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Abstract 

Background: As more animal studies start to disentangle pathways linking the gut microbial ecosystem and neu-

robehavioral traits, human studies have grown rapidly. Many have since investigated the bidirectional communication 

between the gastrointestinal tract and the central nervous system, specifically on the effects of microbial composition 

on the brain and development.

Methods: Our review at the initial stage aimed to evaluate literature on gut microbial alterations in pediatric neu-

robehavioral conditions. We searched five literature databases (Embase, PubMed, PsychInfo, Scopus, and Medline) and 

found 4489 published work. As the mechanisms linking gut microbiota to these conditions are divergent, the scope 

of this review was narrowed to focus on describing gut dysbiosis in children with autism spectrum disorder (ASD).

Results: Among the final 26 articles, there was a lack of consistency in the reported gut microbiome changes across 

ASD studies, except for distinguishable patterns, within limits, for Prevotella, Firmicutes at the phylum level, Clostridi-

ales clusters including Clostridium perfringens, and Bifidobacterium species.

Conclusions: These results were inadequate to confirm a global microbiome change in children with ASD and 

causality could not be inferred to explain the etiology of the behaviors associated with ASD. Mechanistic studies are 

needed to elucidate the specific role of the gut microbiome in the pathogenesis of ASD.
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Background
Autism spectrum disorder (ASD) refers to a developmen-
tal and neurobehavioral condition characterized by defi-
cits in social communication and social interaction across 
multiple contexts with restricted, repetitive patterns of 
behaviour, interests, or activities [1]. Recent data sug-
gest that as many as 1 in 59 children are diagnosed with 
ASD, although other reports not using parental report 
and school age children generally show a prevalence of 

1% globally, with little regional variations in developed 
countries within North America, Western Europe, Cen-
tral Latin America, and Asia Pacific [2–7].

�ere is no single known cause for all ASD-related 
behaviors. Current research alludes to multifactorial eti-
ologies including genetic risk factors, de novo mutations, 
gene-environment interactions, and environmental fac-
tors such as in utero exposures and perinatal events [2, 
8]. Due to reports suggesting that children with ASD 
have increased prevalence of gastrointestinal symptoms 
including constipation, diarrhea, and abdominal discom-
fort, researchers have started to examine the differences 
in gut microbiome composition in these children [9–12].
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Longitudinal studies on adults with ASD indicate that 
37 to 59% have poor outcomes [13]. �e average life-
time cost of supporting an individual with ASD is esti-
mated to be at least USD$1.4 million in the United States 
and £0.92 million in the United Kingdom [14]. When a 
child has concurrent intellectual disability, this cost rises 
to USD$2.4 million and £1.5 million, respectively [14]. 
While autism-specific behavioral therapies have strong 
data supporting outcome improvement, there has not 
been reliable evidence on the effectiveness of environ-
mental modifications including diet, antifungals, fecal 
microbiota transplants, heavy metal chelation, and vac-
cine avoidance. �e intention of this review is not to 
discuss potential ways for intervention through gut 
microbiome modulation. Rather, it is to take a closer look 
at whether the plethora of literature published provides 
consistent evidence on features of gut microbiome altera-
tions associated with ASD and to establish the strength 
of evidence.

A new wave of interest in gut microbiome and autism 

spectrum disorder

Human studies have shown that children exposed 
to maternal inflammation during pregnancy have an 
increased risk for ASD, yet the mechanisms for this 
are poorly understood [15–17]. Since then, promising 
results from a number of landmark animal studies have 
revived considerable interest in linkages between ASD 
and the gut microbiome [18–21]. �ese animal studies 
have provided new evidence on mechanisms by which 
inflammation and gut microbiota influence neurobehav-
iors. For instance, pregnant mice with intestinal bacteria 
that induced activation of the maternal immune system, 
termed maternal immune activation (MIA), produced 
offspring with impaired sociability and repetitive marble 
burying behaviours [19]. �ese MIA-associated behav-
iours were reminiscent of ASD symptoms in humans. 
Furthermore, cortical patches dominantly localized in 
the primary somatosensory cortex were affected by MIA 
and were closely associated with these behavioral abnor-
malities [18].

Animal studies have also shown that changes in micro-
biota lead to changes in behaviors. Raising animals in the 
absence of microbial colonization, also called gnotobi-
otic environment, resulted in abnormalities in a variety 
of complex behaviours. For example, germ-free mice 
tended to exhibit decreased sociability and less propen-
sity to interact with unfamiliar partners [22]. �ese same 
mice were found to have abnormalities in brain gene 
expression, display changes in their hypothalamic–pitui-
tary–adrenal axis, and demonstrate adult hippocampal 
neurogenesis [22, 23]. Reintroduction of bacterial strains 
or restoration of gut microbial ecology in mice resulted 

in normalization of social behaviours. In one study, treat-
ment with the gut bacterium Lactobacillus reuteri (L. 

reuteri) alone sufficiently reversed ASD-like symptoms in 
mice [21]. Alteration of the postnatal gut microbiota by 
early life treatment with the human gut bacterium Bac-

teroides fragilis (B. fragilis) also sufficiently ameliorated 
deficits in communicative and stereotypic burying behav-
iour in mice offspring exposed to MIA. A recent study 
showed that postnatal colonization with human “infant-
type” Bifidobacterium species showed improved behav-
iours for gnotobiotic mice [24]. Together, these animal 
studies have hastened interest in human studies compar-
ing gut microbiota between individuals with and without 
ASD.

The human gut microbiota

�e human gut microbiota contains a complex and 
dynamic population of microorganisms, which are 
believed to exert a broad effect on the host. Firmicutes 
and Bacteroidetes are two major microbial phyla in the 
gut. Both phyla are susceptible to alterations due to fac-
tors such as age, genetics, diet, environment, and infec-
tion and have roles related to immune dysregulation (e.g. 
lupus systemic erythematosus), systemic diseases (e.g. 
metabolic syndrome), and neurological disorders (e.g. 
Parkinson’s disease) [25].

�e Firmicutes/Bacteroidetes ratio has been shown 
to change with age, with a ratio of approximately 0.4 in 
infants and as high as 10.9 in adults [26]. Among infants, 
there is also variability in the relative abundance of Firmi-
cutes and Bacteroidetes. �e most recent research dem-
onstrates that clusters of infants with similar abundances 
of Firmicutes (i.e. the family Ruminococcaceae) and Bac-
teroidetes are associated with distinct cognitive and lan-
guage profiles [27]. Studies on microbiome composition 
and ASD appear to suggest a trend of increased Firmi-
cutes/Bacteroidetes ratio and reduced Bacteroides in the 
ASD groups compared to controls, leading prior reviews 
on this topic to support a role for the microbiome as an 
interface between environmental and genetic risk factors 
that are associated with ASD [28, 29].

However, there has not been a comprehensive review 
that systematically (1) evaluates the dysbiosis described 
in children with ASD based on bacterial taxonomy from 
phylum to species, (2) investigates whether results of 
dysbiosis are congruous in all cases, and (3) summarises 
both positive and negative findings down to species in all 
the studies captured. As such, our review aims to pro-
vide a detailed dissection of the current literature on gut 
microbiota and ASD.

To better understand this review, it is important to 
clarify that Autistic Disorder (AD) and Pervasive Devel-
opmental Disorder, not otherwise specified (PDD-NOS) 
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are now both under the umbrella diagnosis of ASD in the 
Diagnostic and Statistical Manual for Mental Disorders, 
Fifth Edition, better known as DSM-5 (1). Studies pub-
lished before DSM-5 with the diagnoses of AD and PDD-
NOS are reported as ASD severe symptoms (severe) and 
ASD mild symptoms (mild), respectively, in this review 
to keep consistent with the current classifications.

Methods
Identi�cation of studies

A Preferred Reporting Items for Systematic Reviews 
and Meta-analyses (PRISMA) flow diagram of the study 
process is provided in Fig.  1. We conducted a system-
atic search of five literature databases to identify stud-
ies showing gut dysbiosis in neurological disorders. �e 
databases searched were Embase, Medline, PsycINFO, 
PubMed and Scopus. All databases were searched in 
three waves, September 2017, August 2018, and April 
2019, using the search criteria listed in Additional file 1: 
Table  S1. �e collections of papers were reviewed and 
duplicates were eliminated both electronically and man-
ually. Articles were then screened based on titles and 
abstracts for eligibility.

�e inclusion criteria were studies pertaining to (1) 
children under the age of 18 years of age with clinically 
diagnosed ASD, (2) more than 10 enrolled participants, 
(3) gut microbiota with descriptive and inferential statis-
tics, and (4) full text peer-viewed articles. Exclusion crite-
ria included studies with non-human subjects, single case 
reports or reviews, participants with genetic disorders 
that were associated with a high prevalence of ASD (e.g. 
Rett syndrome), concomitant condition of major diseases 
of the intestinal tract, as well as publication date earlier 
than January 2000 or after May 2019. We used 10 as the 
cutoff for the number of participants in our inclusion cri-
teria. �is parameter was chosen to ensure sufficient het-
erogeneity in the sample and to reduce the possibility of 
Type II errors.

Assessment of 23 articles for final inclusion was based 
on full text by authors L.H. and V.T. Disagreements on 
nine papers were resolved and arbitrated by authors 
E.C.L and N.S., and consensus was reached in all cases. 
Subsequently, the reference sections of all eligible articles 
were reviewed by E.C.L. and an additional three studies 
were found, which resulted in 26 articles.

Data extraction

Data reported from each study were manually extracted 
from the full text articles to a database including: (1) study 
location, (2) study sample size for both case subjects and 
controls, (3) study type (longitudinal, cross-sectional, 
prospective, retrospective, randomized), (4) participant 
age range, (5) diagnostic criteria or assessment used, (6) 

molecular and microbiology methods, (7) interventions 
used, and (8) statistical results related to the gut microbi-
ome. �ese were reported in Table 1.

Quanti�cation and statistical analysis

All reported outcomes were organized into tables show-
ing detailed differences in the gut microbiome from the 
phylum down to the species between case subjects with 
ASD and control groups. When studies implemented 
interventions, we also noted differences reported before 
and after the interventions. Results of each study were 
summarized as increased, decreased, or no change in 
relative abundance (percentage), absolute abundance 
(counts), or variety of each microorganism. To ensure a 
rigorous review, observational data without inferential 
statistics were not included. For results with statistical 
comparisons, both positive and negative findings were 
reported regardless of significance. When inferential sta-
tistics were completed yet no p-values or 95% confidence 
intervals could be found, the authors of this review used 
the data generated by the original authors and conducted 
tests of statistical significance. �e majority of these 
tests included chi-square tests of independence for non-
parametric, categorical data, two-sample and/or paired 
t-tests, and one-way analysis of variance (ANOVA). 
�ese analyses were completed using IBM SPSS Statis-
tics, Version 22 (SPSS Inc., Chicago, IL).

Results
In total, 26 papers [30–55] were selected for this system-
atic review (PRISMA Fig.  1; search criteria Additional 
file  1: Table  S1). Two studies [52, 53] belonged to the 
same cohort but were both included in the synthesis of 
this systematic review because the gut microbes exam-
ined were different.

A summary of the papers used is provided in Table 1, 
including methodological techniques and the rigor of 
how ASD had been diagnosed. �e detailed results from 
each study are presented in different tables (Tables 2, 3, 4 
and 5), grouped according to bacterial taxonomic classifi-
cation for easy comparison.   

Changes to alpha and beta diversity

In metagenomics, alpha diversity represents the richness 
and the diversity of the microbiome in a single ecosys-
tem. QIIME Operating taxonomic unit (OTU) counts, 
Chaos1, and Shannon index are commonly used to cal-
culate alpha diversity. Based on the results of 11 papers 
that examined alpha diversity, there were no consistent 
patterns when comparing alpha diversity in children with 
ASD versus alpha diversity in siblings (SIB) and healthy 
controls (HC; Additional file  1: Table  S2). Two stud-
ies showed increases [31, 33] and six studies showed no 
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significant changes in alpha diversity [36, 42, 43, 48, 50, 
54]. �e last three studies indicated decreases; however, 
the studies came from one laboratory [39–41].

Beta diversity refers to the total variance in microbial 
community composition across varying environments. 
Bray–Curtis dissimilarity, Jaccard distance, and UniFrac 

are examples of indices used in the calculation. Among 
the seven [31, 36, 40–42, 48, 50] papers that reported on 
beta diversity, four [31, 40, 41, 50] papers showed signifi-
cant differences in beta diversity between ASD and SIB/
HC while the rest did not (Additional file 1: Table S2).

Fig. 1 PRISMA flow diagram
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Changes to Bacteroidetes

Six studies provided results on Bacteroidetes at the phy-
lum level (Table  2). Only one study [33] demonstrated 
an increase in the percentage of Bacteroidetes in chil-
dren with ASD, classified as “severe”, compared to HC 
(p = 0.001). Authors of this current review used data from 
this one study [33] and conducted t-tests to compare 

children labeled as “mild” against HC. We found that 
despite having “mild” ASD in the study, the percentage 
of Bacteroidetes in these children was still significantly 
increased compared to controls (p = 0.0012). �e rest of 
the studies observed either a decrease in Bacteroidetes 
percentage [50, 54] or no significant differences between 
cases and controls [31, 36, 48].

Table 2 Changes in Bacteroidetes phylum between children with ASD and healthy controls

Order/Family Genus/species
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Bacteroidetes Phylum

Bacteroidaceae Bacteroides

B. fragilis

B. vulgatus

Porphyromonadaceae

Parabacteroides

Porphyromonas

Prevotellaceae Prevotella

Rikenellaceae

Alis�pes

A. putredinis

Arrows indicate whether the strains are increased (⇑), reported as no signi�cant di�erence (⇒), or decreased (⇓) in (1) count (light grey), (2) percentage of the total 

microbiota (dark grey), and (3) variety (black); single arrow denoting p < 0.05, double arrows denoting p < 0.01

HC = healthy controls; SIB = sibling without ASD; Autistic Disorder = Severe; Pervasive Developmental Disorder, not otherwise speci�ed (PDD-NOS) = Mild

a Described in text without de�nitive p-values

b Ages 13–18 only

c Ages below 6 only
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Table 3 Changes in Firmicutes phylum between children with ASD and healthy controls
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/species
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Fifteen studies reported findings at the genus and/or 
species level of Bacteroidetes. Similar to the phylum Bac-
teroidetes as a whole, results from these studies were not 
consistent. �e only genus with a more recognisable pat-
tern was Prevotella. Seven out of fifteen studies described 
Prevotella and none of them showed a higher relative 
abundance in the stools of children with ASD when com-
pared to controls. Instead, these seven studies showed 
either a non-significant result in relative abundance [41, 
48, 50, 52] or a lower relative abundance in children clas-
sified as ASD versus SIB or HC [31, 39, 42]. �ere was 
no specific pattern in the absolute abundance of Prevo-

tella. For all other genera and species (Table  2), studies 

generally contradicted each other and different laborato-
ries found varying composition of Bacteroidetes species.

�e other 24 detected species in the Bacteroidetes 
phyla were described in only one study each; hence, no 
summary could be made. However, we have included the 
results of all these species in Additional file 1: Table S3.

Changes to Firmicutes

Table  3 shows changes in the phylum of Firmicutes. 
At the phylum level, none of the six studies showed an 
increase in absolute or relative abundance [31, 33, 36, 
48, 51, 54]. �e two studies on absolute abundance 
did not reveal any differences between ASD, SIB, and 
HC [48, 51]. For relative abundance in both total and 

Table 3 (continued)
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Arrows indicate whether the strains are increased (⇑), reported as no signi�cant di�erence (⇒), or decreased (⇓) in (1) count (light grey), (2) percentage of the total 

microbiota (dark grey), and (3) variety (black); single arrow denoting p < 0.05, double arrows denoting p < 0.01

HC = healthy controls; SIB = sibling without ASD; Autistic Disorder = Severe; Pervasive Developmental Disorder, not otherwise speci�ed (PDD-NOS) = Mild

a Described in text without de�nitive p-values

b Ages 13–18 only

c Ages below 6 only
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Table 4 Changes in Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia phyla between children with ASD 

and healthy controls.
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metabolically active Firmicutes, the studies demonstrated 
either a decrease [31, 33, 36] or no significant differences 
between children with ASD, SIB, and HC [48, 51, 54].

Interestingly, from a Clostridiales cluster standpoint, 
the studies on Cluster I and Cluster II, as well as Clus-
ter XI, while few, collectively suggested an increase in 
children with ASD [45, 49, 51, 52, 54]. Studies with nega-
tive findings were present, although none of the stud-
ies showed a decrease in these Clostridiales clusters. 
Clostridium perfringens at a species level had evidence 
for increased absolute and relative abundance in chil-
dren with ASD versus typically developing children [34, 
38, 44]. Cluster XIVa and XIVb, however, were quantita-
tively similar in percentage [52] and counts [45, 48, 49] 
in the available four studies. Many studies have focused 
on Clostridium as a genus and the method of addressing 
Clostridium quantity were not the same, with four stud-
ies using the number of counts, three using percentage of 

the total microbiota, and one using diversity within the 
genus as outcomes. �e differences in methodology ren-
der the meta-analysis of these studies inconclusive.

In the families of Eubacteriaceae, Christensenellaceae, 
Lachnospiraceae, and Ruminococcaceae, the results were 
inconsistent. In the order Lactobacillales and family 
Streptococcaceae, Streptococcus results (not S. thermo-

philus) corroborated an overall decrease in counts and 
percentage in ASD cases when statistical significance was 
reached [30, 31, 33, 37, 41]. Staphylococcus species were 
not extensively studied.

An additional 83 species were reported in Additional 
file  1: Table  S4. As there was a paucity of studies pub-
lished on these species, no firm conclusions could be 
made.

Table 4 (continued)
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Arrows indicate whether the strains are increased (⇑), reported as no signi�cant di�erence (⇒), or decreased (⇓) in (1) count (light grey), (2) percentage of the total 

microbiota (dark grey), and (3) variety (black); single arrow denoting p < 0.05, double arrows denoting p < 0.01

HC = healthy controls; SIB = sibling without ASD; Autistic Disorder = Severe; Pervasive Developmental Disorder, not otherwise speci�ed (PDD-NOS) = Mild

a Described in text without de�nitive p-values

b V1V2 datasets are statistically signi�cant, but not V1V3

c V1V3 datasets are statistically signi�cant, but not V1V2
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Changes in Proteobacteria, Enterobacteria, Actinobacteria, 

and other phyla

Members of the phylum Proteobacteria have a low abun-
dance in the gut of healthy humans. However, several 
studies have observed correlations between an increase 
in abundance of Proteobacteria and diseased states [56]. 
As such, results from studies which measured changes 

to Proteobacteria were synthesised and presented in 
Table 4.

At the phylum level, no significant differences were 
observed in Proteobacteria between the two groups 
except one study indicated an increase in percentage [33]. 
Despite speculation that Sutterella was increased in chil-
dren with ASD [53, 55], this was not true in every study. 

Table 5 Changes in Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria after intervention
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Arrows indicate whether the strains are increased (⇑), reported as no signi�cant di�erence (⇒), or decreased (⇓) in (1) count (light grey), (2) percentage of the total 

microbiota (dark grey), and (3) variety (black); single arrow denoting p < 0.05, double arrows denoting p < 0.01

HC = healthy controls; SIB = sibling without ASD; Autistic Disorder = Severe; Pervasive Developmental Disorder, not otherwise speci�ed (PDD-NOS) = Mild

a Described in text without de�nitive p-values
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�ere were three studies suggesting no significant differ-
ences [38, 41, 48] and one suggesting a decrease [44], but 
this particular study included adolescents in their cohort.

�ere were insufficient studies examining the family 
Enterobacteriaceae. �e general trend, however, supports 
no alterations in E. coli for children in ASD in five stud-
ies [30, 35, 42, 48, 52] vs one study [31] documenting a 
decrease in E. coli percentage among other microbiota. 
Actinobacteria as a phylum did not reveal any compelling 
results [33, 36, 48]; however, upon a closer look at Bifi-

dobacterium, consistently lower counts and proportions 
were found in children with ASD versus their siblings [31, 
52] or controls [30, 38, 47]. Only one study with a small 
sample size of 10 children with ASD contradicted this 
finding [51]. In this study, participants’ microbiome com-
position were likely different, as they were all from the 
eastern region of Central Europe and their diets might 
consist of different dairy products like sheep cheese and 
sour milk.

Fusobacteria phylum suggested a lower relative abun-
dance in children with ASD vs unaffected siblings, 
although one study [48] demonstrated the opposite in 
terms of Fusobacterium absolute numbers. No specific 
findings were identified in the Verrucomicrobia phylum 
[31, 33, 36, 39, 48] and in the Verrucomicrobiaceae family 
[31, 37, 39, 41, 52].

Within these phyla, 42 additional bacterial species were 
described by the 26 studies, but were either unclassified 
or only measured by one study. We have listed positive 
and negative findings of each species in Additional file 1: 
Table S5. However, no comparisons or conclusions could 
be made from the limited number of studies on each 
species.

Intervention studies involving a change in abundance 

of bacterial subtypes

�e growing focus on the gut-brain axis led many 
researchers to perform studies which aimed to identify 
ways where the reversal of alterations in the gut micro-
biome could produce therapeutic effects on ASD symp-
toms, such as by administering probiotics or by changing 
diets of children with ASDs.

One study investigated the effect of administer-
ing vitamin A [43] on children with ASD and found an 
increase in abundance on the Bacteroidetes phylum level 
(Table 5). Both Bacteroides species and Prevotella species 
levels increased post-treatment. On the other hand, all of 
the other phyla and genera measured showed a decrease 
in abundance. Post-vitamin A administration, significant 
increases were also seen in other forms of biomarkers, 
including plasma retinol, CD38 and RORA mRNA levels. 
However, no changes were seen in the ASD symptoma-
tology of the study participants [43].

�ree other studies [46, 47, 51] examined the effects 
of probiotics on gut microbiome composition. �e first 
one [46] showed that probiotics consisting of Lactobacil-

lus plantarum WCSD1 decreased the bacterial counts of 
Clostridium clusters XIVa and XIVb and increased Lac-

tobacillus species. However, behavioral improvements on 
ASD children, as reported on the Development Behav-
iour Checklist, were not significantly different between 
the probiotic feeding and placebo regimes. In another 
study where probiotics consisting of L. acidophilus, L. 

rhamnosus, and Bifidobacteria longum were used, both 
Lactobacillus and Bifidobacterium species increased [47]. 
Contrary to the first study, significant improvements in 
the severity of autism, as assessed by the Autism Treat-
ment Evaluation Checklist (ATEC), were found in this 
second study. In the third study involving probiotic sup-
plementation with Lactobacillus 60%, Bifidumbacteria 
25%, Streptococcus 15% [51], a decrease in Firmicutes 
phylum and Desulfovibrio was observed after probiotics 
intervention. Surprisingly, a decrease in Bifidobacterium 
was found after probiotics and no significant changes 
were found in the Lactobacillus species, which contra-
dicted aforementioned studies [43, 47, 52]. �is third 
study did not describe the therapeutic effects of probiot-
ics on ASD behaviors [51].

Microbiota transfer therapy (MTT) was also performed 
in a recent study and bacterial composition before and 
after MTT treatment were collected. After MTT inter-
vention, an increase in the absolute abundance of Prevo-

tella, Bifidobacterium, and Desulfovibrio species was 
observed. Additionally, clinical assessments showed that 
behavioral ASD symptoms improved significantly and 
remained improved 8 weeks after treatment ended [40].

Comparing changes in species across the various inter-
ventional studies, only Lactobacillus and Prevotella spe-
cies showed a more consistent increase after probiotics 
interventions. However, it is important to note that each 
study used probiotics of different bacterial species. As 
such, purposeful conclusions cannot be drawn directly 
for comparison.

Discussion
In the works reviewed, children diagnosed with ASD 
have various forms of dysregulation of the microbiome 
when compared to siblings or unrelated children without 
the ASD profile. Since each individual study describes 
a restricted and different bacterial composition, direct 
comparison between strains with similar classification is 
limited. However, the data follow a more consistent pat-
tern for a few strains. Relative and absolute Clostridia 
clusters I, II, and XI are not found to be decreased in the 
gut microbiome of children with ASD when compared 
to those without. Similarly, the relative and absolute 
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abundances of Firmicutes at the phylum level, Strep-

tococcus at the genus level, Prevotella species, and Bifi-

dobacterium species are not increased in children with 
ASD versus non-sibling controls. Of note, in all stud-
ies reviewed including intervention ones, the absolute 
abundance of Bifidobacterium species is significantly 
decreased in children with ASD compared to non-sibling 
controls, and the species is also significantly increased 
after intervention. Despite some recognizable patterns, 
the majority of microorganisms reviewed from phyla to 
species have disparate results across different studies. 
Hence, to date, gut microbial composition by itself does 
not provide a predictive biomarker for ASD and the sin-
gle technology of high-throughput sequencing will need 
to be integrated with multiple sources of omics data (e.g. 
proteomics, transcriptomics, metabolomics, microRNAs 
and exosomes) to produce potential signatures for the 
spectrum of symptoms in individuals with ASD.

Although a direct causal mechanism of microbiome 
in the etiology of ASD in humans cannot be validated at 
this time, the gut microbiome likely alters brain functions 
through various other mechanisms, including environ-
mental factors (e.g. in utero exposure to infection, mater-
nal conditions, and medications), host genetics, host 
immune response regulation [12, 57, 58], excretion of 
metabolites such as tyrosine analogues, p-cresol, 4-eth-
ylphenylsulfate, indoles, lipopolysaccharides and free 
amino acids [59-62], regulation of neurotransmitters and 
their receptors [21, 63], or neuroactive compounds [61, 
62, 64].

Alterations of the host immune responses by gut 
microbiota are closely linked to ASD-related symptoms. 
�e implicated cytokine pathways include, and not lim-
ited to, IL-5, IL-15, IL-17, IL-17a, IL-10, IL-1b, TNF-
α, TGF-β1 and IFNγ [12, 18, 65, 66]. Interestingly, the 
gut microbiota has recently been shown to influence 
the immune system directly via activation of the vagus 
nerve [67, 68]. Furthermore, gut microbiota-derived 
short-chain fatty acids (SCFAs), such as propionic acid 
[69, 70] and butyric acid [71, 72], produced by bacterial 
fermentation of carbohydrates have immunomodula-
tory properties, e.g. upregulating genes associated with 
immune activation [69], regulating T cells and cytokine 
production [70], microglia homeostasis during develop-
mentally sensitive periods [73], and neuronal excitability 
[74], and have recently been used in vivo in the treatment 
of inflammatory conditions such as inflammatory bowel 
diseases [75]. In addition to understanding microbiome 
composition differences in children with ASD, there is a 
need to investigate the patterns of dysregulation in their 
immune responses as well as to look more upstream 
at the maternal immune response during pregnancy. 
Prior literature has substantiated that infections during 

pregnancy have been correlated with increased frequency 
of neurodevelopmental disorders in offspring [16, 17, 76–
78]. Specifically, there is an association between ASD and 
maternal infection requiring hospitalization during preg-
nancy, elevated C-reactive protein, and a family history 
of autoimmune diseases. �us, future studies will need to 
explain the bidirectional and possibly transgenerational 
roles of microbiome alterations and immune pathways 
on behaviours.

A promising development in this field points to the 
need to consider interactions between host genetics 
and microbial composition. Differences in microbiome 
diversity have been shown to be partially attributed by 
genotype and sex [79–83]. In a rodent model, Tabouy 
et  al. [84] used the Shank3 KO mice and demonstrated 
that specific bacterial species (i.e. L. reuteri) were sensi-
tive to an autism-related mutation, were decreased in 
abundance, and positively correlated with the expression 
of gamma-aminobutyric acid (GABA) receptor in the 
brain. Treatment with L. reuteri resulted in an increase 
of both GABA receptor gene expression and protein lev-
els in brain regions of mice, which also corresponded to 
improvements in social engagement. It is noteworthy to 
mention that there is a paucity of research examining 
the interactions of host genetics and microbial dysregu-
lation in humans with ASD. Perhaps it is worthwhile to 
isolate individuals with the same autism-related genotype 
and investigate for potential dysbiosis in their microbi-
ome, along with changes in gene expression and/or in 
brain structure. Likewise, studies suggesting therapeutic 
potential for probiotic treatment has currently looked at 
individuals with the ASD profile as a whole. Future stud-
ies may consider subgroup analysis (e.g. responders vs 
non-responders) to understand the potential differences 
between subgroups.

Lastly, the gut microbiome’s contribution to neurologi-
cal development and regulation has been implicated and 
demonstrated in animal models [85]. For example, gno-
tobiotic animals demonstrate heightened hypothalamic-
pituitary response, elevated plasma adrenocorticotropic 
hormone and corticosterone, and reduced brain-derived 
neurotrophic factor (BDNF) expression levels in the 
cortex and hippocampus [86]. Absence of colonization 
results in differential expression of proteins involved in 
synaptogenesis [87] and atypical development [88]. Sub-
sequent microbial colonization reverses these processes. 
Furthermore, gut microbiota manufactures neuroactive 
chemicals and influences levels of circulating 5-hydroxy-
tryptamine (5-HT) and serotonin, thereby altering fetal 
neuronal cell synaptogenesis [89] and neuronal mor-
phogenesis [90], respectively. Although mounting evi-
dence is accumulating for microbiome’s role in neural 
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development, the precise nature of how multiple systems 
interact or overlap remain poorly defined.

�e variety of protocols for sampling and characteri-
zation of microbial ecology among included studies also 
warrant discussion. Since the human microbiome exhib-
its considerable spatial and temporal variability, single 
samples obtained from a specific anatomical site may not 
be representative of its true diversity at any given time 
and may especially fail to capture rarer or less abundant 
taxa. Heterogeneity also exists with regards to workflows 
for specimen storage and processing, and factors such as 
shipping time and ambient temperature are established 
to influence the microbial composition in poorly-handled 
specimens. In terms of experimental procedures, high-
throughput nucleic acid-based interrogation represent 
the most common technique used in included studies. 
However, interpretation of the collective results across 
studies may be constrained by the lack of standardization 
of experimental protocols and is further hampered by 
suboptimal inter-platform agreement and measurement 
reliability. Finally, with regards to the comparison of 
microbial constituents between ASD cases and controls, 
the issue of multiple testing looms large. For these and 
other reasons, it is essential that the salient findings sum-
marized in the present review are externally validated by 
independent laboratories.

Autism spectrum disorder is a neurobiological disor-
der which is potentially a result of disruptions in nor-
mal brain growth very early in development. �e studies 
reviewed have not reported on the birth or pre-diagnosis 
microbiome of children with ASD. Instead, studies gen-
erally report bacterial diversity after children are diag-
nosed with ASD. It is hard to determine the directionality 
of the association between microbiome differences and 
dietary habits. It is possible that children with ASD have 
greater likelihood of having more unique preferences in 
certain diets and this limited diet variety may account for 
microbiome differences. One study suggests that children 
with ASD may have an increased intake of chia seeds in 
smoothies, which is associated with specific microbiome 
findings [48]. Children with ASD are also sometimes 
placed on non-specific gluten-free, casein-free diets, 
which easily change one’s gut microbiome composition.

�e literature currently lacks prospective studies that 
follow a child from prior to ASD diagnosis, preferably 
as an infant, with repeated objective assessment of ASD 
symptomatology and its trajectory at the same time as 
stool collection for microbiome. Given the long duration 
of such prospective studies, it is unlikely that the same 
environmental conditions such as diet, exposure to anti-
biotics or other medications, pets in the home, exposure 
to livestock, and limits on travel may be imposed on the 
participants, which will further complicate interpretation 

of microbial samples. Nonetheless, ongoing investiga-
tions, such as the National Institutes of Health (NIH) 
Environmental influences on Child Health Outcomes 
(ECHO) study, have already started the collection of 
infant microbiotas with planned serial samples. When 
these studies are complemented with mechanistic experi-
ments in animal models, they can be powerful in giving 
insight into human biology.

Research studies of this kind requires the involvement 
of professionals with clinical expertise in children with 
ASD. In this review, only a few studies have involved 
developmental specialists and psychologists who are 
apt in monitoring changes in ASD symptoms [32, 48]. 
Parent-reported questionnaires, while important to pro-
vide a summary of behaviors within the home setting, 
are not as objective compared to experienced observa-
tions in standardized assessments by psychologists or 
developmental-behavioral pediatricians. �e heterogene-
ous nature of ASD is also a challenge in review studies. 
Further, the diagnostic criteria for ASD and classification 
of ASD into subtypes have been updated in 2013. Older 
studies classifying children into Asperger Disorder, PDD-
NOS, and Autistic Disorder are based on the older edi-
tion of DSM-IV and not the DSM-5. �ere are studies 
to support that these diagnoses do not translate directly 
to an ASD diagnosis on DSM-5 [1, 91]. Future stud-
ies should consider a rigorous diagnosis of ASD and a 
description of the variety of ASD symptomatology in the 
participants, along with documentation of diet, intake of 
probiotics, antibiotics, travels, and episodes of gastroin-
testinal symptoms.

In summary, we provide data to show that the current 
literature on dysbiosis in children with ASD does not 
provide a predictive signature for the condition or symp-
toms. However, researchers may take note of the general 
consistencies found in composition changes of Prevo-

tella, Firmicutes as a whole, three Clostridia clusters, C. 

perfringens, and Bifidobacterium in children with ASD to 
design future studies and to look deeper into the influ-
ence of these microorganisms on multi-system pathways.

�e relationship of the microbiome and social behav-
iors is multifaceted and complex involving not only 
environmental factors and immune responses, but also 
the genetic background of the host. Further suggestions 
for future research include confirming the potential 
therapeutic qualities of specific microbial reconstitu-
tion in humans, dissecting the overlapping pathways 
between the microbiome and various organ systems, 
as well as the use of microbial metabolome and other 
omics platforms to study this topic.
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