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Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects

the joints. Microbial infection is considered a crucial inducer of RA. Alterations

in the composition of intestinal bacteria in individuals with preclinical and

established RA suggest a vital role of the gut microbiota in immune dysfunction

characteristic of RA. However, the mechanisms by which gut dysbiosis

contributes to RA are not fully understood. Furthermore, multiple therapies

commonly used to treat RA may alter gut microbiota diversity, suggesting that

modulating the gut microbiota may help prevent or treat RA. Hence, a better

understanding of the changes in the gut microbiota that accompany RA should

aid the development of novel therapeutic approaches. This mini-review

discusses the impact of gut dysbiosis in the pathogenesis of RA, the selection

of gut microbiota-related biomarkers for diagnosing RA, and provides

examples of cross-modulation between the gut microbiota and some drugs

commonly used to treat RA. Some suggestions and outlooks are also raised,

which may help guide future research efforts.
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Introduction

Rheumatoid arthritis (RA) is a chronic, immune-mediated disease in which multiple

immune cell types and signaling networks misfunction to elicit a maladaptive tissue

repair process; this leads to organ damage, predominantly in the vascular system, lungs,

and joints (1). RA affects ~1% of the population worldwide (2), and its pathogenesis may

be linked to genetic and environmental factors (3, 4). At present, the specific pathogenesis

of RA is not well understood.

Humans are one of the most complex microbial ecosystems on the planet, hosting

over 100 trillion bacteria, mainly in the distal gut (5). Some gut bacteria species can

induce autoimmunity in genetically predisposed animal models (6, 7). Dysbiosis of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007165/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007165/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007165/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1007165&domain=pdf&date_stamp=2022-09-08
mailto:qindong108@163.com
mailto:haiqingshan@163.com
mailto:lzf0817@126.com
https://doi.org/10.3389/fimmu.2022.1007165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1007165
https://www.frontiersin.org/journals/immunology


Zhao et al. 10.3389/fimmu.2022.1007165
specific bacterial lineages and alterations in gut microbiota

metabolism led to changes in the host immune profile that

contribute to RA (8). It has been proposed that the mechanism

by which gut microbiota imbalance leads to RAmay be related to

regulation of immune function by metabolites produced by gut

microbes (9, 10). Immune T and B cells have position-specific

phenotypes and functions in the mucosa, influenced by the

microbiota (11). In turn, bacterial peptidoglycan components

are found in the synovial tissue of RA patients, which may

contribute to inflammation within the microenvironment of the

joint (12, 13). Substantial data published in the past few years

demonstrate that an altered composition of the gut microbiota in

RA patients is one of the major factors triggering aberrant

systemic immunity (14–16). Notably, different strains of gut

bacteria can have profoundly different regulatory effects on

immune system function. Some strains can stimulate an

immune response, benefiting immunocompromised patients,

while others can suppress the immune response, affecting

immune regulation in RA patients (17–21). For example,

segmented filamentous bacteria (SFB) have a unique ability to

drive T helper 17 (Th17) cell accumulation in the small

intestine’s lamina propria through SFB-derived antigens

presented by dendritic cells (22–24). In contrast, the

colonization of Bacteroides fragilis is associated with enhanced

activity of regulatory T cells (Tregs), which may alleviate

autoimmune disease (25, 26). Therefore, the relative

abundance of different bacterial lineages may lead to changes

in the host immune profile and drive inflammatory responses

contributing to RA.

This mini-review discusses the role of the gut microbiota in

the pathogenesis of RA, summarizes the diagnostic value of gut

microbe-based biomarkers, and outlines mutual influences

between the gut microbiota and some drugs used to treat RA.

Some suggestions and outlooks are also raised to guide future

research efforts.
Role of the gut microbiota in the
pathogenesis of RA

Numerous studies highlighted a critical role of the gut

microbiota in RA pathogenesis, through mechanisms

including mainly production of proinflammatory metabolites,

impairment of the intestinal mucosal barrier, and molecular

mimicry of autoantigens.
Inflammatory factors and regulation of
the immune response

The gastrointestinal tract hosts the majority of immune cells

in the body, with constant interaction with the gut microbiota
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shaping their function and phenotypes. The gut microbiota

mediates constant bidirectional communication with the host

immune system in a delicate balance of inducing pathogenic

infection or residing in the human body in a commensal state

(27). The innate immune cells in the gut-associated lymphoid

tissue comprise the first-line of defense against xenobiotics from

the gastrointestinal tract. Disturbed gut microbiota can trigger the

aberrant activation of innate immune cells, which leads to the

upregulation of proinflammatory cytokine including interleukin-

12 (IL-12), IL-23, and type I interferons, etc., as well as reduction

of anti-inflammatory cytokines including transforming growth

factor b and IL-10, etc. (28). Moreover, the adaptive lymphocytes

are critical players in autoimmunity, and aberrant activation of T

and B cells instigates RA. Gut pathogens with proinflammatory

capacities can reshape the immunemilieu through innate immune

overactivation, followed by aberrant activation of the adaptive

immune system. Microbial antigens can be presented to CD4+ T

cells by dendritic cells and macrophages, leading to differentiation

of inflammatory T cell subtypes. Th17 cells are a subset of

proinflammatory CD4+ T cells characterized by production of

interleukin-17 (IL-17) (23). Tregs are also derived from CD4+ T

cells, show instead immunosuppressive actions, and may inhibit

Th17 responses (29, 30). Studies have demonstrated that an

increased Th17/Treg ratio is closely related to RA, and that the

Th17/Treg balance is strongly regulated by gut microbiota and

their metabolites (31, 32). Microbial antigens can also induce

overactivation of B lymphocytes with the help of T follicular

helper cells, differentiating into plasma cells and producing

pathogenic autoantibodies. This may influence the pathogenesis

of RA (28). Therefore, the dysbiosis gut microbiota, inflammatory

factors, and immune responses are interrelated and jointly affect

the development of RA (33) (Figure 1).
Intestinal barrier dysfunction

The intestinal mucosal barrier, formed and maintained by

the intestinal epithelium, serves to isolate harmful substances in

the intestinal lumen and prevent the invasion of pathogenic

antigens. The gut integrity is impaired in RA patients, which

leads to the translocation of microbes across the gut barrier into

gut tissue and even circulation. Gut microbiota can promote the

overactivation of innate and adaptive immunity in the local

tissue, resulting in systemic immune dysregulation (28). In

addition, disturbed gut microbiota can also trigger the

migration of autoreactive cells to the joints, causing local joint

inflammation (34). Autoreactive cells activate macrophages,

resulting in inflammatory cytokine production. Further,

cytokines such as tumor necrosis factor-alpha (TNF-a), IL-6,
and IL-1 can induce fibroblasts to produce matrix

metalloproteinases and receptor activator of nuclear factor kB
ligand, which mediate destruction of the bone and cartilage

tissue, leading to the development of RA (35) (Figure 1). A study
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007165
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.1007165
has shown that Collinsella aerofaciens, a commensal gut

bacterium found to be overrepresented in RA patients, reduces

the expression of tight junction proteins in human intestinal

epithelial cells and increases disease incidence in HLA-DQ8
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transgenic mice subjected to collagen-induced arthritis (CIA) by

disrupting the integrity of the intestinal mucosa (36). In contrast,

Faecalibacterium prausnitzii, a prominent member of the

human commensal gut microbiota whose abundance is
B

C

D

A

FIGURE 1

Gutmicrobiota in the pathogenesis of rheumatoid arthritis (RA) and effects of RA therapeutic drugs on the gutmicrobiota. (A)Changes in the composition of
gutmicrobiota at different stages of RA. Levels of Prevotella copri and Lactobacillus are increased, while those of Bacteroidetes, Bifidobacteria and Eubacterium
rectale are decreased, at an early stage; Abundance of Lactobacillus salivarius,Collinsella, and Akkermansia is increased, while that ofHaemophilus spp. is
decreased, in the active RA phase. (B) RA treatment drugs can improve gutmicrobiota imbalance and relieve disease symptoms, mainly includingmethotrexate,
sulfasalazine, hydroxychloroquine, etanercept, and traditional Chinesemedicine. (C)Gutmicrobiota can lead to damage of the epithelium and to the opening
of the paracellular pathway and can cross the epithelium and get in contact with the immune cells beneath the epithelial layer, which leads to inflammation.
Furthermore, bacterial antigens promote activation of autoreactive immune cells (B cell and T cell) in the lymphoid tissues, resulting in an imbalance between
regulatory T cells (Tregs) and T helper 17 (Th17) cells, leading to expansion of inflammatory response. Activated B cells produce autoantibodies (anti-citrullinated
protein antibody and rheumatoid factor). (D)Gutmicrobiota imbalance can trigger themigration of autoreactive cells to the joints, causing cartilage and bone
damage.① Bacterial antigens trigger promotes inflammation in synovial membrane, attracting leukocytes into the tissue.② Autoreactive cells activate
macrophages, resulting in inflammatory cytokine production.③Cytokines induce fibroblasts to produceMMPs (matrix metalloproteinases) and RANKL
(receptor activator of nuclear factor kB ligand), whichmediate destruction of bone and cartilage tissue, leading to the development of RA.
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reduced in patients with RA, was shown to sustain intestinal

barrier function, maintain Th17/Treg balance, and exert

significant anti-inflammatory effects (37). These findings

indicate that changes in gut microbiota diversity may impair

intestinal mucosal permeability, facilitating the onset of RA (38,

39). can trigger the migration of autoreactive cells to the joints,

causing cartilage and bone damage.
Molecular mimicry

Molecular mimicry is a mechanism by which pathogen-

derived antigens that share sequence homology with self-

peptides may lead to cross-activation of autoreactive T or B

cells, triggering autoimmunity. Many identical peptides between

human tissues and gut microbes bind to HLA-II alleles. The

autoimmune candidates have been shown to be enriched in

bacterial species belonging to the Firmicutes and Proteobacteria,

which may have a higher disease impact in genetically susceptible

individuals (40). N-acetylglucosamine-6-sulfatase and filamin A

were identified as T- and B-cell-targeted autoantigens in more

than 50% of RA patients (41). The HLA-DR-presented N-

acetylglucosamine-6-sulfatase peptide has marked sequence

homology with epitopes from sulfatase proteins of the Prevotella

sp. and Parabacteroides sp., whereas the HLA-DR-presented

filamin A peptide has homology with epitopes from proteins of

the Prevotella sp. and Butyricimonas sp., another gut commensal

(41). In turn, the presence of shared sequences between Collinsella

and DRB1*0401 suggested that Collinsella may induce RA

through molecular mimicry (36). These findings thus identify

molecular mimicry as a plausible link between disrupted mucosal

immune tolerance and systemic immunity in RA patients.
Other factors

Gut microbiota composition can alter sex hormone levels to

affect the occurrence of RA. Sex hormone deficiency increases

intestinal permeability, thereby increasing the number of Th17

cells in peripheral blood and the levels of osteoclastogenic

cytokines RANKL, IL-17 and TNF-a, promoting bone

resorption (42). Clostridium can produce enzymes that

catalyze the conversion of glucocorticoids into androgens,

exerting immunomodulatory effects (43). Implying a strong

connection between periodontitis and RA, Porphyromonas

gingivalis, a major pathogen in periodontitis, promotes

citrullination of proteins and production of anti-citrullinated

protein antibodies, a hallmark of RA. This is mediated by

production of peptidyl arginine deiminase (PAD) and

leukotoxin A, which triggers in turn endogenous PAD

activation in neutrophils (44). Besides, several metabolites

including short-chain fatty acids, serotonin, as well as plant

enzymes in the gut can also influence RA (45). However, despite
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major advances, the mechanisms linking dysbiosis of the gut

microbiota and RA remain still incompletely characterized.
Gut microbiota biomarkers for
diagnosing RA

Early diagnosis of RA is critical to provide prompt treatment

to slow down joint damage. Scher et al. (2013) reported that the

abundance of Prevotella copri was increased, while that of

Bacteroidetes was decreased, in patients with early RA; the

presence of P. copri was correlated with a reduction in the

abundance of other bacterial groups, including many beneficial

microbes (46). Transplanting gut microbiota (with a high

abundance of Prevotella) from patients with early RA into

germ-free SKG mice can induce severe arthritis (47). In

addition, increased number and species of intestinal

Lactobacillus were observed in early RA patients than in

healthy individuals (48). Studies have shown that the

monocontamination of germ-free IL-1 receptor antagonist–

deficient (IL1rn-/-) mice, which develop spontaneous arthritis

due to excessive IL-1 signaling, with indigenous Lactobacillus

bifidus resulted in rapid onset of arthritis that reached incidence

rate and severity scores comparable to those recorded in non–

germ-free mice (49). It was in turn reported that in early RA

patients the fecal microbiota contained significantly less

Bifidobacteria, B. fragilis, and Eubacterium rectale than in

patients with fibromyalgia (50).

In the active period of RA, depletion of Haemophilus spp. in

the patients’ gut, teeth, and saliva correlated negatively with RA

severity and serum antibody levels. In contrast, Lactobacillus

salivarius was present in increased amounts in cases of very

active RA (16). Meanwhile, gut microbiota analysis revealed

higher relative abundances of the genera Collinsella and

Akkermansia in patients with active, compared to inactive, RA

disease status (51). A study indicated that treatment with

Collinsella exacerbated CIA in HLA-DQ8 transgenic mice (36).

These observations reaffirm the impact of alterations in the gut

microbiota on RA severity and suggest that changes in gut

microbiota composition may serve as markers for the

diagnosis of RA. However, further research is needed to

conclusively identify reliable gut microbiota biomarkers for

diagnosing RA (Figure 1).
Therapeutic modulation of the gut
microbiota and impact of gut
microbes on the efficacy of
RA drugs

The gut microbiota was found to predict drug response in

RA (52). On the other hand, in recent years oral probiotics and
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fecal flora transplantation have shown promising results when

used as adjuvant therapy for treating RA, by directly and

indirectly modulating the gut microbiota. Indirect regulation

of gut microbiota in RA patients and animal models is also

exerted by disease-modifying anti-rheumatic drugs (DMARDs),

traditional Chinese medicine (TCM) herbs and prescriptions,

and by adjusting diet structure.
Direct regulation of gut microbiota

Probiotics, defined as “live microorganisms that, when

administered in adequate amounts, confer a health benefit on

the host” (53), can reduce the abundance of pathogenic bacteria

by competing for nutrition and colonization sites. At the same

time, probiotics can alleviate RA symptoms by producing

antibiotics and strengthening the intestinal barrier, with

beneficial modulation of the immune function (54). Studies

conducted in rats with adjuvant-induced arthritis (AIA)

showed that oral administration of L. casei or L. acidophilus

reduced arthritic inflammation, pannus formation, and cartilage

destruction (55–57). More recently, it was reported that

administration of L. casei to AIA rats significantly suppressed

arthritis and protected against bone loss by reducing dysbiosis of

the gut microbiota (58). However, supplementation with L.

reuteri and L. rhamnosus GG did not significantly reduce RA

disease activity (59, 60), suggesting that different Lactobacillus

species may act differently on RA.

Fecal microbiota transplantation (FMT) refers to the

introduction of gut microbiota obtained from the feces of a

healthy donor into a patient’s gastrointestinal tract (61).

Normalizing the gut microbiota through FMT may potentially

improve RA symptoms. A case of a patient with refractory RA

successfully treated with FMT indicated that FMT may have an

excellent therapeutic effect on RA (62). However, clinical studies

examining the efficacy of FMT in RA patients are so far scarce.
Indirect regulation of gut microbiota

DMARDs may indirectly affect and remodel the structure

and function of gut microbiota to regulate systemic immunity.

Studies have demonstrated that microbial differences in the

gastrointestinal tract of RA patients may partially determine

the bioavailability and subsequent clinical outcome of

methotrexate (63, 64). In turn, methotrexate treatment was

shown to partially restore normal gut microbiota composition

in RA patients (16, 65). Thus, the gut microbiota may be a

predictor of clinical response to methotrexate, influencing the

treatment response rate.

Another DMARD, i.e. sulfasalazine, is cleaved by the action

of bacterial azoreductases in the large intestine into sulfapyridine

and mesalazine (66, 67). Sulfapyridine affects the immune
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system and appears to normalize lymphocyte activity by

regulating gut microbiota (68). A study in active RA patients

showed that sulfasalazine therapy led to a substantial fall in fecal

counts of Clostridium perfringens and Escherichia coli (69).

Furthermore, sulfasalazine treatment significantly altered fecal

microflora of RA patients by reducing total aerobic bacteria,

Bacteroides, and Escherichia coli, and increasing the numbers of

Bacillus (70). However, thorough characterization of the effects

of sulfasalazine therapy on the gut microbiota in RA is

still lacking.

Treatment with etanercept, a TNF-a antagonist, was shown

to beneficially impact gut microbiota composition. In RA

patients, etanercept treatment was associated with enrichment

of Cyanobacteria, including members of the Nostocophycideae

class and the Nostocales order (which were not represented

among naïve patients), as well as with decreased abundance of

Clostridiaceae and Deltaproteobacteria (71). In CIA mice,

etanercept treatment led to decreased microbial community

richness and diversity, increasing the abundance of Escherichia

and Shigella and decreasing the abundance of Clostridium XIVa,

Tanner e l l a , and Lac tobac i l l u s (72 ) . In con t ra s t ,

hydroxychloroquine treatment in RA patients was associated

with increased intestinal bacterial richness and diversity,

suggestive of restoration of normal microbiota. In addition,

the abundance of Faecalibacterium, found to be decreased

prior to treatment, was positively correlated with the use of

hydroxychloroquine (36, 71).

Numerous studies indicated that TCM-based therapies

provide significant curative effects and elicit minor adverse

reactions in RA (73). Notably, part of the beneficial effects of

TCM on RA may be ascribed to regulation of the intestinal flora.

Mei et al. (2021) showed that depletion of Clostridium celatum in

RA patients could be reversed by treatment with the Huayu-

Qiangshen-Tongbi formula (74). Administration of total

glucosides of paeony to CIA rats corrected 78% of the

taxonomic differences in microbial structure, while also

increasing the relative abundance of certain forms of beneficial

commensal bacteria (75). Similarly, most of the 19 types of

bacteria found to be altered at the family level in CIA rats could

be regulated by the Zushima tablet (76). It was also reported that

Qingluo Tongbi decoction can effectively ameliorate arthritis in

AIA rats at least partly by decreasing inflammatory responses

regulated by the gut microbiota (77).

In addition to therapeutic drugs, dietary nutrients also affect

the composition and function of the gut microbiota and may

thus have an important impact on the prevention and treatment

of RA. Dietary fiber, abundant in vegetarian diets, can improve

gut microbiota composition in RA patients and reduce joint pain

(78). Reducing the intake of carbohydrates can help improve the

balance of intestinal flora and immune function (79, 80). The

omega-3 polyunsaturated fatty acids can help to maintain

the intestinal barrier integrity and interact with host immune

cells (81). A low ratio of omega-3/omega-6 fatty acids has been
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007165
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.1007165
shown to promote inflammation, increasing the risk of RA (82,

83). Increased sodium intake can also increase the risk of RA

(84). Studies have confirmed that a high-salt diet may lead to

dysbiosis of gut microbiota, which promotes the micro-

inflammatory state and autoimmune processes (85, 86).

Indeed, several clinical trials have demonstrated that RA

severity can be alleviated through dietary interventions (87).

Thus, a better understanding of the mutual influences between

the gut microbiota and some drugs or dietary nutrients will help

to achieve optimal therapeutic effects for RA.
Perspectives and conclusion

After decades of research, the fundamental role of the gut

microbiota in health and disease is now firmly established. It is

thus widely recognized that the gut microbiota can affect almost

all aspects of the host, and its dysregulation is associated with

dysregulated immune tolerance and RA development. Indeed,

changes in the gut microbiota can precede the onset of RA and

are closely related to disease activity afterwards. Analysis of gut

microbiota composition can also predict susceptibility to RA,

and has become a useful method to predict and control RA

incidence. Furthermore, the human gut microbiota and their

enzymatic products can affect the bioavailability, clinical efficacy,

and toxicity of a wide array of drugs through direct and indirect

mechanisms. Conversely, various medicines and active

ingredients modulate immune cell function by normalizing the

composition of the gut microbiota. Although significant

variations in some specific microbial communities have been

detected in association with RA, further research is needed to

clarify the role of the gut microbiota in RA and its impact on the

mechan i sms of ac t ion and e fficacy o f DMARDs .

Notwithstanding, mounting evidence indicating that targeted

modulation of the gut microbiota may alleviate RA suggests that

personalized treatment approaches based on patient

microbiome profiles may increase drug efficacy, lower toxicity

risk, and improve clinical outcome.
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