg/day) re-

duced cholesterol absorption by 54% compared with

placebo and reduced total cholesterol and LDL choles-

terol by 15% and 20%, respectively [213]. Although many

pharmacological agents are available to reduce choles-

terol, they are often suboptimal, expensive, and accom-

panied by many unwanted side effects [214]. Statins, for

example, are associated with skeletal muscle, metabolic

and neurological effects, and other possible side effects

[215]. The cessation of statin treatment is also associated

with worse cardiovascular outcomes [216]. Furthermore,

ezetimibe is marked with a compensatory feedback up-

regulation of endogenous cholesterol synthesis in the

liver [164] and can also increase TICE [217], which can

lead to increased serum cholesterol. In addition, the in-

hibition of hepatic NPC1L1 can increase the cholesterol

saturation index in bile and has the potential to lead to

gallstones [218]. Therefore, although these conventional

treatments have improved quality of life and outcomes

for many patients, CAD and hypercholesterolemia re-

main a progressive disease. Another challenge is that the

gut microbiota can directly and indirectly influence drug

response either by interfering with drug pharmacokinet-

ics or pharmacodynamics [219, 220]. For example, sim-

vastatin, rosuvastatin, and atorvastatin (3 commonly

prescribed statin medications) display evidence for

modulation by the gut microbiome [219]. Metabolites

such as bile acids can also influence drug pharmacokin-

etics by competing with drug transport mechanisms

across the gut lumen, or by influencing uptake in the

liver [219]. Further investigation of the molecular mech-

anisms by which the gut microbiome contributes to

CVD and drug response will enable us to improve out-

comes for CVD patients and move toward microbiome-

informed precision medicine.

Microbiota and nanomedicine-based approaches

Nanomedicine is defined by the US National Institute of

Health (NIH) as the application of nanotechnology in

controlling biological systems, treatment, diagnosis, and

monitoring of diseases [221]. This new branch of medi-

cine is a multidisciplinary field of science focused on the

development of diagnostic and therapeutic nano-objects

that, at least in one dimension, lie within the range of

0.1–100 nm [222]. Nanoparticles in nanomedicine have

been employed in unique medical applications, including

the delivery of toxic biomolecules to targeted sites such

as cancerous tissue but not healthy cells, the sensitive

and precise imaging to detect disease at very early stages,

Kazemian et al. Microbiome            (2020) 8:36 Page 9 of 17



and the crossing of difficult barriers (e.g., the blood-

brain barrier) to deliver imaging and therapeutic mole-

cules to specific diseased/damaged tissues [223]. Studies

involving the rational delivery and targeting of pharma-

ceutical, therapeutic, and contrast agents, as well as tis-

sue engineering, are at the forefront of nanomedicine

[224]. For instance, in the field of drug delivery, nano-

carriers have shown the capability to minimize drug deg-

radation, improve drug absorption and diffusion through

the epithelium, modify pharmacokinetic profiles, and en-

hance intracellular penetration and distribution [225].

However, to date, fewer than expected numbers of

therapeutic nano-formulations have been approved by

the US Food and Drug Administration (FDA). Neverthe-

less, the large number of proof-of-concept studies on

nanomaterials, the tremendous investment in the clinical

development of nanotechnology-based platforms, and

continuing efforts in design and preclinical evaluation of

new nanoparticle products together with the recent ef-

forts on debugging nanobiointerfaces [226] all suggest a

flourishing future for the field of nanomedicine [227],

with numerous applications and enormous potential in

each.

Further developments in nanomedicine may also provide

solutions to many unresolved problems in modern medicine

including hypercholesterolemia and CAD (Fig. 5). The study

of the relationship between gut microbiota and disease

pathogenesis has proven a difficult task, particularly in teas-

ing out causation. Nanoparticles in nanomedicine can help

us understand the underlying mechanisms involved in CAD

development. One useful aspect of in vivo application of

nanoparticles is the formation of the biomolecular/protein

corona (i.e., a layer of biomolecules which covers the surface

of nanoparticles upon their interactions with biological fluids

[228–230]). In 2014, we found that the protein corona pro-

files of patients with different diseases were substantially dif-

ferent despite the conventional plasma analysis showing

negligible variations [231]. This effect is referred to as the

“disease-specific protein corona” [232], which has been repli-

cated elsewhere [233–235] and used for early detection of

diseases including neurodegenerative diseases [236]. We re-

cently revealed that the sensitivity, specificity, and prediction

accuracy of disease detection of protein corona are enhanced

by using nanoparticles with different physicochemical prop-

erties (i.e., called a protein corona sensor array technology)

[237]. Another potential approach to better analyze plasma

proteins and get useful information regarding CAD develop-

ment could be magnetic levitation (MagLev). We have re-

cently levitated plasma proteins using superparamagnetic

iron oxide nanoparticles and revealed that the levitated

plasma proteins create ellipsoidal patterns [238]. Using ma-

chine learning and liquid chromatography mass spectroscopy

approaches, we then demonstrated that the patterns of the

levitated plasma proteins contain useful information regard-

ing the health spectrum of plasma donors [239]. This strat-

egy can be very helpful and feasible for monitoring the

interactions between gut microbiota patterns and CAD.

Using advanced data analysis, one can define the protein/bio-

molecular patterns with strong associations to the variations

of gut microbiota profiles and the occurrence and/or pro-

gression of CAD [240]. The knowledge about the role of im-

portant biomolecular variations may provide a valuable

opportunity not only for the early detection of CAD based

on the specific gut microbiota patterns (which in turn affect

Fig. 5 Nanomedicine, microbiota, and CAD. Nanoparticles in nanomedicine have many applications that can aid in the prevention, diagnosis, and
treatment of CAD. The utilization of nanoparticles to understand the underlying bodily mechanisms (i.e., protein corona analysis), drug delivery
(i.e., microbiome- and metabolome-targeted therapies), and scavenging particles (i.e., for LDL cholesterol modulating the immune system) can
lead to a healthier gut microbiome and immune system that result in better overall healthy state clear of CAD development
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plasma biomolecules’ compositions) but also for developing

novel therapeutic approaches based on the manipulation of

gut microbiota using oral nanotechnologies.

Current prospective diagnostic and therapeutic applications

include imaging, tissue engineering, the delivery of conven-

tional drugs, proteins and genetic material, and scavenging of

LDL cholesterol [241–244]. For example, heparin- and

chitosan-conjugated magnetic nanoparticles have shown great

potential in removing LDL cholesterol from blood plasma

[245]. Nanoparticles can also modulate the immune system

and have been used to induce anti-inflammatory effects [246,

247]. Broad-spectrum ROS scavenging nanoparticles, for ex-

ample, have been utilized in mice studies to effectively de-

crease oxidative stress and local and systemic inflammation

[248]. Furthermore, chitosan nanoparticles induce anti-

inflammatory effects by decreasing the permeability of intes-

tinal epithelial monolayer and the secretion of pro-

inflammatory cytokines [247]. In addition, nanoparticle-based

inhibitors of TLR signaling have been used to decrease inflam-

mation and treat inflammatory diseases [249].

Although nanomedicine has shown a considerable and

growing capacity for the diagnosis and treatment of CAD

[250], its application in the modulation of gut microbiota

that can affect CAD development is still under investiga-

tion. Very recently, we proposed several nanotechnology-

based strategies to control gut microbiota composition

[251]. Through modulating the gut microbiota in favor of a

healthy state, we can directly (via metabolites) and indir-

ectly (via the immune system) affect CAD development in

a positive manner (Fig. 4). To that end, nanoparticles can

be utilized to deliver specific gut microbiota associated with

(i) increased HDL, (ii) increased SCFA, (iii) decreased LPS,

and (iv) decreased pro-inflammatory cytokines. Scavenging

nanoparticles can also be optimized for the uptake and re-

moval of (i) LDL cholesterol, (ii) LPS, (iii) pro-inflammatory

cytokines, and (iv) TMAO. These mechanisms have great

potential to aid in the prevention, diagnosis, and treatment

of CAD and can be utilized to replace current pharmaceut-

ical agents that have various negative side effects. However,

challenges in designing safe and efficient nanoparticles for

the prognosis and treatment of CAD still remain. For ex-

ample, targeted species may be shielded by the protein cor-

ona on the surface of nanoparticles [252], which can lead to

mistargeting and reduced efficacy in the treatment of CAD.

Furthermore, the protein corona can affect the drug-release

profile of nanocarriers [253]. Thus, further investigation of

the biological identity of these novel therapeutic platforms

is required in order to diagnose and treat CAD.

Other challenges of clinical microbiome studies

The integration of the human gut microbiome into clinical

designs and settings is not an easy task and can be faced with

many challenges. Typically, the human microbiota remains

stable for years [254]. Despite the long-term stability and

plasticity within the gut environment, inter- and intra-

variability among individuals is important to consider.

Intra-variability can be due to infant transitions (i.e., birth

gestational age [255], type of delivery [256], and methods

of milk feeding [257]), age [201], and environmental fac-

tors such as antibiotic [258–261] usage. Furthermore,

inter-variability of gut microbiota can be due to sex, enter-

otypes, body mass index (BMI), and external factors such

as lifestyle, exercise frequency, ethnicity, dietary, and cul-

tural habits [262, 263]. This inter and intra-variability can

complicate studies that aim to identify biomarkers and in-

vestigate the gut microbiome composition and function as

group comparisons. Thus, integrating microbiome science

into clinical practice can be achieved by accounting for

the variation within CVD patients in order to identify bio-

markers and therapeutics.

Sample collection for studying the gut microbiome

(i.e., stool samples) can also lead to many challenges,

with no standard protocol and consensus available for

quality assurance and downstream analysis. For example,

the gut microbiome contains distinct microbial consortia

in saliva, upper GI tract, lower GI tract, and fecal sam-

ples [264]. The upper GI has shown increased Gemella,

Veillonella, Neisseria, Fusobacterium, Streptococcus, Pre-

votella, Pseudomonas, and Actinomyces, while the lower

GI has shown increased Faecalibacterium, Ruminococ-

cus, and Bacteroides [264], which can produce method-

ology challenges. In addition, the composition of faecal

bacterial communities can be affected by factors includ-

ing experimental design and procedures such as collec-

tion, storage, and DNA extraction [265]. It has been

shown that the fecal microbiome is not a representative

of the mucosal microbiome, and it is crucial to move be-

yond the monolithic “stool-centric” viewpoint [264]. In

addition to the type of samples, longitudinal sampling

can increase our understanding of the steady-state, but

certainly relay a burden on the patients.

Finally, within the last decade, the surge of gut micro-

biome studies can be attributed to the development of

cost-effective high throughput next generation sequen-

cing (NGS) technology and “omics” data such as human

genomic, metabolomic, and proteomic data [266]. NGS

technology coupled with advances in bioinformatics has

revolutionized the field of microbiome and supplanted

culture-based approaches, permitting the analysis of in-

creasingly complex characteristics of the microbiome;

however, limitations still exist. For example, 16S rRNA

sequencing can lead to a uni-kingdom outlook on bac-

teria, but it is vital to consider all aspects of life includ-

ing fungi, protozoa, and viruses. Metagenomic studies

can widen the scientific lens into a multi-kingdom view,

but also contain limitations. For example, a significant

proportion of the data cannot be assigned a function

due to a lack of close matches in reference databases
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[267], specifically viral data [268]. Thus, these complex

omics data require specialized statistical models to take into

account factors such as compositionality, sparsity, batch ef-

fects, technical noise, sampling noise, and spatiotemporal vari-

ation. Interpreting “omics” data can also produce challenges,

since changes in the abundance of specific gut microbiota

may not be extrapolated to having a protective or detrimen-

tal effect on the host [269]. For example, in a study by Van-

deputte et al., the absolute quantity of microbes (measured

using quantitative microbiome profiling) was preferred and

utilized over the classic relative abundance profiling, since

the latter cannot provide information about the extent of dir-

ectionality of changes in taxa abundance or metabolic poten-

tial [270, 271]. Building a knowledge base to consolidate

the disconnected pieces of knowledge in the field of

microbiome, as well as additional innovations including

natural language processing, text mining, taxonomic rep-

resentations, and field wide vocabulary standardization in

microbiome research, can accelerate our understanding

and aid in moving towards causality [272]. Therefore, fur-

ther investigations and improvements in quality control,

methodology, and pipelines used are required in order to

develop global models of gut ecosystem dynamics.

Conclusions
To fully understand the role of gut microbiota in human

health and to guide therapeutic interventions for hyper-

cholesterolemia and CAD development, it is critical that

we elucidate the interconnected bodily factors that work

together to affect gut microbiota and disease development.

Further investigations into these complex mechanisms

(e.g., through advanced nanomedicine technologies, data

sciences, and incorporation of factors such as ethnicity and

sex) are integral to shed light on gut bacterial-mediated

mechanisms, which in turn can lead to more efficacious

and high-precision microbiome-based CAD preventative

and therapeutic approaches which can eventually reduce

the societal and economic costs of CAD.
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