
 
 

University of Birmingham

Gut microbiota and colonization resistance against
bacterial enteric infection
Ducarmon, Q. R.; Zwittink, R. D.; Hornung, B. V. H.; van Schaik, W.; Young, V. B.; Kuijper, E.
J.

DOI:
10.1128/MMBR.00007-19

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ducarmon, QR, Zwittink, RD, Hornung, BVH, van Schaik, W, Young, VB & Kuijper, EJ 2019, 'Gut microbiota and
colonization resistance against bacterial enteric infection', Microbiology and Molecular Biology Reviews, vol. 83,
no. 3, pp. e00007-e00019. https://doi.org/10.1128/MMBR.00007-19

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 05/07/2019
Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection, Q. R. Ducarmon, R. D. Zwittink, B. V. H. Hornung, W. van
Schaik, V. B. Young, E. J. Kuijper, Microbiology and Molecular Biology Reviews Jun 2019, 83 (3) e00007-19;
DOI: 10.1128/MMBR.00007-19

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Aug. 2022

https://doi.org/10.1128/MMBR.00007-19
https://doi.org/10.1128/MMBR.00007-19
https://birmingham.elsevierpure.com/en/publications/b04dcc4a-7c42-4cb8-ba5f-149ade5b9eb2


1 
 

Gut microbiota and colonization resistance against bacterial enteric infection 1 

Q.R. Ducarmon,a,b# R.D. Zwittink,a,b B.V.H. Hornung,a,b W. van Schaik,c V.B. 2 

Young,d,e E.J. Kuijpera,b,f,g 3 

aCenter for Microbiome Analyses and Therapeutics, Leiden University Medical 4 

Center, Leiden, Netherlands 5 

bExperimental Bacteriology, Department of Medical Microbiology, Leiden University 6 

Medical Center, Leiden, Netherlands 7 

cInstitute of Microbiology and Infection, University of Birmingham, Birmingham, UK 8 

dDepartment of Microbiology and Immunology, University of Michigan, Ann Arbor, 9 

Michigan, USA 10 

eDepartment of Internal Medicine/Infectious Diseases Division, University of 11 

Michigan Medical Center, Ann Arbor, Michigan, USA 12 

fClinical Microbiology Laboratory, Department of Medical Microbiology, Leiden 13 

University Medical Center, Leiden, Netherlands 14 

gNetherlands Donor Feces Bank, Leiden, Netherlands 15 

 16 

Running Head: Gut microbiota, colonization resistance and infection 17 

# Address correspondence to Quinten R. Ducarmon, q.r.ducarmon@lumc.nl  18 

  19 

mailto:q.r.ducarmon@lumc.nl


2 
 

SUMMARY ............................................................................................................................................ 3 20 

INTRODUCTION .................................................................................................................................. 4 21 

MECHANISMS PROVIDING COLONIZATION RESISTANCE .................................................... 5 22 

Short-chain fatty acids ..................................................................................................................... 5 23 

Bile acids ........................................................................................................................................... 6 24 

Bacteriocins ....................................................................................................................................... 7 25 

Nutrient competition ....................................................................................................................... 10 26 

Mucus layers ................................................................................................................................... 11 27 

Bacteriophages ............................................................................................................................... 13 28 

EFFECTS OF VARIOUS NON-ANTIBIOTIC DRUGS ON GUT COLONIZATION 29 

RESISTANCE ..................................................................................................................................... 14 30 

Proton-pump inhibitors .................................................................................................................. 14 31 

Antidiabetics .................................................................................................................................... 16 32 

Antipsychotics ................................................................................................................................. 16 33 

COLONIZATION RESISTANCE TOWARDS SPECIFIC BACTERIAL ENTERIC 34 

PATHOGENS ..................................................................................................................................... 18 35 

C. difficile ......................................................................................................................................... 19 36 

S. Typhimurium ............................................................................................................................... 22 37 

Enterohemorrhagic E. coli ............................................................................................................. 25 38 

S. flexneri ......................................................................................................................................... 29 39 

C. jejuni ............................................................................................................................................ 31 40 

V. cholerae ...................................................................................................................................... 35 41 

Y. enterocolitica .............................................................................................................................. 38 42 

L. monocytogenes .......................................................................................................................... 41 43 

Bacterial defense mechanisms against bacteriophages .......................................................... 44 44 

CONCLUDING REMARKS ............................................................................................................... 48 45 

ACKNOWLEDGEMENTS ................................................................................................................. 49 46 

REFERENCES ................................................................................................................................... 50 47 

FIGURE LEGENDS ........................................................................................................................... 81 48 

 49 

  50 



3 
 

SUMMARY 51 

The gut microbiome is critical in providing resistance against colonization by 52 

exogenous microorganisms. The mechanisms via which the gut microbiota provides 53 

colonization resistance (CR) have not been fully elucidated, but include secretion of 54 

antimicrobial products, nutrient competition, support of gut barrier integrity and 55 

bacteriophage deployment. However, bacterial enteric infections are an important 56 

cause of disease globally, indicating that microbiota-mediated CR can be disturbed, 57 

and become ineffective. Changes in microbiota composition, and potential 58 

subsequent disruption of CR, can be caused by various drugs, such as antibiotics, 59 

proton pump inhibitors, antidiabetics and antipsychotics, thereby providing 60 

opportunities for exogenous pathogens to colonize the gut and ultimately cause 61 

infection. In addition, the most prevalent bacterial enteropathogens, including 62 

Clostridioides difficile, Salmonella enterica serovar Typhimurium, enterohemorrhagic 63 

Escherichia coli, Shigella flexneri, Campylobacter jejuni, Vibrio cholerae, Yersinia 64 

enterocolitica and Listeria monocytogenes, can employ a wide array of mechanisms 65 

to overcome colonization resistance. This review aims to summarize current 66 

knowledge on how the gut microbiota can mediate colonization resistance against 67 

bacterial enteric infection, and on how bacterial enteropathogens can overcome this 68 

resistance.  69 

KEYWORDS colonization resistance, bacterial enteric infection, enteric pathogens, 70 

gut microbiota, microbiome, nutrient competition, mucus layer, bile acids, 71 

bacteriocins, short-chain fatty acids, bacteriophages, proton-pump inhibitors, 72 

metformin, antipsychotics  73 
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INTRODUCTION 74 

The human gastrointestinal tract is colonized by an enormous number of microbes, 75 

collectively termed gut microbiota, including bacteria, viruses, fungi, archaea and 76 

protozoa. Bacteria achieve the highest cell density, estimated to be approximately 77 

1011 bacteria/ml in the colon (1). Research has long focused on pathogenicity of 78 

microbes and not on their potential beneficial roles for human health. Beneficial roles 79 

include aiding in immune system maturation, production of short-chain fatty acids 80 

(SCFAs), vitamin synthesis and providing a barrier against colonization with potential 81 

pathogens (2). Additionally, the gut microbiota has extensive interactions with our 82 

immune system and it has been associated with many immune-mediated diseases 83 

both in and outside of the gut (3-5). Over the last ten years, there has been an 84 

increased interest in elucidating the bidirectional relationship between gut microbiota 85 

and human health and disease. This has been partly propelled by improved 86 

sequencing technologies, allowing the profiling of entire microbial communities at 87 

high efficiency and low costs (6).  88 

Hundreds of different bacterial species inhabiting the healthy human gut have been 89 

identified (7, 8). Initial studies seeking to elucidate the relationship between human 90 

microbiota and health and disease were largely observational; gut microbiota 91 

composition would be compared between diseased and healthy groups and 92 

subsequently associated with clinical markers (9). Currently, the field is moving 93 

towards more functional and mechanistic studies by including other –omics 94 

techniques.  95 

In healthy individuals, the gut microbiota provides protection against infection by 96 

deploying multiple mechanisms including secretion of antimicrobial products, nutrient 97 

competition, support of epithelial barrier integrity, bacteriophage deployment, and 98 
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immune activation. Together, these mechanisms contribute to resistance against 99 

colonization of exogenous microorganisms (colonization resistance, CR) (10). 100 

However, also in absence of a fully functional immune system, the gut microbiota 101 

can provide a crucial and nonredundant protection against a potentially lethal 102 

pathogen (11). This review will discuss the mechanisms used by gut microbiota to 103 

provide CR, the impact of various drugs on gut microbiota and thereby CR, and the 104 

strategies of specific bacterial pathogens to overcome CR and ultimately cause 105 

enteric infection. 106 

 107 

MECHANISMS PROVIDING COLONIZATION RESISTANCE 108 

The gut microbiota produces various products with antimicrobial effects, including 109 

SCFAs, secondary bile acids and bacteriocins. Each of these contribute to CR in a 110 

product-specific manner. The following section describes their general mechanisms 111 

of action. The contribution of the immune system in conferring CR has been 112 

extensively reviewed elsewhere and is outside the scope of this review (12, 13). 113 

 114 

Short-chain fatty acids  115 

SCFAs are mainly produced by bacteria through fermentation of non-digestible 116 

carbohydrates (Fig. 1) (14). The three main SCFAs are acetate, propionate and 117 

butyrate, constituting 90-95% of the total SCFA pool (15). During homeostatic 118 

conditions, butyrate is the main nutrient for enterocytes and is metabolized through 119 

β-oxidation. Hereby, an anaerobic milieu inside the gut can be maintained (16). 120 

SCFAs can impair bacterial growth by affecting intracellular pH and metabolic 121 

functioning. SCFA concentrations have been shown to inversely relate to pH 122 
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throughout different regions of the gut (17). At lower pH, SCFAs are more prevalent 123 

in their non-ionized form and these non-ionized acids can diffuse across the bacterial 124 

membrane into the cytoplasm. Within the cytoplasm they will dissociate, resulting in 125 

a build-up of anions and protons leading to a lower intracellular pH (18).  126 

In presence of acetate, metabolic functioning of Escherichia coli could be impaired 127 

by preventing biosynthesis of methionine, leading to accumulation of toxic 128 

homocysteine and growth inhibition. Growth inhibition was partly relieved by 129 

supplementing the growth medium with methionine, showing that this metabolic 130 

dysfunction is one of the factors by which SCFAs impair bacterial growth (19).  131 

 132 

Bile acids  133 

Bile acids, possessing antimicrobial properties, are produced by the liver and 134 

excreted in the intestinal tract to aid in the digestion of dietary lipids. After production 135 

of primary bile acids in the liver, they are subsequently conjugated with glycine or 136 

taurine, to increase solubility (20). These are then stored in the gallbladder, and 137 

upon food intake, are released into the duodenum to increase solubilization of 138 

ingested lipids. A large part of conjugated primary bile acids is reabsorbed in the 139 

distal ileum (50-90%), while the remainder can be subjected to bacterial metabolism 140 

in the colon (20). Here, conjugated bile acids can be deconjugated by bile salt 141 

hydrolases (BSH), which are abundantly present in the gut microbiome (21). 142 

Deconjugated primary bile acids can subsequently be converted into the two main 143 

secondary bile acids, deoxycholic acid and lithocholic acid, by few bacteria, mostly 144 

Clostridium species, via 7α-dehydroxylation through a complex biochemical pathway 145 

(21-23) (Fig. 1). A crucial step during the conversion is encoded by the baiCD gene, 146 

which is found in several Clostridium strains, including Clostridium scindens (24). 147 
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Deoxycholic acid is bactericidal to many bacteria, including Staphylococcus aureus, 148 

Bacteroides thetaiotaomicron, Clostridioides difficile, bifidobacteria and lactobacilli by 149 

membrane disruption and subsequent leakage of cellular content (25-28).  150 

The importance of bacteria for conversion of primary bile acids was demonstrated by 151 

investigating bile acid profiles in germ-free mice, where no secondary bile acids 152 

could be measured (29). Very few colonic bacteria, less than 0.025% of total gut 153 

microbiota, are capable of performing 7α-dehydroxylation (23, 30). One of these 154 

bacteria, C. scindens, is associated with colonization resistance against C. difficile 155 

through secondary bile acid production (22, 31). A follow-up in vivo study 156 

demonstrated that C. scindens provided CR in the first day post infection (p.i), but 157 

protection and secondary bile acid production was lost at 72 p.i (32). C. scindens on 158 

its own was also not sufficient to inhibit C. difficile outgrowth in humans (33). 159 

Together, these studies suggest that C. scindens either requires cooperation with 160 

other secondary-bile acid producing bacteria or that other mechanisms were 161 

involved in providing CR. The secondary bile acid lithocholic acid may exert its 162 

antimicrobial effects, and potentially its effects on CR, in an indirect manner. 163 

Lithocholic acid has been shown to enhance transcription for the antimicrobial 164 

peptide LL-37, in gut epithelium using a HT-29 cell line (34). However, no increased 165 

mRNA transcription nor protein translation of LL-37 was observed in another study 166 

using a Caco2 cell line (35).  167 

 168 

Bacteriocins 169 

Bacteriocins are short, toxic peptides produced by specific bacterial species that can 170 

inhibit colonization and growth of other species (36) (Fig. 1). Their mechanisms of 171 

action are multifold and include disturbing RNA and DNA metabolism, and killing 172 
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cells through pore formation in the cell membrane (37-40). Bacteriocins can be 173 

divided into those produced by Gram-positive bacteria, and those produced by 174 

Gram-negative bacteria. Further classification of bacteriocins has been extensively 175 

discussed elsewhere,  (41, 42). Bacteriocins produced by Gram-positive bacteria are 176 

mostly produced by lactic acid bacteria (e.g. Lactococcus and Lactobacillus) and 177 

some Streptococcus species, and are further subdivided into three major classes on 178 

the basis of the molecular weight of the bacteriocins and the presence of post-179 

translational modifications (42). Bacteriocins produced by Gram-negative bacteria, 180 

mostly by Enterobacteriaceae, can be broadly divided into high molecular weight 181 

proteins (colicins) and lower molecular weight peptides (microcins) (41). 182 

The lantibiotic nisin is the best studied bacteriocin and is produced by Lactococcus 183 

lactis strains. It has potent activity against many Gram-positive bacteria but has 184 

much less intrinsic activity against Gram-negative organisms (43-45). By itself, nisin 185 

does not induce growth inhibition of Gram-negative bacteria, since binding to lipid II 186 

– the main target – is prevented by the outer bacterial membrane (46). Therefore, 187 

studies have used different methods to overcome this problem by combining nisin 188 

with chelating agents like EDTA, antibiotics and engineered nisin peptides (47-52). 189 

These compounds can destabilize the outer membrane, allowing nisin to exert its 190 

damaging effect (53, 54).  191 

Several in vivo models have confirmed the potency of bacteriocins in providing CR.  192 

Lactobacillus salivarius UCC 118, which produces the bacteriocin Abp118, was able 193 

to significantly protect mice from infection by direct killing of Listeria monocytogenes, 194 

while an UCC 118 mutant could not, confirming the protective role of Abp118 against 195 

this food-borne pathogen (55).  196 
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Another example is Bacillus thuringiensis DPC 6431, which produces the bacteriocin 197 

thuricin (36). Thuricin targets several C. difficile strains, including the highly virulent 198 

PCR ribotype 027. In vitro, its activity was more potent than metronidazole, the 199 

common treatment for C. difficile infection (56). In a colon model system, 200 

metronidazole, vancomycin and thuricin all effectively reduced C. difficile levels. 201 

However, thuricin has the advantage of conserving gut microbiota composition. This 202 

is highly relevant, as a disturbed microbiota is associated with increased 203 

susceptibility to infection (57, 58). 204 

Enterobacteriaceae members can produce specific bacteriocins called colicins and 205 

one example, colicin FY, is encoded by the Yersinia frederiksenii Y27601 plasmid. 206 

Recombinant E. coli strains, capable of producing colicin FY, were shown to be highly 207 

effective against Yersinia enterocolitica in vitro (59). In vivo experiments were 208 

performed by first administering the recombinant E. coli strains, after which mice 209 

were infected with Y. enterocolitica. In mice with a normal gut microbiota the 210 

recombinant strains did not inhibit Y. enterocolitica infection, while infection was 211 

effectively reduced in mice pre-treated with streptomycin (59). This was most 212 

probably the result of increased colonization capacity of recombinant E. coli in the 213 

inflamed gut, while the normal gut microbiota provided sufficient CR to prevent E. 214 

coli colonization (59). 215 

Microcins are also produced by Enterobacteriaceae, but differ from colicins in 216 

several ways (60). For example, microcins are of much smaller size (<10 kDa) and 217 

microcin production is not lethal to the producing bacterium, in contrast to colicin 218 

production (60). E. coli Nissle 1917, capable of producing microcin M and microcin 219 

H47, could significantly inhibit Salmonella enterica serovar Typhimurium in vitro and 220 

in vivo (61). This inhibition was however only seen during intestinal inflammation, 221 
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during which S. Typhimurium expresses siderophores to scavenge iron from an iron-222 

depleted environment. As microcins are able to conjugate to siderophores and S. 223 

Typhimurium takes up the siderophore during iron scavenging, microcins are 224 

introduced into the bacterial cell in a Trojan-horse like manner (62). 225 

In silico identification of bacteriocin gene clusters shows that much remains to be 226 

discovered in this area, as 74 clusters were identified in the gut microbiota (63). Not 227 

all of these clusters may be active in vivo, but it illustrates the potential relevance of 228 

bacteriocin production by the gut microbiota to provide colonization resistance.  229 

 230 

Nutrient competition 231 

Bacteria have to compete for nutrients present in the gut. This is especially relevant 232 

for bacterial strains belonging to the same species, as they will often require similar 233 

nutrients. The importance of nutrient competition in providing CR has been shown in 234 

multiple studies using multiple E. coli strains (64-67). Indigenous E. coli strains 235 

compete with pathogenic E. coli O157:H7 for the amino acid proline (64). In fecal 236 

suspensions, depletion of the proline pool by high-proline-utilizing E. coli strains 237 

inhibited growth of pathogenic E. coli. This inhibition could be reversed by adding 238 

proline to the medium, thereby confirming nutrient competition between the strains 239 

(64). In addition to amino acids, different E. coli strains use distinct sugars present in 240 

the intestinal mucus (65). When two commensal E. coli strains were present in the 241 

mouse gut that together utilize the same sugars as E. coli O157:H7, E. coli O157:H7 242 

was unable to colonize after it was administered to these mice. However, E. coli 243 

O157:H7 successfully colonized when only one of these commensals was present. 244 

This indicated that the two commensals complement each other to sufficiently 245 

deplete all sugars used by this pathogenic E. coli strain (66). Nutrient competition is 246 
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not limited to macronutrients, but can extend to micronutrients such as iron. S.  247 

Typhimurium is known to take up large amounts of iron from the inflamed gut during 248 

infection (67). Upon a single administration of the probiotic E. coli Nissle 1917, which 249 

was proposed to scavenge iron very efficiently, S. Typhimurium levels were reduced 250 

more than two log-fold during infection via the limitation of iron availability. 251 

Administration of E. coli Nissle 1917 prior to infection with S. Typhimurium led to a 252 

445-fold lower colonization (67). 253 

Finally, genome-scale metabolic models have been used to reconstruct microbiome-254 

wide metabolic networks, which could partly predict which species utilize specific 255 

compounds from their environment (68). These models have been used to study 256 

nutrient utilization by C. difficile, which will be described in the section on this 257 

organism below.  258 

Together, these studies show that colonization resistance by nutrient competition is 259 

most effective when microbiota take up key nutrients that are required by the 260 

pathogen (Fig. 1). Future strategies could therefore aim at administrating probiotic 261 

strains that are able to outcompete pathogens for specific nutrients. This is 262 

especially relevant at times of gut microbiota disturbances, e.g. during and following 263 

an antibiotic treatment, as this is the time window where it is easiest for exogenous 264 

bacteria to colonize the GI tract. 265 

 266 

Mucus layers 267 

The gut barrier consists of the inner and outer mucus layer, the epithelial barrier and 268 

its related immune barrier. It is out of the scope of this review to discuss the full 269 

immunological characteristics of the epithelial barrier, the highly complex host-270 

microbe interactions occurring at the mucus layer and host-associated genetic 271 



12 
 

polymorphisms associated with mucus layer composition, as these have been 272 

extensively described elsewhere (12, 13, 69, 70). Instead, a general description with 273 

various examples of how the mucus layer provides CR will be given.  274 

The inner mucus layer is impenetrable and firmly attached to the epithelium, forming 275 

a physical barrier for bacteria thereby preventing direct interaction with the epithelial 276 

layer and a potential inflammatory response (71, 72). Commensal gut microbes 277 

reside and metabolize nutrients in the nonattached outer mucus layer. Thinning of 278 

the mucus layer leads to an increased susceptibility for pathogen colonization, which 279 

can result from a Western-style diet deficient in microbiota-accessible-carbohydrates 280 

(MACs) (58). When MACs were scarce, mucus-degrading bacteria (Akkermansia 281 

muciniphila and Bacteroides caccae) fed on the outer mucus layer in a gnotobiotic 282 

mouse model, resulting in closer proximity of bacteria to the epithelial layer (58). The 283 

host adapts by increasing muc2 expression, the main producer of intestinal mucin 284 

glycans, but fails to sufficiently do so. Inner mucus layer damage could however be 285 

reversed by administration of Bifidobacterium longum, perhaps due to stimulation of 286 

mucus generation (73).  287 

The composition of the microbiota is thus a contributing factor to the integrity of the 288 

mucus barrier. Genetically identical mice housed in different rooms at the same 289 

facility showed a distinct microbiota composition, with one group of mice showing a 290 

more penetrable barrier (74). When FMT was performed on germ-free mice, they 291 

displayed the same barrier function as their respective donor. No specific microbes 292 

were identified to be responsible for the change in observed barrier function (74). 293 

In conclusion, the mucus layers provide a first barrier of defense against colonization 294 

of exogenous microorganisms. Diet has been shown to be an important factor for 295 
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proper functioning of this layer, suggesting that dietary intervention, or specific pro- 296 

and prebiotics, may be a future therapeutic option. 297 

 298 

Bacteriophages  299 

Bacteriophages are the most abundant microorganisms on our planet and are also 300 

highly present in the human gut (75, 76). Bacteriophages have been proposed as 301 

potential alternatives to antibiotics, as they are highly specific, only targeting a single 302 

or a few bacterial strains thereby minimizing the impact on commensal members of 303 

the microbiota (75, 77) (Fig. 1). Their complex interactions in the intestine with both 304 

host immunity and bacterial inhabitants are starting to be explored, but much 305 

remains to be elucidated (76). Here, we will focus on their relationship with bacterial 306 

enteropathogens. 307 

Vibrio cholerae infection could be controlled using a prophylactic phage cocktail in 308 

mice and rabbits (78). This prophylactic cocktail killed V. cholerae in vitro, reduced 309 

colonization of V. cholerae in the mouse gut and prevented cholera-like diarrhea in 310 

rabbits. Importantly, the authors suggest that the concentration of phages in the gut 311 

is an important criterion for successful prevention of infection, as timing between 312 

phage cocktail administration and V. cholerae inoculation was associated with 313 

treatment outcome (78). Similar findings have been demonstrated for Campylobacter 314 

jejuni colonization in chickens, where a phage cocktail reduced C. jejuni levels 315 

several orders of magnitude (79).  316 

Bacteriophages can also confer a competitive advantage for commensals. 317 

Enterococcus faecalis V583 harbors phages that infect and kill other E. faecalis 318 

strains, thereby creating a niche for E. faecalis V583 (80). 319 
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Phages play an important role in excluding specific gut bacteria and can thereby 320 

contribute to CR. Therapeutic use in humans is not yet performed at a wide scale in 321 

the Western world, as sufficient evidence for their safety and efficacy is still lacking 322 

(81). However, recent case reports indicate that bacteriophage treatment has definite 323 

future potential for treating multi-drug resistant bacteria (82, 83). 324 

 325 

EFFECTS OF VARIOUS NON-ANTIBIOTIC DRUGS ON GUT COLONIZATION 326 

RESISTANCE 327 

Antibiotics are long known for their deleterious effect on gut microbiota. Recently, 328 

various other drugs have come to attention for their impact on our microbial 329 

ecosystem. As effects of antibiotics have been extensively reviewed elsewhere (84, 330 

85), the focus in the current review will be on non-antibiotic drugs, namely proton-331 

pump inhibitors (PPIs), antidiabetics and antipsychotics.  332 

 333 

Proton-pump inhibitors 334 

PPIs inhibit gastric acid production and are among the most prescribed drugs in 335 

Western countries (86). A significant association between long-term use of PPIs and 336 

the risk on several bacterial enteric infections has been demonstrated in multiple 337 

systematic reviews (87-90). 338 

Several studies have associated PPI use with microbiota alterations that may 339 

specifically predispose to C. difficile infection and to small intestinal bacterial 340 

outgrowth (91-95). Especially taxa prevalent in oral microbiota (e.g. Streptococcus) 341 

were associated with PPI use, likely resulting from increased gastric pH and thereby 342 

allowing for colonization of these bacteria further down the gastrointestinal tract (91-343 
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94). Administering  PPIs to twelve healthy volunteers for four weeks did not result in 344 

changes in diversity or changes in overall microbiota composition. However, 345 

abundance of specific taxa associated with C. difficile infection and gastrointestinal 346 

bacterial overgrowth increased, thereby potentially lowering colonization resistance 347 

against C. difficile (91).  348 

Results of two mouse studies suggest that the reduced bactericidal effect, due to 349 

increased stomach pH, may be the most important factor for increased enteric 350 

infection risk. Mice received PPIs seven days prior to infection with the murine 351 

pathogen Citrobacter rodentium, which resulted in increased numbers of C. 352 

rodentium in the cecum one hour post inoculation as compared to control mice (96). 353 

Similar results were observed in another study where treatment of mice with PPIs led 354 

to increased colonization of vancomycin-resistant enterococci and Klebsiella 355 

pneumoniae (97). In spite of its general acceptance as a model for gut disturbances, 356 

it is important to note that mice were pre-treated with clindamycin, which may limit 357 

generalizability (97). This is an important issue when studying effects of PPIs, as the 358 

combined use of medication in the human population complicates the study of the 359 

effects of PPIs on microbiota and CR. Even though large-scale studies have 360 

adjusted for cofounders to filter out the effect of PPIs on the gut microbiota, this does 361 

not represent a mechanistic study where only PPIs would be administered (92, 98). 362 

Therefore, more mechanistic studies investigating how PPIs increase the risk for 363 

enteric infection are required. These studies should then exclusively administer PPIs 364 

to healthy human volunteers or animals.  365 

 366 
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Antidiabetics  367 

Metformin is the primary prescribed drug for treatment of type II diabetes mellitus 368 

(T2DM) and mainly acts by reducing hepatic glucose production, thereby lowering 369 

blood glucose levels (99). The current increase in the number of T2DM patients is 370 

unprecedented and it is therefore crucial to evaluate metformin’s effect on gut 371 

microbiota and colonization resistance (100). 372 

The microbiota of T2DM patients is, amongst other changes, characterized by a 373 

depletion in butyrate-producing bacteria (101, 102). Metformin administration 374 

increased both the abundance of butyrate and other SCFA-producing bacteria, as 375 

well as fecal SCFA levels and may thus contribute to colonization resistance. The 376 

underlying mechanisms remain unknown (101, 103).  377 

Another effect of metformin has been studied in an in vitro model, where it was found 378 

to reduce tight junction dysfunction of the gut barrier by preventing TNF-α induced 379 

damage to tight junctions (104). Similar findings for improvement of tight junction 380 

dysfunction were demonstrated using two in vivo models, one using interleukin-10 381 

deficient mice and one using a colitis mouse model (105, 106). As tight junctions are 382 

a critical part of epithelial barrier integrity, alleviating their impaired functioning likely 383 

improves CR. 384 

In conclusion, metformin may have beneficial effects on CR, as its ability to raise 385 

SCFA concentrations and improved tight junction function suggests. The effects of 386 

metformin on gut microbiota and CR in healthy organisms needs further evaluation. 387 

 388 

Antipsychotics 389 

The interest in whether antipsychotics affect gut microbiota composition and 390 

colonization resistance may surge after a recent publication demonstrating that 391 



17 
 

antipsychotics target microbes based on their structural composition (107). This led 392 

to the suggestion that antibacterial activity may not simply be a side effect of 393 

antipsychotics, but can be part of their mechanism of action (107). Various 394 

antipsychotics have been investigated for their antibacterial effects, of which several 395 

will be highlighted here.  396 

In an in vitro model, olanzapine has been demonstrated to completely inhibit growth 397 

of two potentially pathogenic bacteria, E. coli and E. faecalis (108). Pimozide has 398 

been shown to inhibit internalization of several bacteria, including L. monocytogenes 399 

(109). An in vitro screening test evaluated effects of fluphenazine on 482 bacterial 400 

strains, belonging to ten different genera. Growth inhibition was demonstrated in 401 

multiple species, including five out of six Bacillus spp., 95 out of 164 staphylococci, 402 

138 out of 153 V. cholerae strains and several Salmonella species. Significant 403 

protection by administering fluphenazine was shown in a mouse model infected with 404 

S. Typhimurium, as viable cells in several organs was lower and overall survival was 405 

higher as compared to controls (110).  406 

Antipsychotics can also be used in combination with antibiotics, to exert a synergistic 407 

antibacterial effect. Flupenthixol dihydrochloride (FD) was demonstrated to have 408 

antibacterial activity, both in vitro and in vivo (111). Co-administration of FD and 409 

penicillin yielded extra protection against S. Typhimurium as compared to singular 410 

administration of either drug. (111). As antipsychotics have only recently been 411 

recognized for their potential antimicrobial effects, studies have only looked at the 412 

effects on pathogens. It is likely that gut commensals are also affected by these 413 

drugs, but future studies will have to confirm this hypothesis.  414 

Apart from their potential antibacterial effects, several antipsychotics were shown to 415 

increase intestinal permeability in the distal ileum in rats, and therefore showing a 416 
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possibly detrimental effect on CR (112). Curiously enough, use of antidepressants 417 

was associated with increased risk of C. difficile infection development, although no 418 

underlying mechanism has been elucidated yet (113). 419 

In conclusion, antipsychotics have definite antibacterial effects, but, to our 420 

knowledge, no studies have yet been performed regarding their effects on 421 

colonization resistance and bacterial enteric infection in vivo. 422 

 423 

COLONIZATION RESISTANCE TOWARDS SPECIFIC BACTERIAL ENTERIC 424 

PATHOGENS 425 

Other than antibiotic resistance acquisition, enteric pathogens possess multiple 426 

virulence factors to overcome CR and cause infection. Some of these factors are 427 

common and apply to many bacterial species, others are organism-specific. 428 

Mechanisms implicated in antibiotic resistance development include horizontal gene 429 

transfer, mutational resistance and altering structure and thereby efficacy of the 430 

antibiotic molecule. Full reviews describing these mechanisms in depth can be found 431 

elsewhere (114, 115). Here, the main focus will be on how several of the most 432 

prevalent and dangerous bacterial enteropathogens overcome the mechanisms 433 

providing CR as described herein, namely secretion of antimicrobial products, 434 

nutrient competition, mucus barrier integrity and bacteriophage deployment. As 435 

insufficient knowledge is available on how each specific enteropathogen overcomes 436 

CR by rendering bacteriophages ineffective, apart from the well-known and 437 

conserved CRISPR-Cas, an overview of the currently known bacterial defense 438 

mechanisms will be given at the end of this review.  439 

 440 
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C. difficile  441 

C. difficile-associated diarrhea is the most common hospital-acquired infection, 442 

causing more than 450.000 diarrheal cases per year in the United States alone 443 

(116). Clinical symptoms can range from self-limiting diarrhea to bloody diarrhea, 444 

pseudomembranous colitis and ultimately death (117). However, also in healthy 445 

individuals CR is not always successful against this opportunistic pathogen, resulting 446 

in asymptomatic colonization in 2-15% of the healthy population (118). The reason 447 

why some asymptomatically colonized patients do not develop infection, while others 448 

do, may well be found in the gut microbiome, although no mechanisms have yet 449 

been elucidated. C. difficile contains a pathogenicity locus with the information to 450 

produce its two major toxins, TcdA and TcdB. The significance of a third toxin, called 451 

binary toxin, is less clear. Toxin production in the colon is facilitated by disruption of 452 

the native gut microbiota, for instance through antibiotic use (119). 453 

 454 

Effects of SCFAs on C. difficile throughout its life cycle are currently unclear (120-455 

122). In an antibiotic-treated mouse model, decreased SCFA levels were associated 456 

with impaired CR against C. difficile (120). CR was subsequently restored six weeks 457 

after ending antibiotic treatment with a concomitant increase in SCFAs, probably 458 

resulting from restoration of the fermentative activity of the microbiota (120). 459 

Restoration of SCFA levels is also seen as an effect after fecal microbiota 460 

transplantations in humans (122). However, SCFA supplementation could not induce 461 

a significant decrease in C. difficile shedding levels up to six weeks post infection 462 

(121). No study has yet investigated whether C. difficile possesses any mechanisms 463 

by which it becomes resistant against the effects of SCFAs, which warrants further 464 

research.  465 
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 466 

Compared to the effects of SCFAs, there is more clarity on the effects of bile acids 467 

on C. difficile. Secondary bile acids are toxic to both C. difficile spores and vegetative 468 

cells, while primary bile acids generally stimulate growth and spore germination 469 

(123-125). During antibiotic treatment, conversion of primary into secondary bile 470 

acids is suppressed and the reduction of secondary bile acids leads to a more 471 

favorable environment for C. difficile (120).In addition, C. difficile isolates causing 472 

most severe disease in mice were also the isolates that showed highest resistance 473 

against lithocholic acid in vitro (126). A relationship between disease score and 474 

deoxycholic acid could not be shown (126). Secondary bile acid resistance may be 475 

strain-dependent, but further research is warranted to draw this conclusion with 476 

certainty. 477 

 478 

Intrinsic anti-bacteriocin properties have been described for C. difficile (127, 128). 479 

Nisin can inhibit growth of vegetative cells and prevent spore germination of C. 480 

difficile in vitro (44). However, this does not hold for all C. difficile strains, as the 481 

mutant strain MC119 had normal growth in sub-lethal concentrations. It was 482 

demonstrated that this resistance was at least partly due to export of nisin by an 483 

ABC-transporter (127). Another identified mechanism was a net positive charge on 484 

the bacterial cell surface resulting in lower efficacy of nisin, since nisin is attracted to 485 

a low negative charge on the cell surface (128). 486 

 487 

Using genome-scale metabolic models in antibiotic-treated mice, it was 488 

demonstrated that C. difficile does not necessarily compete for specific nutrients 489 

against specialized bacteria, but that it adapts to utilize a wide array of nutrients. This 490 
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allows for colonization of diverse microbiomes, wherein C. difficile is not limited to a 491 

specific nutrient niche (129). A follow-up study, also using a multi-omics approach, 492 

showed that C. difficile alters transcriptional activity of especially low abundant taxa. 493 

The main genes showing decreased transcription in these low abundant taxa during 494 

infection, as compared to mock infected mice, were carbohydrate-acquisition and 495 

utilization genes. A possible reason for this could be that C. difficile attempts to 496 

create its own nutrient niche to facilitate colonization (130).  497 

However, others have found specific nutrients that may be important for C. difficile 498 

colonization and/or outgrowth. Three highly virulent ribotypes (RT), RT017, RT027 499 

and RT078, have recently been demonstrated to utilize trehalose as a nutrient 500 

source (131, 132). This was confirmed in a mouse model, where mice were 501 

challenged with spores of either RT027 or a non-trehalose metabolizing ribotype. 502 

After trehalose administration, RT027 mice showed higher mortality in a dose-503 

dependent manner (131).  504 

C. difficile post-antibiotic outgrowth depends partly on the production of succinate 505 

and sialic acid by commensals. B. thetaiotaomicron is capable of metabolizing 506 

polysaccharides and thereby produces sialic acid. Upon inoculation with C. difficile, 507 

monocolonized B. thetaiotaomicron mice had approximately a five times higher 508 

density of C. difficile in feces as compared to germ-free mice (133). Expression 509 

levels of genes involved in sialic acid metabolism were increased in the B. 510 

thetaiotaomicron model, and, as expected, a sialidase-deficient B. thetaiotaomicron 511 

mutant led to highly reduced production of sialic acid and C. difficile density was 512 

lower (133). 513 

Density of C. difficile was higher in B. thetaiotaomicron mice fed a polysaccharide-514 

rich diet as compared to a chow diet (134). The succinate to butyrate pathway was 515 
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crucial for C. difficile expansion in B. thetaiotaomicron mice, as WT C. difficile was 516 

more effective in establishing infection than a succinate-transporter deficient C. 517 

difficile (134).  518 

Micronutrient availability can affect virulence of C. difficile. High zinc levels have 519 

been demonstrated to exacerbate C. difficile infection in mouse models (135). Mice 520 

fed a high-zinc diet had higher toxin levels, higher pro-inflammatory cytokines levels 521 

and increased loss of barrier function. Furthermore, it was shown that calprotectin, a 522 

zinc-binding protein, was important for limiting zinc availability to C. difficile during 523 

infection (135).  524 

Together, these studies demonstrate the importance of specific nutrients used by C. 525 

difficile to establish colonization and infection. 526 

 527 

Efficient colonization of the epithelial barrier is made possible by flagella and pili 528 

(136, 137). When mice were inoculated with flagellated or non-flagellated C. difficile 529 

strains, higher levels of flagellated C. difficile were found in mouse cecum (136). The 530 

exact destination of non-flagellated C. difficile remained unknown, as levels were not 531 

measured in feces or in sections of the small intestine. Regarding pili, it has been 532 

shown that type IV pili were not playing a role in initial colonization, but were crucial 533 

for epithelial adherence and long-lasting infection (137).  534 

 535 

S. Typhimurium  536 

S. Typhimurium is a nontyphoidal Salmonella and an important cause of 537 

gastroenteritis in humans. It was estimated that globally 3.4 million invasive 538 

nontyphoidal Salmonella infections occur each year, of which 65.2% are attributable 539 

to serovar Typhimurium (138). It mostly causes self-limiting, non-bloody diarrhea in 540 
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otherwise healthy individuals. However, it can lead to bloodstream infections and 541 

metastatic spread with eventually death in especially infants and 542 

immunocompromised individuals (138, 139). S. Typhimurium contains two 543 

pathogenicity islands, SPI1 and SPI2. SPI1 mostly contains information for causing 544 

intestinal disease and cell invasion, while SPI2 is necessary for intracellular survival 545 

(140).  546 

 547 

Effects of SCFAs on S. Typhimurium are not yet well defined. Butyrate and 548 

propionate have been demonstrated to reduce expression of invasion genes, while 549 

acetate increased their expression in S. Typhimurium (141, 142). However, 550 

conflicting results exist. A S. Typhimurium knockout mutant, unable to metabolize 551 

butyrate, caused less inflammation than a WT S. Typhimurium, suggesting that 552 

butyrate is crucial for S. Typhimurium virulence (143). Furthermore, this study 553 

demonstrated that butyrate was necessary for expression of invasion genes in 554 

mouse models. In contrast, propionate inhibited S. Typhimurium in a dose-555 

dependent manner in vitro, probably due to disturbance of intracellular pH (144). In 556 

an in vivo setting, it was demonstrated that a cocktail of propionate-producing 557 

Bacteroides species was sufficient to mediate CR against S. Typhimurium (144). 558 

 559 

S. Typhimurium has developed mechanisms to overcome bile acids encountered in 560 

the gut. When exposed to individual bile acids at sub-lethal levels in vitro, it can 561 

become resistant to originally lethal levels by changing gene and protein expression 562 

of several virulence regulators (145, 146). In addition, it has been demonstrated that 563 

a mixture of cholate and deoxycholate confers a synergistic inhibition on invasion 564 

gene expression in S. Typhimurium (147).  565 
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 566 

Innate resistance of S. Typhimurium against bacteriocins produced by Gram-positive 567 

bacteria is naturally conferred through its Gram-negative outer membrane (148).  568 

 569 

Usage of nutrients produced by gut microbiota is believed to facilitate S. 570 

Typhimurium outgrowth. By causing inflammation and thereby altering microbiota 571 

composition, S. Typhimurium provides itself with a competitive advantage (149, 150).  572 

Metabolic profiling in mice showed increased luminal lactate levels in the inflamed 573 

gut during S. Typhimurium infection, which could result from a depletion in butyrate-574 

producing bacteria (149). When butyrate is scarce, enterocytes switch to glycolysis 575 

with lactate as end product. Lactate is an important nutrient for S. Typhimurium, as 576 

indicated by decreased colonization of cecal and colonic lumen by a S. Typhimurium 577 

mutant lacking two lactate dehydrogenases (149).  578 

As explained in the introduction,  an anaerobic milieu is maintained in the gut during 579 

homeostatic conditions. However, diffusion of oxygen from the tissue to the lumen is 580 

enabled by inflammation caused by S. Typhimurium, which alters enterocyte 581 

metabolism (151). Oxygen can then be used by S. Typhimurium to ferment several 582 

carbohydrates through respiration (152-155).  583 

In conclusion, these findings suggest that S. Typhimurium creates its own niche in 584 

the gut by causing inflammation, subsequently shifting microbiota composition and 585 

thereby nutrient availability, so that it can optimally colonize and expand. 586 

 587 

An intact and well-functioning mucus layer is crucial for protection against S. 588 

Typhimurium infection. WT mice infected with the attenuated ΔaroA strain, which 589 

causes severe colitis, showed increased muc2 gene expression and MUC2 590 
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production (156). Mortality and morbidity was high in Δmuc2 mice and higher 591 

numbers of the pathogen were found in their liver, ceca and close to the epithelial 592 

layer (156).  593 

S. Typhimurium may profit from mucin-degrading commensal microbiota. In a 594 

gnotobiotic mouse model, complementation with mucin degrading A. muciniphila 595 

during S. Typhimurium infection allowed S. Typhimurium to dominate the bacterial 596 

community five days p.i (157). This was not caused by an absolute increase in cell 597 

number, but by a decrease in other microbiota members. In addition, the 598 

complementation with A. muciniphila led to increased inflammation, as indicated by 599 

increased histopathology scores and protein and mRNA levels of pro-inflammatory 600 

cytokines. Although generally considered a beneficial bacterium, A. muciniphilia 601 

exacerbated S. Typhimurium infection by thinning the mucus layer, thereby 602 

promoting translocation of the pathogen to the epithelial layer (157).  603 

 604 

Enterohemorrhagic E. coli  605 

Shiga-toxin producing E. coli (STEC) comprises a group of E. coli strains capable of 606 

producing Shiga-toxins. Enterohemorrhagic E. coli (EHEC) is a subgroup of STEC 607 

causing more severe disease, often with complications. Each year, approximately 608 

100,000 people are infected by the most common EHEC serotype, O157:H7 (158). 609 

Clinical presentation includes abdominal pain and bloody diarrhea which can 610 

progress into toxin-mediated hemolytic uremic syndrome (159). Virulence of EHEC 611 

strains is mostly encoded by Shiga toxin genes, stx1 and stx2,  and by locus of 612 

enterocyte effacement (lee) genes, which are imperative for initial attachment to 613 

epithelial cells (160). 614 

 615 
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At present, outcomes regarding the effects of SCFAs on EHEC are mixed (161-165). 616 

LEE protein and gene expression was already enhanced at 1.25mM of butyrate, 617 

while for acetate and propionate, only minor changes were detected at 20mM, with 618 

acetate giving a repressive effect. In a separate growth experiment, acetate was 619 

more efficient in inhibiting growth of EHEC as compared to butyrate and propionate 620 

(162). Acetate was observed to have small repressive effects on EHEC in the study 621 

by Nakanishi et al., and this was also found by Fukuda et al. (162, 165). Mice fed 622 

acetylated starch prior to infection showed higher fecal acetate levels and improved 623 

survival rate compared to starch-fed mice (165). Acetate also prevented gut barrier 624 

dysfunction as measured by transepithelial electrical resistance and prevented 625 

translocation of the Shiga toxin to the basolateral side of the epithelial cells (165). 626 

In Caco2 cells, EHEC epithelial adherence was 10-fold higher when grown on 627 

butyrate than on acetate or propionate (162). These results indicate that butyrate 628 

may be less effective in inhibiting EHEC growth and potentially colonization as 629 

compared to acetate and propionate, for which the exact pathways and genes 630 

involved have been elucidated (162, 163).  631 

In contrast, butyrate was found to be effective against EHEC in a pig model (161). 632 

Piglets given sodium butyrate two days prior to being infected with EHEC showed no 633 

symptoms 24 hours p.i, while the control group developed multiple signs of disease, 634 

e.g. histopathological signs of kidney damage. The sodium butyrate group did not 635 

show any signs of inflammation and shed less viable cells compared to the control 636 

group within 48h (161). In vitro assays demonstrated that butyrate enhanced 637 

bacterial clearance, ultimately making the authors suggest that butyrate can be 638 

developed as a new drug to treat EHEC (161).  639 

 640 
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EHEC has multiple traits to fight against the potentially deleterious effects of bile 641 

acids. Bile acid mixtures upregulated gene expression of the AcrAB efflux pump and 642 

downregulated ompF, a gene encoding for an outer membrane porin (166). In 643 

addition, other genes responsible for limiting penetration of bile acids through the 644 

membrane (basR and basS), were upregulated, and this effect was concentration-645 

dependent. Interestingly, the bile acid mixtures did slightly downregulate stx2 subunit 646 

genes, encoding for Shiga toxin production (166).  647 

 648 

EHEC possesses natural resistance against bacteriocins, especially nisin, through its 649 

Gram-negative outer membrane, as described in the chapter on bacteriocins. Three 650 

EHEC strains were screened for, amongst others, potential resistance against 651 

several colicinogenic E. coli strains (167). In vitro, resistance against E. coli strains 652 

producing a single colicin was observed, but resistance was rarely observed against 653 

multiple colicins and could never be linked to acquiring a specific plasmid (167).  654 

 655 

Nutrient competition for proline and several sugars between EHEC and commensal 656 

E. coli strains is described in the introductory section. In addition, ethanolamine (EA), 657 

a source of carbon, nitrogen and energy for EHEC, has been investigated. It was 658 

demonstrated that EA could diffuse across the bacterial membrane and that the eut 659 

genes were crucial for metabolizing EA. Eut sequences were absent in native 660 

bacterial genomes in the bovine gut, apart from commensal E.coli, indicating that EA 661 

provides a nutrient niche for E. coli. When the eutB gene was knocked out in 662 

EDL933, it was outcompeted by commensal E. coli due to its inability of utilizing EA, 663 

indicating its critical importance for colonization (168).  664 
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During further transcriptomic investigations of EA utilization, it was noticed that 665 

genes involved in gluconeogenesis were upregulated if no glucose was 666 

supplemented. A knockout of two genes within the gluconeogenesis pathway led to a 667 

growth defect in a coculture with the wildtype (169). This is in line with a previous 668 

finding that optimal usage of gluconeogenic substrates by EDL933 is important for 669 

colonization (170). Since this effect was seen in a medium consisting of bovine small 670 

intestinal contents, the relevance for the human gut remains unclear (169).  671 

Co-culturing of EHEC with B. thetaiotaomicron led to an upregulation of genes 672 

involved in nutrient competition in EHEC as compared to culturing EHEC alone 673 

(171). In addition, presence of B. thetaiotaomicron resulted in upregulation of 674 

multiple virulence genes including lee, likely due to regulation of a transcription factor 675 

involved in sensing carbon metabolite concentrations in the environment (171). 676 

Using a combination of in vitro and in vivo methods, Pacheco et al. showed that 677 

fucose cleaved from mucins by B. thetaiotaomicron could be an important nutrient for 678 

upregulating virulence and intestinal colonization of EHEC (172). Interestingly, 679 

fucose sensing and subsequent regulation of virulence genes was more important 680 

for successful colonization than utilization of fucose for energy. This example 681 

indicates that nutrients cannot only be utilized for energy, but that they can be 682 

important environmental signals for properly regulating timing of virulence (172).  683 

 684 

Human colonoid monolayers were used to study initial colonization mechanisms of 685 

EHEC (173). This study showed that EHEC disturbs the tight junctions, preferentially 686 

attaches to mucus producing cells and subsequently impairs the mucus layer (173). 687 

In addition, by using various in vitro models, it was demonstrated that the 688 
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metalloprotease StcE, produced by EHEC, enables degradation of MUC2 in the 689 

inner mucus layer which may pave the way to the epithelial surface (174).  690 

 691 

S. flexneri  692 

Shigella infections mostly occur in developing countries, with S. flexneri as the most 693 

frequently found species (175). Annually, an estimated 164,000 people die of 694 

shigellosis worldwide (176). Clinical presentation includes a wide variety of 695 

symptoms, including severe diarrhea, possibly containing blood and mucus, and 696 

abdominal pain (160). S. flexneri contains a virulence plasmid (pINV) which is 697 

necessary for invasion of epithelial cells and intracellular survival (160).  698 

 699 

No studies seem to have investigated resistance mechanisms of S. flexneri against 700 

SCFAs yet. Butyrate has been investigated as a potential therapeutic agent as it 701 

counteracts a putative virulence mechanism of S. flexneri, namely decreasing LL-37 702 

expression in the gut (177, 178). By suppressing LL-37 expression S. flexneri is able 703 

to colonize deeper into intestinal crypts (178). Butyrate was able to increase rectal 704 

LL-37 expression in a subgroup of patients, which was associated with lower 705 

inflammation in rectal mucosa and lower levels of pro-inflammatory cytokines (177). 706 

However, butyrate treatment did not seem to impact clinical recovery (177). 707 

 708 

The type three secretion system (T3SS) which is able to directly inject bacterial 709 

protein into host cells and cause infection, is considered a key virulence factor. S. 710 

flexneri T3SS can sense and bind secondary bile acid deoxycholate, which leads to 711 

co-localization of protein translocators at the needle tip (179, 180). In S. flexneri 712 

mutants lacking the needle structure, the deoxycholate-associated adhesion and 713 
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invasion of S. flexneri to host epithelial cells was diminished (181). At physiological 714 

levels of bile salts, S. flexneri is able to grow normally in vitro, but at increased 715 

concentrations growth is significantly reduced (182). Transcriptomics showed that 716 

during exposure to physiological bile salt levels, genes involved in drug resistance 717 

and virulence were upregulated, which was subsequently confirmed using RT-qPCR. 718 

Deletion of a multidrug efflux pump led to sensitivity to bile salts and growth inability, 719 

confirming the importance of this pump in bile salt resistance (182).  720 

 721 

Bacteriocin resistance has not been well studied in S. flexneri, but downregulating 722 

antimicrobial peptide production in the gut is suggested to be an important virulence 723 

mechanism (183). The downregulation of LL-37 early in infection was demonstrated 724 

both in gut biopsies of patients and in cell lines (183). Since protein and gene 725 

expression were not downregulated to the same degree, the authors speculated that 726 

there is an interference mechanism during active transcription of LL-37. Transcription 727 

of other antimicrobial peptides was also downregulated, especially in the human β-728 

defensin hBD family (178, 183). It was demonstrated that S. flexneri shows high 729 

sensitivity to LL-37 and hBD-3 peptides in vitro (178). This suggests that by 730 

downregulating expression of antimicrobial peptides, S. flexneri creates an 731 

environment in which it can survive and ultimately cause severe disease.  732 

It is unknown how S. flexneri competes and utilizes nutrients in the luminal side of 733 

the gut. Therefore, a short description will be given on how the bacterium rewires 734 

host cell metabolism for supporting its survival after entering the host cells. These 735 

findings might be translatable, and can at least provide insight in potential nutrient 736 

usage of S. flexneri in the lumen. Using a combination of metabolomics and 737 
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proteomics it was demonstrated that S. flexneri does not alter host cell metabolism in 738 

HeLa cells, but that it captures the majority of the pyruvate output (184). Pyruvate 739 

was demonstrated to be a crucial carbon source for S. flexneri cultured on a HeLa 740 

derivative, using metabolomics, transcriptomics and bacterial mutants (185). S. 741 

flexneri converts pyruvate into acetate via a very quick, but energy-inefficient 742 

pathway, allowing for rapid expansion of the bacterium intracellularly without rapid 743 

destruction of the host cell (184).  744 

 745 

S. flexneri possess special systems to alter mucus composition. Human colonoid 746 

monolayers infected with S. flexneri showed increased extracellular release of 747 

mucins (186). The increased extracellular mucins were trapped at the cell surface 748 

which surprisingly favored access of S. flexneri to the apical surface, subsequently 749 

promoting cell invasion and cell-to-cell spread (186). Furthermore, expression of 750 

several genes encoding for production of mucins and mucin glycosylation patterns 751 

were altered (186). Together, these results suggest that S. flexneri can alter the 752 

mucus environment such that it can promote its own virulence. 753 

C. jejuni  754 

C. jejuni is associated with food-borne gastroenteritis and is estimated to cause more 755 

than 800,000 infections annually in the USA alone (187). Major clinical symptoms 756 

include diarrhea (both with and without blood), fever and abdominal cramping (160). 757 

In rare cases, it can give rise to the Guillain-Barré syndrome and reactive arthritis 758 

(187). It is a commensal bacterium in avian species and it is not yet well understood 759 

why it causes disease in humans (188). 760 

 761 
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There is a distinct lack of research on the resistance mechanisms of C. jejuni against 762 

SCFAs, but one study found that SCFAs are important for colonization in chickens 763 

(189). Acetinogenesis, the conversion of pyruvate to acetate, is a crucial metabolic 764 

pathway for optimal colonization of C. jejuni. Mutants unable to use this pathway 765 

show impaired colonization and decreased expression of acetinogenesis genes. 766 

Upon encountering a mixture of SCFAs at physiological levels, this mutant was 767 

surprisingly able to restore acetinogenesis gene expression to WT levels. Therefore, 768 

it was investigated whether expression of acetinogenic genes differs throughout the 769 

intestinal tract, as SCFAs are most abundant in distal parts of the intestine. It was 770 

observed that both gene expression and C. jejuni levels were highest in the cecum. 771 

The authors suggested that C. jejuni can monitor SCFA levels in the gut, so that in 772 

response it can express colonization factors (189). As this is the only study 773 

suggesting this hypothesis, further research is required for validation.  774 

 775 

Results regarding bile acid resistance in C. jejuni are mixed, which may stem from 776 

using different animal models or bile acids. A specific multidrug efflux pump, 777 

CmeABC, was important for bile resistance in chickens (190). ΔcmeABC mutants 778 

showed impaired growth in vitro and unsuccessful colonization in chicken upon 779 

cholate administration, while cholate did not affect growth and colonization of the WT 780 

(190). This suggests that the efflux pump is critical for proper colonization of C. jejuni 781 

by mediating bile-acid resistance.  782 

Another study elucidated the effects of secondary bile acids on C. jejuni (191). Upon 783 

administration of deoxycholate prior to, and during, infection, mice showed 784 

decreased colitis. Unexpectedly, C. jejuni luminal colonization levels were not 785 
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affected (191). In conclusion, C. jejuni colonization seems not to be affected by bile 786 

acids, but may be important in limiting disease progression.  787 

 788 

Bacteriocin resistance is not common in C. jejuni. Multiple C. jejuni (n=137) isolates 789 

were screened for resistance against two anti-Campylobacter bacteriocins, OR-7 790 

and E-760, produced by the gut inhabitants L. salivarius and Enterococcus faecium. 791 

However, no isolates were found to harbor resistance (192). In a follow-up study, 792 

chickens were successfully colonized with a C. jejuni strain prior to bacteriocin 793 

treatment, with the aim of studying bacteriocin resistance. Resistance developed in 794 

most chickens, but was lost upon ending bacteriocin administration, suggesting 795 

resistance instability in vivo (193).  796 

 797 

In contrast to most other enteric pathogens, C. jejuni does not metabolize 798 

carbohydrates as its main energy source. It is unable to oxidize glucose, fructose, 799 

galactose and several disaccharides, including lactose, maltose and trehalose, 800 

resulting from the absence of 6-phosphofructokinase (194-197). Fucose could be 801 

metabolized by some C. jejuni strains, due to the occurrence of an extra genomic 802 

island (197). Main energy sources for C. jejuni are organic acids, including acetate, 803 

and a limited number of amino acids (198-200). It is currently unclear what these 804 

metabolic adaptations mean for its colonization potential, but it is possible that C. 805 

jejuni occupies a unique macronutrient niche. 806 

Iron regulation systems are critical for colonization and persistence of C. jejuni. In 807 

presence of sufficient iron, transporter and acquisition genes are downregulated 808 

(201). Mutants lacking genes involved in either iron acquisition or transport were 809 

severely impaired in colonizing the chick gut (201). Free iron concentrations are 810 
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extremely low in the gut, which forces C. jejuni to utilize other iron sources. It was 811 

demonstrated that lactoferrin and transferrin can also be used for this purpose and 812 

molecular pathways have been described (202). In short, transferrin-bound iron can 813 

only be utilized if it is in close proximity to the bacterial cell surface. Thereafter, it is 814 

most likely that iron is freed from the bacterial cell surface proteins, transported 815 

across the outer membrane and subsequently internalized by an ABC-transporter 816 

(202). Additionally, both in an in vitro setting and in a controlled human infection 817 

model with C. jejuni the most upregulated genes were involved in iron acquisition 818 

(188, 203). These results suggest that iron regulation is maintained extremely well, 819 

and that C. jejuni can obtain sufficient iron even in a harsh environment as the gut. 820 

 821 

C. jejuni resides in the mucus layer prior to invading the epithelial cell. It can cross 822 

and reside here because of its powerful flagellum, which can change in conformation 823 

or rotation upon being challenged by higher viscosity (204, 205). C. jejuni can hereby 824 

cross the mucus layer at speeds which cannot be met by other enteric pathogens, 825 

and the flagellum can subsequently be used as an adhesin (205, 206).  826 

Another important characteristic for C. jejuni ’s success in crossing the mucus layer 827 

is its helix-shape. In a mouse model, a WT strain or either of two rod shaped C. 828 

jejuni bacteria, Δpgp1 or Δpgp2, were administered to cause infection (207). Rod-829 

shaped mutants were demonstrated to be mostly non-pathogenic, whereas the WT 830 

strain caused severe inflammation. Mutants were to some extent able to colonize the 831 

mucus layer, but could not cross it, explaining their non-pathogenicity (207).  832 

 833 
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V. cholerae 834 

V. cholerae is one of the first bacterial pathogens where the microbiota has been 835 

considered to play an important role against infection (208). It is mainly prevalent in 836 

contaminated brackish or salt water and can cause outbreaks, particularly during 837 

wars and after natural disasters. In the first two years following the earthquake in 838 

Haiti, 2010, more than 600,000 people were infected with V. cholerae serogroup O1, 839 

biotype Ogawa, resulting in more than 7,000 deaths (209). The clinical course is 840 

characterized by watery diarrhea, which can be so severe that it can result in 841 

dehydration, hypovolemic shock and death (210). V. cholerae colonizes the small 842 

intestine by employing the toxin-coregulated pilus, after which it can cause severe 843 

infection and clinical symptoms through cholera enterotoxin production (210).  844 

 845 

V. cholerae is able to utilize its acetate switch, the shift from elimination to 846 

assimilation of acetate, to increase its own virulence (211). In a Drosophila model, it 847 

was demonstrated that crbRS controlled the acetate switch, while acs1 was required 848 

for acetate assimilation (211). When either of these genes were knocked-out, 849 

mortality decreased. Competition experiments demonstrated that WT V. cholerae 850 

had a growth advantage over ΔcrbS when WT V. cholerae was administered in 851 

minority. This led the authors to suggest that acetate utilization may be important 852 

early in infection, when low levels of V. cholerae cells are present (211). 853 

Furthermore, acetate consumption led to dysregulation of host insulin signaling 854 

pathways, ultimately leading to intestinal steatosis and increased mortality. 855 

Dysregulation of host insulin signaling was not observed in ΔcrbS or Δacs1, further 856 

confirming the role of acetate in V. cholerae virulence (211). 857 

 858 
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V. cholerae has a master regulator, toxT, which can directly activate several 859 

virulence factors including toxin production. Cholera toxin production was reduced by 860 

97% when V. cholerae was grown in presence of bile, which could be reversed after 861 

growing the same cells in bile-free medium for a few hours (212). Ctx and tcpA, 862 

encoding for cholera toxin and the major structural unit of the toxin-coregulated pilus 863 

and regulated by toxT, were highly repressed during bile exposure (212). 864 

Additionally, motility was increased approximately 1.6-fold in presence of bile (212). 865 

To elucidate which exact components of bile acids were responsible for the 866 

repression of these virulence genes, bile was fractionated. It was found that several 867 

unsaturated fatty acids strongly repressed ctx and tcpA and that they upregulated 868 

expression of flrA, leading to increased motility (213). The reason for upregulation of 869 

flrA and downregulation of tcpA could be that the flagellum increases the speed of 870 

passing through the mucus layer, while the pilus would only slow it down. When 871 

lower concentrations of bile at the epithelial surface are encountered, expression can 872 

be reversed (214).  873 

Two outer membrane porins, OmpU and OmpT, are directly regulated by the master 874 

regulator toxR. Upon encountering bile acids, ompU and ompT are regulated in such 875 

a way that bile acid entrance is prevented (215, 216). Furthermore, ΔtoxR mutants 876 

are more sensitive to bile acids due to changed outer membrane composition (215). 877 

Recently, it was shown that toxR also regulates leuO (217). LeuO was demonstrated 878 

to confer bile resistance independent of the two porins, although its exact resistance 879 

mechanism is not yet elucidated (217). 880 

 881 

Bacteriocin resistance in V. cholerae has, to our knowledge, not been studied and 882 

future studies will have to reveal whether any resistance is present.  883 



37 
 

 884 

An important nutrient through which V. cholerae gains a competitive advantage is 885 

sialic acid, a component of the mucus layer. Using streptomycin pre-treated mice 886 

who were given a mutant strain defective in sialic acid transport (ΔsiaM) , it was 887 

shown that sialic acid is not required for initial colonization, but that it is important for 888 

persistent colonization (218). Competition assays of the two mutant strains in mouse 889 

intestine (small intestine, cecum and large intestine) showed that ΔsiaM was less fit 890 

to compete in each environment, further indicating the necessity of sialic acid 891 

utilization for niche expansion of V. cholerae (218). 892 

The El Tor strain may have a competitive advantage over ‘classical’ strains due to its 893 

differential carbohydrate metabolism (219). When grown in a glucose-rich medium, 894 

classical strains display a growth defect as compared to El Tor. It was observed that 895 

this was due to production of organic acids through glucose metabolism, leading to 896 

acidification of the medium. El Tor biotypes were found to produce acetoin, a neutral 897 

compound, and decrease organic acid production. This prevented acidification of the 898 

medium, leading to better growth. El Tor strains were also more successful in 899 

colonizing mice, especially when extra glucose was administered. The classical 900 

types were shown to be able to produce acetoin, but glucose only led to a minor 901 

increase in transcription of genes necessary for acetoin production (219). These 902 

studies have shown that specific metabolic pathways are used by V. cholerae to 903 

successfully colonize the gut. 904 

 905 

One of the first studies on how the mucus layer can potentially be crossed by V. 906 

cholerae was reported almost 50 years ago (220). Here, motile and non-motile 907 

strains were compared for pathogenicity after administration to mice. It was observed 908 
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that motile strains were almost always deadly 36 hours p.i, while most non-motile 909 

strains had a mortality of under 35% (220). One hypothesis offered by the authors 910 

was that together with mucinase, the flagellum could effectively pass the mucus 911 

barrier (220). Specific mucin degradation mechanisms employed by V. cholerae 912 

have been identified since, with hemagglutinin/protease (Hap), and TagA being the 913 

major ones (221-225). Presence of mucins, limitation of carbon sources and bile 914 

acids maximized production of Hap, while glucose could partly reverse this effect 915 

(221). This may indicate that during conditions as encountered in the gut, V. 916 

cholerae quickly aims to cross the mucus layer and be in close contact with the 917 

epithelial cells. TagA, which is similar to StcE as described for EHEC, is also capable 918 

of degrading mucin (222). In conclusion, V. cholerae has developed a way of 919 

sensing environmental conditions, and in response to these, is able to upregulate 920 

virulence factors which can degrade mucins. A simplified overview of V. cholerae 921 

virulence factors opposing CR can be found in Fig. 2.  922 

 923 

Y. enterocolitica 924 

Yersiniosis is mostly contracted through contaminated food or water with Y. 925 

enterocolitica, and its prevalence is much higher in developing countries than in 926 

high-income nations (160, 226). It is characterized by mild gastroenteritis, abdominal 927 

pain and is usually self-limiting, though pseudo-appendicitis illnesses can occur 928 

(160). Virulence is mostly conferred through presence of a 64-75 kb plasmid on 929 

which several virulence genes are present, including yadA, which is crucial for 930 

epithelial adherence (227).  931 

 932 



39 
 

Resistance of Y. enterocolitica against antibacterial compounds has not been much 933 

studied. One study investigated effects of SCFAs on Y. enterocolitica at 4°C, 934 

including acetic acid and propionic acid. Y. enterocolitica was less sensitive to acetic 935 

acid when cultured anaerobically as compared to anaerobic culturing. Propionic acid 936 

was similarly effective in inhibiting growth with both culture methods (228). Even 937 

though conditions like 4°C are not representative for the intestinal environment, this 938 

study might provide some initial clues on the effects of SCFAs on Y. enterocolitica. It 939 

is clear that more research is required to further elucidate potential resistance 940 

mechanisms.  941 

 942 

OmpR, a transcriptional regulator in Y. enterocolitica, is probably able to upregulate 943 

expression of the AcrAB-TolC efflux pump, which, in turn, is regulated by two 944 

components of the efflux pump, acrR and acrAB (229). A mixture of bile acids, but 945 

not the secondary bile acid deoxycholate, was found to be the strongest inducer of 946 

acR and acrAB (229). Whether the upregulation of these efflux pump components 947 

contributes to bile acid resistance, remains to be elucidated.  948 

 949 

Bacteriocin resistance is so far mostly unknown in Y. enterocolitica. WA-314 and 950 

8081 are both 1B:O8 strains that are highly infective in murine models (230). WA-951 

314 possesses a putative colicin cluster for colicin production, but no expression was 952 

observed in a spot-on-lawn assay with 8081 and the colicin-sensitive E. coli K12 953 

(230). It is likely that no specific resistance against colicin is present, as colicin has 954 

been shown to effectively inhibit Y. enterocolitica infections in vivo (59).  955 

 956 
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Like most other enteric pathogens, Y. enterocolitica has sophisticated systems to 957 

acquire sufficient iron. Using these systems, Y. enterocolitica may be more efficient 958 

at scavenging iron than commensal members, thereby providing itself with a 959 

competitive advantage. Y. enterocolitica expresses yersiniabactin, ybt, a highly 960 

efficient siderophore and a crucial component for lethality in mouse models (231, 961 

232). The exact mechanisms for iron uptake and transport have been extensively 962 

reviewed elsewhere (233). Proteomics analysis revealed that Y. enterocolitica 963 

serovar 1A, whose pathogenic role is unclear, uses different proteins to successfully 964 

scavenge iron, as it lacks the Ybt protein (234).  965 

Y. enterocolitica is the only pathogenic Yersinia species which can metabolize 966 

sucrose, cellobiose, indole, sorbose and inositol (235). Additionally, it can degrade 967 

EA and 1,2-PD by using tetrathionate as a terminal electron acceptor (235). 968 

 969 

Mucus layer invasion and adherence of Y. enterocolitica have been elucidated in 970 

great detail several decades ago (236-240). The YadA protein is used for initial 971 

attachment to the mucus (240). The preferential binding side on mucins is their 972 

carbohydrate moiety, but binding to mucin proteins is also possible under specific 973 

conditions (238). Y. enterocolitica uses a plasmid, pYV, with mucin-degradation 974 

enzymes to thin the mucus layer, facilitating crossing of the mucus layer (237, 240). 975 

Y. enterocolitica containing the pYV plasmid is not only able to successfully invade 976 

and degrade the mucus layer, but is also highly efficient in multiplying in this 977 

environment (240). After interacting with the mucus layer, its bacterial cell surface 978 

was altered so that Y. enterocolitica became less efficient in colonizing the brush 979 

border (240). This may be a host response mechanism to prevent Y. enterocolitica 980 

invasion in deeper tissues. In a rabbit infection model, persistent goblet cell 981 
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hyperplasia and increased mucin secretion was observed throughout the small 982 

intestine over 14 days (236). The extent of hyperplasia was associated with severity 983 

of mucosal damage, indicating a compensatory mechanism. Mucin composition 984 

changed in infected rabbits, with a decrease in sialic acid and an increase in sulfate 985 

(236).  986 

 987 

L. monocytogenes 988 

L. monocytogenes causes listeriosis, a food-borne disease. Listeriosis is not highly 989 

prevalent, with an estimated 23,150 people infected in 2010 worldwide, but has a 990 

high mortality rate of 20-30% (241). The most common syndrome is febrile 991 

gastroenteritis, but complications can develop, such as bacterial sepsis and 992 

meningitis (241). This is especially relevant for vulnerable patient groups, such as 993 

immunocompromised individuals, neonates and fetuses (242). Virulence genes are 994 

present on an 8.2-kb pathogenicity island, which includes internalin genes necessary 995 

for invading host cells (243). 996 

 997 

Culturing L. monocytogenes in presence of high levels of butyrate leads to 998 

incorporation of more straight-chain fatty acids in the membrane (244, 245). This is 999 

not a natural state for L. monocytogenes, as normally its membrane consists for a 1000 

very high percentage of branched-chain fatty acids. When subsequently exposed to 1001 

LL-37, it displays a survival defect as compared to bacteria not grown in presence of 1002 

butyrate (244). It was not elucidated whether this survival defect was due to 1003 

increased stress, altered membrane composition or differentially regulated virulence 1004 

factors. Effects of propionate on L. monocytogenes growth, metabolism and 1005 

virulence factor expression are dependent on temperature, oxygen availability and 1006 
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pH (246). Therefore, it is not possible to ascribe a general function to propionate in 1007 

relation to L. monocytogenes.  1008 

  1009 

L. monocytogenes possesses several bile acid resistance mechanisms, and in vitro 1010 

transcriptome and proteome analyses have provided insight into these. 1011 

Transcriptomics analysis revealed that in response to cholic acid, amongst others, 1012 

two efflux pumps were upregulated, mdrM and mdrT (247). BrtA was shown to 1013 

regulate expression of the efflux pumps, and to be able to sense bile acid levels. 1014 

Bacterial abundance was determined in multiple organs of mice infected with 1015 

knockout strains of either efflux pump, but not in the intestine (247). Proteomic 1016 

analyses found many changes in response to bile salts and included proteins 1017 

associated with efflux pumps, metabolism and DNA repair (248).  1018 

Bile salt hydrolases (BSH) are another way of combatting encountered bile acids. It 1019 

was demonstrated that all Listeria species which infect mammals showed BSH 1020 

enzyme activity. BSH was crucial during infection of guinea pigs, demonstrated by 1021 

the decreased ability of Δbsh to cause a persistent infection (249).  1022 

At decreased pH levels, e.g. in the duodenum, bile salts are more acidic and show 1023 

higher toxicity (250). However, this toxicity seems to be strain-dependent (251). The 1024 

strain responsible for a 2011 outbreak even displayed higher bile resistance at pH 1025 

5.5 than at 7.0, further indicating that bile susceptibility may be strain-dependent 1026 

(251). 1027 

As discussed in the introductory section on bacteriocins, the Abp118 bacteriocin 1028 

produced by L. salivarius, protected mice from L. monocytogenes infection (55). 1029 

However, several bacteriocins have been shown ineffective against L. 1030 

monocytogenes and responsible mechanisms have been partly elucidated. Innate 1031 
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nisin resistance has been associated with multiple loci (252). One crucial gene was 1032 

anrB, encoding for a permease in an ABC transporter. Loss of this gene resulted in 1033 

high sensitivity, not only to nisin, but also to several other bacteriocins (252). The 1034 

mannose phosphotransferase system (Man-PTS), encoded by mptACD, is a main 1035 

sugar uptake system and two of its outer membrane proteins, IIC and IID, can serve 1036 

as a class II bacteriocin receptor (253). In natural resistant and spontaneous 1037 

resistant strains, a reduced expression of mptC and mptD was observed, although 1038 

this could not be linked to receptor mutations (254). The mpt operon is partly 1039 

regulated by manR, and a manR mutant did not show any activation of the mpt 1040 

operon (255). Development of bacteriocin resistance was to some extent dependent 1041 

on available carbohydrates (256). Several sugar sources impaired growth of L. 1042 

monocytogenes when exposed to bacteriocin leucocin A. Increased sensitivity to 1043 

leucocin A was hypothesized to relate to sugar uptake by Man-PTS. When specific 1044 

sugars are present, cells may not downregulate this system even in presence of 1045 

bacteriocins, which possibly allows leucocin A to use the Man-PTS as a docking 1046 

molecule (256). Not only does L. monocytogenes display bacteriocin resistance, it 1047 

also produces a bacteriocin, Lysteriolysin S, which modifies the gut microbiota such 1048 

that intestinal colonization is promoted (257). Allobaculum and Alloprevotella, genera 1049 

known to contain SCFA-producing strains, were significantly decreased in mice 1050 

treated with Lysteriolysin S. L. monocytogenes strains unable to produce 1051 

Lysteriolysin S were impaired in competing with native gut microbiota and colonized 1052 

less efficiently (257). 1053 

 1054 

Most reports about metabolic adaptations of L. monocytogenes have logically 1055 

described intracytosolic adaptations, as L. monocytogenes replicates intracellularly 1056 
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(258). Limited information is available on nutrient competition of L. monocytogenes 1057 

inside the lumen. Comparison of genome sequences between colonizing Listeria and 1058 

non-colonizing Listeria led to identification of, amongst others, a vitamin B12-1059 

dependent 1,2-propanediol (1,2-PD) degradation pathway in colonizing Listeria, 1060 

dependent on the pduD gene (259). Mice were co-infected with a ∆pduD strain and a 1061 

WT strain. Within 3 hours after feeding, a large amount of the ∆pduD was shed in 1062 

feces and 21 hours later the number of viable cells decreased significantly. At ten 1063 

days p.i, the ∆pduD strain was completely cleared, while the WT strain shed for up to 1064 

four more days. This indicates that the ability to degrade 1,2-PD offers L. 1065 

monocytogenes a distinct competitive advantage (259). 1066 

 1067 

Multiple adhesins and internalins have been characterized which facilitate L. 1068 

monocytogenes retention in the mucus layer (260-263). InlB, InlC, InlL and InlJ were 1069 

demonstrated to bind to MUC2, but not to epithelial cell surface MUC1 (262, 263). 1070 

Histopathological analysis of a listeriosis rat model revealed that L. monocytogenes 1071 

was present in the mucus layer after less than 3 hours p.i (261). At this time point, 1072 

very few L. monocytogenes were present on the epithelial cells (261). 1073 

 1074 

Bacterial defense mechanisms against bacteriophages 1075 

As research investigating how each enteric pathogen overcomes CR by rendering 1076 

bacteriophages ineffective is still in its infancy, this general section will describe the 1077 

most employed resistance mechanisms. The bacteriophage infectious cycle involves 1078 

a lytic and a lysogenic cycle. Phages have to bind to a receptor on the bacterial 1079 

surface to be able to insert their genomic material, usually DNA, into the bacterial 1080 

cytoplasm and subsequently circularize their DNA (264). Here, lysogenic and lytic 1081 



45 
 

bacteriophages’ mechanisms start to branch (Fig. 3). Lytic phages start DNA 1082 

replication, assemble their proteins and pack their DNA into the typical 1083 

bacteriophage shape with a capsid head and tail. After sufficient replication, phages 1084 

use lytic enzymes to form holes in the bacterial cell membrane, eventually leading to 1085 

lysis of the cell and phage spreading. Lysogenic phages integrate their DNA in the 1086 

bacterial chromosome and become prophages. Reproduction is then ensured 1087 

through vertical transmission, and upon induction, prophages can also enter the lytic 1088 

cycle (265) (Fig. 3). In general, factors that induce the lytic phase are compounds or 1089 

conditions with bactericidal effects, e.g. a DNA damaging-agent (266).  1090 

 1091 

The first step for preventing bacteriophage infection is to prevent surface receptor 1092 

recognition. Outer membrane vesicles are produced by Gram-negative bacteria and 1093 

have several functions, including interbacterial communication (267). They have 1094 

highly similar surface composition as the bacterium and may thereby serve as 1095 

decoys for attacking phages (268) (Fig. 3). Indeed, V. cholerae outer membrane 1096 

vesicles were shown to neutralize a V. cholerae specific phage in a dose-dependent 1097 

manner (Fig. 2) (268). This effect was only seen when the O1 antigen, the 1098 

bacteriophage target on V. cholerae, was included in the outer membrane vesicle 1099 

structure (268).  1100 

V. cholerae possesses another mechanism to prevent O1 phage receptor 1101 

recognition (269) (Fig. 3). Two genes necessary for O1 biosynthesis were shown to 1102 

use phase variation to induce variation in the O1 antigen composition (269). Mutants 1103 

using phase variation were resistant to the O1 antigen phage, but displayed impaired 1104 

colonization in a mouse model (269). As the O1 antigen is an important virulence 1105 
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factor, e.g. for immune evasion, this demonstrates that enteric pathogens constantly 1106 

have to deal with multiple CR mechanisms (269). 1107 

 1108 

The second step in phage infection is injection of its DNA, and this can be prevented 1109 

by superinfection exclusion systems which are mostly coded by prophages (Fig. 3). 1110 

The E. coli prophage HK97 encodes for gp15, a probable inner transmembrane 1111 

protein (270). Remarkably, HK97 gp15 has putative homologues resembling the 1112 

YebO protein family in many Enterobacteriaceae (270). GP15 prevented DNA 1113 

injection into the bacterial cytoplasm by preventing proper formation of a complex 1114 

consisting of an inner membrane glucose transporter and part of the tape measure 1115 

protein (270, 271). This example illustrates how bacteria can incorporate phage DNA 1116 

to prevent itself against future phage attacks.  1117 

 1118 

DNA replication can be prevented by restriction-modification systems (Fig. 3). These 1119 

systems consist of a methyltransferase and a restriction endonuclease. Exogenous 1120 

DNA is not tagged by this methyltransferase, while ‘self’ DNA does get tagged (272, 1121 

273). Subsequently, non-tagged DNA can be cleaved. This system is viewed as a 1122 

primitive innate bacterial defense system. However, it was found that this system is 1123 

not perfect, as these restriction-modification systems can also attack self-DNA (274).  1124 

 1125 

Currently, many groups are actively investigating the adaptive bacterial immune 1126 

system CRISPR-Cas and this has been extensively reviewed elsewhere (275, 276). 1127 

CRISPR-Cas is present in about 45% of sequenced bacterial genomes, although it is 1128 

unknown if its prevalence is similar in gut bacteria (277, 278). In short, it consists of 1129 

CRISPR arrays, sets of short repetitive DNA elements with variable DNA sequences 1130 
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(spacers) separating the repetitive DNA sets, and of an operon of CRISPR 1131 

associated genes (Cas). Spacers are pieces of foreign DNA, derived from 1132 

bacteriophage DNA or other mobile genetic elements such as plasmids. The defense 1133 

mechanism consists of adaptation followed by expression and interference. During 1134 

adaptation, Cas proteins can recognize foreign phage DNA and integrate a piece of 1135 

this DNA as a new spacer into the CRISPR array. This allows the bacterium to build 1136 

an immunological memory of all phages it previously encountered. The expression 1137 

response entails transcription of the CRISPR array, followed by processing into 1138 

smaller RNA pieces (crRNAs). CrRNAs consist of two outer parts of repeated DNA 1139 

sequences, with a spacer in between. To form the eventual Cas-crRNA complex, 1140 

crRNAs are combined with at least one Cas protein. This complex then travels 1141 

through the bacterial cell and when it identifies a complementary DNA sequence, 1142 

representative for the previously encountered bacteriophage, it cleaves and 1143 

degrades this foreign DNA.  1144 

 1145 

In 2015, a novel phage resistance system was discovered, called bacteriophage 1146 

exclusion (BREX) (279). BREX is able to block DNA replication, but does not prevent 1147 

bacteriophage attachment to the bacterium (Fig. 3). It also uses methylation as 1148 

guidance to identify self and exogenous DNA, but is different from restriction-1149 

modification systems as it does not cleave exogenous DNA (279). Almost 10% of all 1150 

bacterial genomes sequenced were found to have this BREX, suggesting that it is 1151 

quite a conserved defense mechanism against bacteriophages (279). In spite of this 1152 

promising defense mechanism, no further papers have been released regarding 1153 

BREX functioning in e.g. pathogenic bacteria.  1154 

 1155 
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Bacterial cells can perform an apoptosis-like action called abortive infection, resulting 1156 

in death of the infected cell and hereby protecting surrounding bacterial cells (280) 1157 

(Fig. 3). These systems have not been much elucidated for enteric pathogens at a 1158 

molecular level, though, relevance of this system has been shown for the gut 1159 

bacteria S. dysenteriae and E. coli (281, 282). The abortive infection systems are 1160 

best studied in L. lactis, a bacterium widely used in production of fermented foods 1161 

(283). 1162 

 1163 

CONCLUDING REMARKS  1164 

Currently, bacterial enteric infections still cause a heavy disease burden worldwide. 1165 

For many bacterial pathogens, the virulence factors involved in infection are 1166 

understood, but less is known concerning the failure of gut microbiota to provide 1167 

colonization resistance against these enteropathogens. A more comprehensive 1168 

understanding of why the microbiota fail to confer sufficient CR could lead to 1169 

development of specific therapies aiming to restore CR. It is likely that not a single 1170 

bacterium will be used as the ‘holy grail’ to restore CR, but that bacterial consortia 1171 

with complementary functions will be used instead. This would be preferable over the 1172 

currently often used FMT, where it is not well known what exact components are 1173 

transferred to the patient. One could imagine that these consortia could not only be 1174 

used to treat existing infections, but that they could also be administered 1175 

prophylactically in susceptible patient groups. In addition, more attention has recently 1176 

been given to several drugs that were previously not linked to gut health for their 1177 

potentially disturbing effect on gut microbiota and perhaps CR. In conclusion, we 1178 

reviewed many of the latest insights in the rapidly evolving fields of gut microbiota, 1179 
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colonization resistance and bacterial enteric infection. We are looking forward to the 1180 

coming years, where undoubtedly more knowledge will be gained on gut microbiota 1181 

and CR, ultimately leading to more microbiota-based therapies.  1182 
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FIGURE LEGENDS 1980 

FIG 1 Outline of gut microbiota-mediated colonization resistance mechanisms. Fiber 1981 

obtained from the diet is fermented by gut microbiota into short-chain fatty acids 1982 

(SCFAs). Bacteriocin producers produce bacteriocins capable of targeting a specific 1983 

pathogen. Primary bile acids can be converted by a very select group of gut 1984 

microbiota into secondary bile acids, which generally have antagonistic properties 1985 

against pathogens. Nutrient competition of native microbiota can limit access to 1986 

nutrients for a pathogen. Specific organisms can use SCFAs, bacteriocins and 1987 

primary bile acids to increase their virulence, as will be discussed in later sections.  1988 

 1989 

Fig 2 Vibrio cholerae uses a wide array of mechanisms to overcome CR. First, it 1990 

employs its acetate switch to use acetate for upregulating its own virulence. 1991 

Bacteriocin resistance remains to be mostly elucidated. To protect itself from 1992 

bacteriophages, V. cholerae produces outer membrane vesicles (OMVs) which act 1993 

as a decoy binding site for the attacking phages (see section: Bacterial defense 1994 

mechanisms against bacteriophages). Regulation of outer membrane porins is such 1995 

that they prevent entry of bile acids when they are encountered. By employing 1996 

specific mucin-degrading enzymes, V. cholerae releases sialic acid and 1997 

subsequently metabolizes it. 1998 

 1999 

Fig 3 Lytic and lysogenic bacteriophage infection cycle with bacterial defense 2000 

mechanisms. The first two steps (1 and 2) of infection are identical for the lytic and 2001 

lysogenic cycle, namely phage binding followed by DNA insertion and DNA 2002 

circularization. The lysogenic cycle then branches off by integrating its DNA into the 2003 

bacterial chromosome and becoming prophage, thereby ensuring its replication (3b). 2004 
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Only upon encountering induction factors will the prophage leave the bacterial 2005 

chromosome, after which it can enter the lytic cycle (4b and 5b). In the lytic cycle, 2006 

phage DNA and protein is replicated and subsequently assembled into full phages 2007 

(3a and 4a). The phages then lyse the bacterial cell, are released and can infect 2008 

other bacteria (5a). Bacteria possess multiple mechanisms to prevent killing by 2009 

bacteriophages, starting with blocking attachment. This can be achieved through 2010 

phase variation or production of OMVs. After phage DNA entry, CRISPR-Cas can 2011 

recognize this foreign DNA and degrade it. Phage DNA and protein replication can 2012 

be prevented by BREX and restriction modification systems, while full phage 2013 

assembly can be prevented by abortive infection.  2014 

 2015 
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