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such as Parkinson’s and Alzheimer’s, and its possible thera-
peutic use, taking advantage of the fact that centenarians 
are characterized by an extreme (healthy) phenotype versus 
patients suffering from age-related pathologies. Finally, it 
is argued that longitudinal studies combining metagenom-
ics sequencing and in-depth phylogenetic analysis with a 
comprehensive phenotypic characterization of centenarians 
and patients using up-to-date omics (metabolomics, tran-
scriptomics and meta-transcriptomics) are urgently needed.

Keywords Gut microbiota · Aging · Centenarians · Gut–
brain axis · Host genome

The study of the human gut microbiota: 

methodological aspects

The human gut microbiota (GM) is a highly diverse eco-
system made up of trillions of bacteria populating the gas-
trointestinal tract. This niche establishes a complex, multi-
species apparatus in which every occupant plays a role and 
modulates its own activity in response to signals coming 
from inside and outside the human host [1]. The composition 
of the GM is affected by a plethora of individual, popula-
tion and environmental variables, e.g., age, gender, genetic 
background, biography (type of delivery, breastfeeding or 
formula feeding, use of antibiotics), immuno-biography 
(lifelong immunological experience) and geography (ethnic-
ity, cultural habits, nutrition). These factors over a lifetime 
impinge on the GM, resulting in huge variability and het-
erogeneity of this ecosystem in human beings. This adaptive 
nature of the GM is functional to calibrating the immune 
and metabolic pathways in response to individual needs, and 
has a profound impact on health and disease. Indeed, the 
GM has emerged as a dynamic community able to adapt its 

Abstract The gut microbiota (GM) is a complex, evo-
lutionarily molded ecological system, which contributes 
to a variety of physiological functions. The GM is highly 
dynamic, being sensitive to environmental stimuli, and its 
composition changes over the host’s entire lifespan. How-
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ascribed to variables such as population, diet, genetics and 
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(different genetics and dietary habits) can help to disentangle 
the contribution of aging and non-aging-related variables to 
GM remodeling with age. The current review focuses on the 
role of population, gender and host genetics as possible driv-
ers of GM modification along the human aging process. The 
feedback impact of age-associated GM variation on the GM–
brain axis and GM metabolomics is also discussed. We like-
wise address the role of GM in neurodegenerative diseases 
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composition and functionality to the varying conditions in 
which the human host lives to meet the changing demands 
of host metabolism [2]. Thus, a healthy adult GM structure 
is properly defined as a set of many possible configurations 
which, even when differing in composition, share a compa-
rable degree of diversity and evenness (meaning the number 
of species with an equal distribution in the ecosystem), and 
the ability to preserve the homeostasis of the human host [3]. 
In this elaborate scenario, the most informative approach for 
understanding the role of the GM in its lifelong maintenance 
of host homeostasis would clearly be by longitudinal stud-
ies monitoring individuals over time (years and decades) 
to identify and follow the specific trajectories of their age-
related GM modifications. To date, this kind of analyses has 
not been possible because attention towards the GM is quite 
a recent development, while the most reliable and robust 
longitudinal studies have not collected stool samples across 
the full life span of individuals. Hopefully, new life-long 
longitudinal studies or continuations of existing ones will 
cover this gap.

At present, the best way of grasping the adaptive pat-
tern of human GM as humans age is represented by cross-
sectional studies embracing a wide age range in well-defined 
populations that are relatively homogeneous in genetics and 
lifestyles. Inclusion of “extreme phenotypes”, i.e., individu-
als who are at the extreme ends of a trait distribution (healthy 
subjects versus patients suffering from diseases), can help in 
identifying specific signatures within overall age-related tra-
jectories, regarding genetics, epigenetics, metabolomics, and 
including metagenomics, among other things [4–8]. Such 
is the case of centenarians who represent a clearly defined 
and highly informative “super-control” group, since, unlike 
younger controls, most of them achieved their remarkable 
age by avoiding or perhaps postponing major age-related 
diseases. The strategy of focusing on individuals from well-
defined populations and including the “extreme phenotypes” 
such as centenarians increases one’s power to identify physi-
ological age trajectories, including the last 20–30 years of 
human life which are usually neglected [9]. Comparison 
between data sets obtained from different populations will 
allow us to disentangle changes related to specific genetic or 
lifestyle habits, including diet, from changes related to the 
aging process itself.

The model of centenarians

Centenarians represent the best model of “successful” aging 
showing a lower incidence of chronic illness, a reduction of 
morbidity and an extension of health span in comparison to 
octogenarians and nonagenarians from the same cohort [10, 
11]. Thus, the study of the GM of exceptionally long-lived 
individuals is providing insights into how the GM success-
fully adapts in an extremely long lifespan to the progressive 

age-related environmental (lifestyle, diet, etc.) and endog-
enous changes, contributing to the maintenance of metabolic 
and immunological homeostasis and promoting survival [1, 
8].

Human longevity has a strong familial and genetic com-
ponent [12, 13]. Data from different populations have shown 
that relatives (parents, siblings and offspring) of long-lived 
subjects have a significant survival advantage, a higher prob-
ability of being or becoming long-lived and a lower risk 
of undergoing major age-related diseases [14–17]. Family 
genealogy data from Sardinian centenarian women have 
confirmed that maternal longevity is associated with lower 
infant mortality in offspring [18] suggesting that parents/
mothers who will later become centenarians very likely 
adopt healthier lifestyles for their children. Considering that 
the study of centenarians has some obvious limitations (rar-
ity, lack of an age-matched control group and frailty related 
to extreme age), centenarians’ offspring, representative of 
the elderly age bracket whose lifestyle can still be modified 
to attain better health, may provide a useful model to study 
both genetic and environmental/lifestyle determinants of 
healthy aging [14].

Starting from observation of the profound changes in 
immune responses with age (immunosenescence, i.e., the 
overall age-related remodeling of the immune system [19]) 
and taking into account the increasing amount of experi-
mental data on genetics, proteomics, epigenetics, metabo-
lomics, glycomics, etc. [20], one may conceptualize the 
aging process as a continuous lifelong remodeling of the 
whole human organism [21]. The exceptional phenotype of 
centenarians has been revealed as unexpectedly complex and 
very dynamic, being a unique mixture of adaptive robustness 
and accumulating frailty [21–26] resulting from the ability 
of the centenarian’s organism to respond/adapt to damaging 
stimuli.

According to the dynamics of world population aging, 
a lifelong approach including the last decades of life is 
extremely important if we are to understand the basis of the 
longevity process, considering that the oldest-old are the 
fastest growing segment of the population in many countries. 
It is also interesting to note that the birth cohort is crucial 
in the health outcome of long-lived people. A comparison 
of two Danish cohorts born 10 years apart (1905 and 1915) 
showed that the younger cohort had longer survival and 
scored significantly better on both cognitive tests and the 
activities of daily living scale than the cohort born in 1905, 
despite being 2 years older at the time of assessment. This 
finding suggests that more people are living to older ages 
with better overall functioning [27].

Demographic projections suggest that there will be 3.7 
million centenarians across the globe in 2050. In particular, 
China is expected to have the largest centenarian population, 
followed by Japan, the United States, Italy and India. In this 
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scenario, the global number of persons aged 80 or over is 
projected to increase from 125 million in 2015 to 434 mil-
lion in 2050 with a dramatic hike of the resources needed to 
care for them [28].

Gut microbiota from birth to 100 years 

and beyond

The programming of immune response and metabolic path-
ways is heavily influenced by the interaction between the 
human organism and its GM starting from infancy. This bidi-
rectional relationship in early life has a profound impact on 
health and disease in later life.

A very recent paper has proposed that the progressive 
process of microbial colonization of the human ecosystems 
may be initiated in utero by the microbial populations of the 
maternal placenta and amniotic fluid which share some fea-
tures with the microbiota detected in infant meconium [29]. 
Moreover, during vaginal delivery, a considerable inoculum 
of maternal intrauterine microbes is received by the neonate 
and, after birth, neonatal gut colonization is continued by 
microbes present in maternal milk and feces, with human 
milk factors (e.g., complex polysaccharides and antibodies) 
selectively promoting the growth of mutualistic microbial 
partners. Thus, antibiotic exposure during pregnancy, cesar-
ean section delivery, postnatal antibiotic administration, and 
formula feeding may all alter the early intestinal microecol-
ogy, and these factors have been associated with the risk of 
disease in later life [30–34]. These findings reveal that the 
aging process could also depend on early stimuli and expe-
riences that may exert long-term effects. To the best of our 
knowledge, no studies have correlated the physiological and/
or pathological phenotype of elderly and extremely old indi-
viduals with these initial events shaping the early GM estab-
lishment. For instance, in centenarian databases no data are 
available on the mode of delivery, breast- or other types of 
feeding (wet nurse, animal milk, etc.), nutrition and hygienic 
conditions in the early years of life. Historical anthropology 
studies could shed light on these points.

Starting from life in utero, the gastrointestinal tract is 
colonized by a wide range of bacteria of maternal, dietary 
and environmental origin, which, after assembling them-
selves into a highly interconnected bacterial community, 
co-operate in several vital host functions, including nutrient 
digestion and absorption, immune function, as well as the 
development of an appropriate stress response. This close 
symbiotic relationship makes humans inter-dependent 
“meta-organisms” [35, 36], where the commensal bacteria 
function as a metabolic and endocrine organ [37] and, in 
turn, the human immune system has properly evolved to 
control the physiological life-long low-grade inflammatory 
response triggered by the GM.

The human GM metacommunity is estimated to consist 
of over 1000 different microbial species [38] belonging to 5 
predominant phyla: Firmicutes and Bacteroidetes followed 
by Actinobacteria, Verrucomicrobia and Proteobacteria [39, 
40]. As previously discussed, the GM is a malleable eco-
system, being able to adapt its phylogenetic and functional 
profile to changes in diet, environment, lifestyle, antibiotic 
treatments and stress. In a mutualistic context, this plastic-
ity is functional to optimizing the metabolic and immune 
performance of the host in response to environmental and 
physiological changes, preserving physiological homeostasis 
and health status [41].

The human GM is a complex and dynamic environment, 
which undergoes profound life-long remodeling, some-
times with a concrete risk of maladaptive changes. Indeed, 
in certain circumstances the age-related pathophysiological 
changes in the gastrointestinal tract, modification of life-
style, nutrition [42] and behavior, as well as immunosenes-
cence and “inflammaging” (the chronic low-grade inflam-
matory status typical of the elderly, [23]) strongly impact 
on the GM, eventually forcing maladaptive variations [43]. 
Inflammation, in particular, may result in a higher level of 
aerobiosis and production of reactive oxygen species that 
inactivate the strict anaerobic Firmicutes, while allowing 
a bloom of facultative aerobes, as frequently observed in 
the elderly [41]. These microorganisms (i.e., Enterobac-

teriaceae, Enterococcaceae, Staphylococcaceae), gener-
ally called “pathobionts”, can prosper in an inflamed gut 
as they are relatively oxygen tolerant, getting the better of 
mutualistic symbionts and further supporting inflammation 
[44]. On the other hand, these age-related GM changes can 
compromise the host immune homeostasis in favor of a pro-
inflammatory profile creating a vicious inflammatory circle 
and may contribute to the progression of diseases and frailty 
in the elderly [45–47]. Frailty has been negatively associated 
with GM diversity [48] and Eubacterium dolichum and Egg-

erthella lenta have been found to be more abundant among 
frail individuals, while Faecalibacterium prausnitzii was 
less abundant, thus identifying a GM signature of frailty 
[48]. A very recent publication has demonstrated that germ-
free mice are protected from inflammaging [49]. When these 
mice are co-housed with old, but not young, mice the levels 
of pro-inflammatory cytokines in the blood increase together 
with intestinal permeability and macrophage dysfunction 
[49]. On the whole, these data prove that age-related dys-
biosis is responsible for the age-related increase in systemic 
inflammation. Thus, pursuing a wholesome and adaptive 
GM trajectory during aging is dramatically emerging as a 
key factor in the achievement of healthy aging and mainte-
nance of host homeostasis [50].

The comparison of GM among young adults, the elderly, 
and centenarians has highlighted that the mutualistic changes 
in the composition and diversity of the gut ecosystem do not 
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follow a linear relation with age, remaining highly similar 
between young adults and 70-year-olds and markedly chang-
ing in centenarians. Thus, the GM seems to rest in a stable 
state from the third to the seventh decade of life [51], while 
after 100 years of symbiotic association with the human 
host, it shows a profound, and possibly adaptive, remodeling. 
Further analyses are needed to fill in the age gap between 
70 and 100 years of age and complete the re-construction of 
age-related GM modifications.

Centenarians stand out as a separate population, their 
GM showing high diversity in terms of species composi-
tion (Table 1) [52]. Bacteroidetes and Firmicutes still domi-
nate the GM of centenarians, but Firmicutes subgroups go 
through specific changes with a decrease in the contributing 
Clostridium cluster XIVa, an increase in Bacillus species, 
and a rearrangement of the Clostridium cluster IV compo-
sition. Several butyrate producers (Ruminococcus obeum et 
rel., Roseburia intestinalis et rel., Eubacterium ventriosum 
et rel., Eubacterium rectale et rel., Eubacterium hallii et 
rel., Papillibacter cinnamovorans et rel., and Faecalibacte-

rium prausnitzii et rel.) were found in lower amounts, while 
others (Anaerotruncus colihominis et rel. and Eubacterium 

limosum et rel.) increased in centenarians, suggesting the 
existence of bacteria characteristic of longevity [51].

The GM of centenarians is enriched in facultative anaer-
obe bacteria mostly belonging to Proteobacteria which have 
been redefined as “pathobionts” because, in some circum-
stances, e.g., inflammation, they may escape surveillance, 
prevail over mutualistic symbionts and induce pathology 
[44, 53]. The age-related remodeling of GM (i.e., prolifera-
tion of opportunistic Proteobacteria at the cost of symbiont 
Firmicutes and Bacteroidetes) may contribute to inflammag-
ing and/or is affected by the systemic inflammatory status 
in a sort of self-sustaining loop. Indeed, the changes in GM 
profile observed in centenarians correlate with an increase 
in pro-inflammatory cytokines in the peripheral blood. In 
particular, these exceptionally long-lived subjects show high 
levels of IL-6 and IL-8, which correlate with an enrichment 
in Proteobacteria and a decrease in the amount of certain 
butyrate-producing bacteria [51].

A recent paper reconstructs the longest human microbiota 
trajectory with age by phylogenetic GM analysis of a sizable 
number of Italian young, elderly and extremely long-lived 

subjects (centenarians and semi-supercentenarians, i.e., 
persons who reach the age of 105 years) [8]. According to 
the authors, a core GM comprised of dominant symbiotic 
bacterial taxa (Ruminococcaceae, Lachnospiraceae, Bac-

teroidaceae) loses diversity and relative abundance of its 
members with age, thus decreasing in size. In extreme lon-
gevity, this shrinkage is counterbalanced by an increase in 
longevity-adapted and possibly health-promoting subdomi-
nant species (e.g., Akkermansia, Bifidobacterium, Chris-

tensenellaceae) as well as in their co-occurrence network. 
In addition, the GM of semi-supercentenarians is invaded by 
micro-organisms typical of other niches, such as Mogibac-

teriaceae and Synergistaceae, known to be abundant in the 
periodontal environment. In extremely aged people, cente-
narians and semi-supercentenarians, an overall increase has 
been observed in the GM diversity. Thus, while extremely 
aged people lose some of the most important core compo-
nents of the adult GM, they acquire in parallel a wealth of 
new microbial GM components, including potential pathobi-
onts and allochthonous microorganisms. Along with extreme 
aging, it seems that the host tolerates the consolidation 
of new GM ecosystem balances in the gut, resembling a 
property typical of the ancestral human GM [54, 55]. In 
particular, to understand the GM-host’s co-evolutionary 
trajectory, several studies have been conducted compar-
ing the GM ecosystem of small-scale rural societies and 
that found in a westernized lifestyle [54]. This comparison 
revealed specific GM adaptations to the respective subsist-
ence strategies, including higher diversity and enrichment in 
microorganisms generally considered as pathobionts (e.g., 
Prevotella, Treponema, Bacteroidetes and Clostridiales) in 
the GM from ancestral populations [56, 57]. For instance, 
the GM of Hadza hunter–gatherers from Tanzania showed 
a unique enrichment in metabolic pathways that align with 
dietary and environmental factors peculiar to their foraging 
lifestyle, characterized by a broad-spectrum carbohydrate 
metabolism, reflecting the complex polysaccharides in their 
diet during the rainy season, though it is also equipped for 
the branched-chain amino acid degradation and aromatic 
amino acid biosynthesis typical of their diet during the dry 
season [55, 58]. Such research makes us appreciate the co-
adaptive functional role of the GM in complementing human 
physiology.

Table 1  Changes to the index 
of GM diversity in centenarians 
according to different papers

Diversity Change in centenarians according to

Biagi et al. [51] Biagi 
et al. 
[1]

Wang 
et al. 
[61]

Kong et al. [52] Odamaki 
et al. [70]

Simpson Reciprocal Index of Diversity ↓ ↑
Alpha diversity (Chao Index) ↑ ↑ ↑ ↑
Shannon Index ↑ = ↑ ↑
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Along with these studies, we can thus hypothesize that 
extremely long-lived people are able to rearrange the “mutu-
alistic pact” with the GM, at least partly changing the micro-
bial partners which support host health and physiology. It 
remains to be seen how these persons achieve this goal, and 
if and which environmental and/or genetic host factors are 
involved in this highly adaptive human process.

Gut microbiota in centenarians from different 

continents: Italians versus Chinese and Japanese

In studying the age-related remodeling of the human GM, 
one of the most challenging aspects is to discriminate 
effects due to the aging process per se from those due to 
the modification of diet and lifestyle that aging entails [3]. 
In advanced age, tooth loss, chewing and swallowing prob-
lems, impaired sense of taste and smell and reduced physi-
cal activity strongly affect the quality of diet and lifestyle 
[59, 60] and these, in turn, are very well known short- and 
long-term determinants impacting on GM composition and 
functionality [3].

One effective strategy to disentangle these aspects is to 
compare elderly and long-lived people with different nutri-
tional habits, lifestyles and cultures. Thus, comparison 
between GM of Italian centenarians/semi-supercentenar-
ians and Chinese old people (including centenarians) led 
to identification of gut–microbial signatures during healthy 
aging [52]. The combination of the two datasets suggests 
significant differences in community membership and struc-
tures between the Italian and Chinese long-living groups 
that can be attributed to geographic, genetic and nutritional 
factors (Table 2). However, common features such as to dis-
criminate long-lived from young people were identified in 
both groups [52]. Finally, the GM of the long-living groups 
in both the Italian and Chinese cohorts is also enriched in 
Ruminococcaceae, Akkermansia and Christensenellaceae 
which have been classified as potentially beneficial bacte-
ria and linked to body mass index, immunomodulation and 
healthy homeostasis [52].

Another paper, presenting the Illumina sequencing of 
16S rRNA gene amplicons performed on the GM of cen-
tenarians living in one of the most long-lived villages in 
the world (Bama County, China), confirmed that the GM of 
centenarians was more diverse (count of the unique OTU 
numbers, Chao 1 index) than that of the younger elderly 
[61] (Table 1). The diversity of the GM community is con-
sidered as a key health indicator since it markedly affects 
the health status of the hosts, while a reduced GM diversity 
has been associated with several pathological conditions, 
including autoimmunity (inflammatory bowel disease and 
psoriatic arthritis), antibiotic treatment, Clostridium difficile 
infections, obesity and other metabolic alterations [62–69]. 
These results contrast with previous studies suggesting that 

the microbial diversity of GM was significantly reduced in 
centenarians [51]. However, in Biagi et al. [51] the GM was 
characterized by a microarray-based approach, making it 
impossible to fully characterize any unexpected diversity of 
the human GM ecosystem. Among the distinctive features of 
the fecal microbial communities of Bama County centenar-
ians, the authors showed certain similarities (abundance of 
Escherichia, reduction in Bacteroidetes, structural change 
in butyrate-producing bacteria in the Clostridium cluster IV 
and Clostridium cluster XIVa) and some differences (low 
level of Akkermansia) with Italian centenarians (Table 2).

The paper by Odamaki et al. [70] provides a picture of 
the changes in the GM composition throughout human life, 
from birth to extreme aging in a large cohort of Japanese 
individuals [70]. However, even though children, adults and 
the elderly were abundantly represented, this analysis was 
not centered on longevity, including only six centenarians 
(100–104 years old) and seven over-95 year-olds. Impor-
tantly, a decrease in Faecalibacterium, Roseburia, Coproc-

occus, Blautia and an increase in Enterobacteriaceae were 
shown in 90- and 100-year-old subjects, resembling the age-
related microbiota features found in Italian centenarians but 
with some differences from Chinese centenarians (Table 2). 
Regarding the microbiota diversity, in the Japanese cohort 
the alpha diversity score and the Shannon index remained 
stable during adulthood and then increased in the elderly and 
centenarians, the later data confirming previous observations 
(Table 1) [70].

GM remodeling with age matches metabolome varia-
tions. Thus, centenarians showed a distinct metabolic pat-
tern. A unique alteration of specific glycerophospholipids 
and sphingolipids [71] and decreased circulating levels of 
9-hydroxy-octadecadienoic acid (9-HODE) and 9-oxo-octa-
decadienoic acid (9-oxoODE), markers of lipid peroxida-
tion [7], are seen in the longevity phenotype in Italy. It has 
also been revealed that the longevity process deeply affects 
the structure and composition of the human GM-derived 
metabolome, as shown by the increased excretion of pheny-
lacetylglutamine (PAG) and p-cresol sulfate (PCS) in Ital-
ian centenarians’ urine [7]. In 647 individuals from the US, 
followed up for as much as 20 years, higher concentrations 
of the citric acid cycle intermediate, isocitrate, and the bile 
acid, taurocholate, were associated with lower odds of lon-
gevity, defined as attaining 80 years of age. In a larger cohort 
of 2327 individuals with metabolite data available, higher 
concentrations of isocitrate but not taurocholate were also 
associated with worse health conditions [72]. On the other 
hand, centenarians from the Bama County in China showed 
decreased levels of PCS but increased levels of fecal short-
chain fatty acids (SCFAs) and total bile acids [73]. Intestinal 
commensal bacteria metabolize host-derived bile salts [74]. 
Bile acids are hormones that regulate their own synthesis, 
transport, glucose and lipid homeostasis and energy balance 
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via activation of specific nuclear receptors and G protein-
coupled receptors. The circulating bile acid pool composi-
tion consists of primary bile acids produced from cholesterol 
in the liver, and secondary bile acids formed by specific gut 
bacteria. The gut microbial community, through its capacity 
to produce bile acid metabolites distinct from the liver (i.e., 
secondary bile acids), can be thought of as an “endocrine 
organ” with the potential to alter host physiology, perhaps in 
their own favor. The term “sterolbiome” [74] describes the 
genetic potential of the GM to produce endocrine molecules 
from endogenous and exogenous steroids in the mamma-
lian gut. Thus, changes in age-associated microbiome com-
position could impact on bacterial metabolism of steroid 
compounds and ultimately steroid hormones in peripheral 
tissues. Chinese centenarians have high levels of bile acids 
[73], suggesting a pro-longevity role. However, studies on 
different populations reported that increased levels of sec-
ondary bile acids are associated with an increased risk of 
age-associated diseases [72] and specific diseases of the 
gastrointestinal tract system [75].

On the whole, these data indicate that human GM altera-
tions during aging are not univocal (Table 2) but follow 
different trajectories depending on lifestyle, nutrition, geo-
graphic/population/social factors as well as host genetics. 
In extremely long-lived people the composition, function-
ality and diversity of this complex and dynamic microbial 
community seem to achieve a peculiar balance resulting 
from a continuous 100-year remodeling process. Thus, it 
still remains to be determined how and if this (optimally?) 
adapted GM contributes to the homeostasis of the aged host, 
enabling him/her to reach the extreme limits of human life.

Gut microbiota age-related changes, brain 

functions and neurodegenerative diseases

To this already complex scenario, it should be added that the 
gastrointestinal tract establishes a strong bidirectional con-
nection with the Central Nervous System (CNS) named the 
“gut–brain axis”, along which the GM plays a crucial role. 
A number of experimental observations have shown that 
even mild alterations in GM composition are able to cause 
modification of cerebral functions, while conversely the 
brain can deeply affect intestinal functions via the secretion 
of hormones, neuropeptides and neurotransmitters such as 
substance P, neurotensin, corticotropin releasing hormone, 
5-hydroxytryptamine, and acetylcholine. The literature on 
this hot topic is extensive and more details can be found in 
recent reviews [76, 77]. Here, specific topics relating to the 
impact of GM age-related changes on brain physio-pathol-
ogy, with particular attention to the role of tryptophan, will 
be briefly addressed. Gut and the GM affect brain and upper 
cognitive functions by two distinct pathways: (1) a direct 

one via retrograde stimulation of the Vagus nerve and the 
production of hormones and cytokines such as IL-6, TNF-α 
and VIP; (2) an indirect one, via the production of bacterial 
components and metabolites. The main microbial bioactive 
molecules are: proteins that may cross-react with human 
antigens and stimulate abnormal responses by the immune 
system [78, 79]; neurotoxic metabolites such as D-lactic acid 
and ammonia which are able to cross the blood–brain bar-
rier and cause neurotoxicity or neuroinflammation [80–82]; 
hormones and neurotransmitters interfering with those of 
human origin (e.g., Lactobacillus and Bifidobacterium spe-
cies are GABA neurotransmitter producers, Escherichia, 
Streptococcus and Enterococcus are serotonin synthesizers) 
[83–85]. Hence, instead of a “gut–brain axis”, it would be 
more correct to refer to the “GM–gut–brain axis” integrat-
ing the GM with neuro-humoral signals from/to the CNS, 
neuroendocrine and immune systems, the autonomic nerv-
ous system, and the enteric nervous system (ENS). A grow-
ing amount of evidence has pinpointed the availability and 
metabolism of the essential amino acid tryptophan as a key 
regulator of this axis. Tryptophan is metabolized along the 
serotonin or the kynurenine pathway [86] with many impli-
cations for ENS and CNS functioning (Fig. 1). Serotonin 
is mainly (95%) located within the GI tract and in a small 
proportion (5%) in the CNS. In the gastrointestinal tract 
serotonin is responsible for motility, secretion and absorp-
tion as well as intestinal transit, while it can also modulate 
food intake by stimulating vagal afferent pathways involved 
in the reduction of obesity and metabolic dysfunction [87]. 
By contrast, most available tryptophan is transformed into 
quinolic and kynurenic acid, which are of particular interest 
for neurogastroenterology as they are neuroactive metabo-
lites that act on N-methyl-D-aspartate (NMDA) and alpha 
7 nicotinic acetylcholine receptors in the CNS and ENS. 
In the CNS, kynurenic acid has long been viewed as neu-
roprotective, whilst quinolinic acid is primarily considered 
an excitotoxic NMDA receptor agonist [88]. Within the 
gastrointestinal tract, both molecules appear to be involved 
in immunoregulation [89] and in particular kynurenic acid 
may have anti-inflammatory properties [90]. Due to its spe-
cific role on tryptophan metabolism and serotonergic sys-
tem, there is some evidence that the GM is a pivotal player 
in the regulation of different behavioral domains such as 
pain, depression, anxiety and cognition [86]. Major studies 
about this relationship have been performed using germ-
free animals (free of all microorganisms, including those 
normally symbiotic in the gut) characterized by increased 
plasma tryptophan concentrations that can be normalized 
by colonizing the mice immediately post-weaning. These 
animals exhibited increased hippocampal 5-hydroxytrypto-
phan (a serotonin precursor) concentration and significant 
CNS alterations, demonstrating that the GM is essential 
for normal brain development [91, 92]. In fact, the GM can 
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directly utilize tryptophan, limiting its availability to the host 
because bacteria require tryptophan for their normal growth 
and some strains such as Bacteroides fragilis may produce 
a tryptophanase, an enzyme that has recently been associ-
ated with autism spectrum disorders [93] (Fig. 1). Moreover, 
some bacterial strains are able to synthesize tryptophan and 
produce serotonin from tryptophan in vitro. Tryptophan, 
through the kynurenine pathway, is involved in the biosyn-
thesis of nicotinamide adenine dinucleotide  (NAD+) [94], 
which has a key role in human health as it is an essential 
coenzyme for the cellular processes of energy metabo-
lism, cell protection and biosynthesis. Moreover, decreased 

cellular  NAD+ concentrations occur during aging and sup-
plementation with  NAD+ precursors can prolong both life 
span and health span [95, 96].  NAD+ is indeed an important 
co-substrate of sirtuins. Several papers have shown that in 
old animals, when the levels of  NAD+ are restored, there 
is an increase in sirtuin1 and a reduction in mitochondrial 
stress, DNA damage and inflammation [95].

Tryptophan-derived indoles are involved in the 
host–microbiome interaction in the intestine [97]. 
Indoleamine-2,3-di-oxygenase (IDO) is an interferon-
γ-induced enzyme involved in catabolizing tryptophan 
to kynurenine, which has been shown to be higher in 
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nonagenarians than in young people [98]. Hence, inflam-
maging might induce IDO, leading to tryptophan degrada-
tion to kynurenine. Microbial tryptophan metabolites gen-
erated by induction of IDO have recently been identified as 
human aryl hydrocarbon receptor (AhR)-selective agonists 
[99]. AhR signaling has a role in various physiological 
processes including chemical/microbial defence and tis-
sue development, while, recently, the IDO–AhR axis has 
been recognized as a fundamental player in the control of 
the “Disease Tolerance Defence Pathway”, i.e., the abil-
ity of the host to reduce the effect of infection on host 
fitness [100] (Fig. 1). Data obtained on murine models 
have shown that tryptophan catabolism by IDO assumes an 
immunoregulatory role acting via AhR ligands, boosting 

regulatory T cells and protecting mice from chronic hyper-
inflammatory responses [101].

The balance between bacterial tryptophan utilization, 
metabolism and synthesis and serotonin/kynurenine produc-
tion has a fundamental function in determining local gas-
trointestinal and circulating tryptophan availability for the 
host with implications for both ENS and CNS serotonergic 
neurotransmission [86].

Modifications to the composition of GM across the lifes-
pan may deeply affect the availability of tryptophan and 
serotonergic signaling during aging. Shotgun analysis on 
the bacterial metagenome of young, old and centenarian sub-
jects showed an age-related amplified abundance of genes 
involved in the tryptophan metabolism pathway [102] and 
this finding is in agreement with the reduction of tryptophan 
due to its altered bio-availability found in the serum of cen-
tenarians [7, 71]. Little is known about plasma tryptophan 
disposition in aged experimental animals, while in humans 
the plasma concentration of tryptophan is moderately lower 
in the elderly [103]. It is interesting to note that in rodents, 
limiting the dietary intake of tryptophan and methionine may 
have a beneficial effect on health- and life span [104], while 
excess of tryptophan can be toxic and carcinogenic [105]. 
In addition, alteration of the kynurenine metabolites may 
contribute to neurotoxicity [106] and has been associated 
with Huntington disease [107], HIV dementia [108] and Par-
kinson’s disease (PD) [109]. Surprisingly, in a mouse model 
of Alzheimer’s disease (AD), a diet rich in tryptophan seems 
able to reduce the amyloid plaque content [110]. It is thus 
tempting to speculate that the GM of centenarians adjusted 
the tryptophan metabolism to support healthy aging (Fig. 2). 
These findings assume a particular importance in view of the 
fact that centenarians are remarkably free from neurodegen-
erative pathologies such as PD and AD. Indeed, although the 
prevalence of cognitive impairment in centenarian studies 
varies widely [111], some of them (15–20%) preserve cog-
nitive function and, even among those who show cognitive 
impairment at 100 years, approximately 90% delay the onset 
of clinically evident dementia until the advanced average 
age of 92 years [112]. In addition, most centenarians have 
low levels of anxiety and depression [111], suggesting that 
such people should be chosen as “super-controls” in studies 
designed to evaluate the contribution of GM dysbiosis to 
cerebral degenerative diseases.

AD is one of the commonest neurodegenerative disor-
ders and associates with cerebral accumulation of amyloid-
beta fibrils driving neuroinflammation and neurodegenera-
tion. The bacterial species residing in the intestine have 
been shown to release substantial amounts of amyloids and 
lipopolysaccharides, thereby promoting the production of 
pro-inflammatory cytokines and modulating the signaling 
pathways involved in the pathogenesis of AD [113, 114]. 
Numerous research findings have shown that AD may start 

Fig. 1  Tryptophan metabolism through the serotonin and kynurenine 
pathway. Tryptophan (TRP) is an essential amino acid which must 
be supplied with the diet. Once absorbed from the gut, TRP is made 
available in circulation as free TRP and albumin-bound TRP fraction 
and/or is metabolized along the serotonin or the kynurenine path-
way. TRP in circulation can cross the blood–brain barrier (BBB) to 
participate in serotonin (5-HT) synthesis in the CNS. TRP in the gut 
is metabolized to 5-HT in the enterochromaffin cells (ECs): TRP is 
first converted to 5-hydroxytryptophan (5-HTP) by the rate-limiting 
enzyme tryptophan hydroxylase (TPH), then the short-lived 5-HTP 
intermediate product is decarboxylated to 5-HT by aromatic amino 
acid decarboxylase (AAAD). However, the vast majority of avail-
able TRP is metabolized along the kynurenine pathway. Kynurenine 
(L-KYN) is produced from TRP by the action of the hepatic enzyme, 
tryptophan-2,3-dioxygenase (TDO) or the ubiquitous indoleamine-
2,3-dioxygenase (IDO). TDO can be induced by glucocorticoids or by 
TRP itself, whereas IDO is stimulated by inflammation with IFN-ɣ 
as the most potent inducer. Once L-KYN is produced, it is further 
metabolized along one of two distinct arms of the pathway with the 
production of neuroprotective kynurenic acid (KYNA) or neuro-
toxic quinolinic acid (QUIN). KYNA can be neuroprotective against 
QUIN-induced excitotoxicity but it can also induce cognitive impair-
ment when abnormally elevated. Activation of the kynurenin path-
way has a dual impact by limiting the availability of TRP for 5-HT 
synthesis and increasing the downstream production of neurotoxic/
neuroprotective metabolites. TRP, via the kynurenine pathway, is 
involved in the biosynthesis of nicotinamide adenine dinucleotide 
 (NAD+) which is an essential coenzyme for cellular processes of 
energy metabolism, cell protection and biosynthesis. The GM can 
also directly utilize TRP, limiting its availability to the host. Certain 
bacterial strains may produce a tryptophanase enzyme that synthe-
tizes indoles from TRP. These microbial metabolites have recently 
been identified as human aryl hydrocarbon receptor (AhR)-selective 
agonists. AhR signaling has a role in chemical/microbial defense 
and tissue development, while, recently, IDO–AhR axis has been 
recognized as a fundamental player in controlling the “Disease Tol-
erance Defense Pathway”. Bacteria can also synthesize tryptophan 
via enzymes such as TRP synthase (TRP synt) and specific bacterial 
strains can also produce serotonin from TRP in  vitro. The balance 
between bacterial TRP utilization and metabolism, TRP synthesis and 
5-HT production plays an important role in regulating gastrointestinal 
and circulating TRP availability for the host in addition to its dietary 
intake. Moreover, accumulating evidence supports the role of the GM 
in regulating TRP availability and 5-HT synthesis via modulation of 
the enzymes responsible for TRP degradation along the kynurenine 
pathway

◂
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in the gut, and hence is closely associated with GM imbal-
ance. There is increasing evidence to suggest a link between 
GM and PD. Recent studies showed that PD is associated 
with gut dysbiosis [115]; the fecal concentration of SCFAs 
is significantly reduced in PD patients compared to controls 
and this reduction could impact on CNS alterations and 
contribute to gastrointestinal dysmobility in PD [116]. In a 
mouse model of PD, it has been demonstrated that GM is a 
key player in motor deficits and microglia activation [117]. 
Interestingly, alpha-synuclein aggregates, a pivotal marker 
of PD, are present in both the submucosal and myenteric 
plexuses of the ENS, prior to their appearance in the brain, 
indicating a possible gut to brain route of “prion-like” spread 
[118].

The GM role has also been investigated regarding reg-
ulation of hypothalamic–pituitary–adrenal (HPA) axis 
development [119, 120]. In germ-free mice, exposure to a 
restraint stress triggers an exaggerated HPA axis response, 
as compared to specific pathogen-free control mice. Such an 
aberrant response is normalized through intestinal coloniza-
tion by Bifidobacterium longum subsp. infantis, and fecal 
matter from specific pathogen-free mice. Importantly, fecal 

microbiota transplantation (FMT) proved efficient only in 
animals’ early life [121]. These experiments demonstrated 
the crucial function of the GM in the development of an 
appropriate physiological endocrine response versus stress 
in the postnatal stage of the animal model. During life, 
chronic HPA axis hyperactivation by stress exposure dam-
ages the gut barrier integrity, causing intestinal dysbiosis, 
behavioral changes and stress-related symptoms, including 
mood disorders, anxiety and cognitive defects [122]. Patients 
suffering from hepatic encephalopathy are characterized by 
alterations of GM composition and endotoxemia. In particu-
lar, high levels of inflammatory cytokines were found in cir-
rhotic patients with cognitive decline, as compared to those 
with normal cognitive function, and the bacterial families 
Alcaligeneceae and Porphyromonadaceae proved positively 
correlated with cognitive impairment [123, 124]. Other 
works have focused on the impact of the GM on depression 
or anxiety, showing that pathogen-free mice exhibit reduced 
anxiety and increased motor activity [91, 125]. Tillisch 
et al. [126] demonstrated that brain activity and connectiv-
ity in healthy women following an emotive task could be 
attenuated by administering a 4-week course of a fermented 

Fig. 2  Gut microbiota and brain function in Italian centenarians. 
This figure summarizes our studies on the phenotypic characteristics 
of Italian centenarians. In extreme longevity complex remodeling of 
the GM is reflected at a systemic level by specific signatures of blood 
and urine markers (inflammatory, lipidic and metabolic). The strong 
two-way connection between GM and brain is likely to positively 
affect the well-preserved cognitive function of centenarians until a 

very advanced age. The fundamental role in the effect on the brain by 
bacterial tryptophan metabolism via the serotonin and/or kynurenine 
pathways deserves to be further investigated. AD Alzheimer’s disease, 
PD Parkinson’s disease, SCFAs short-chain fatty acids, IL-6 interleu-
kin-6, IL-8 interleukin-8, 9-HODE 9-hydroxy-octadecadienoic acid, 
9-oxo-HODE 9-oxo-octadecadienoic acid, PCS p-cresol sulfate, PAG 
phenylacetylglutamine
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milk beverage containing several probiotic bacterial strains 
[126]. Thus, the GM seems to modulate multiple effects, 
overcoming even the adaptive immunity functions besides 
revealing neurological/psychological potential. The two-way 
interaction between GM and the brain can be modulated by 
diet and/or probiotic/prebiotic/symbiotic supplementation 
designed to positively impact on brain activity and behavior 
[127]. For these reasons, probiotics with psychotropic func-
tions in humans, such as Lactobacillus helveticus and Bifido-

bacterium longum, have recently been termed “psychobiot-
ics” given their ability to reverse anxiety or depression-like 
behavior [128].

Gut microbiota-targeted diets and interventions 

improving cognition and health

The marked potential effect of the GM on neurological 
and psychological pathways suggested the hypothesis that 
intestinal bacteria may be a bridge in the emerging relation 
between diet and the cognitive system [123]. For example, 
pronounced consumption of fruit, vegetables and pulses 
typical of the Mediterranean Diet (MedDiet) has been asso-
ciated with increasing fecal SCFA levels. SCFAs (acetate, 
propionate and butyrate), produced by GM (Firmicutes and 
Bacteroidetes strains) during fermentation of undigested 
polysaccharides, has a well-documented protective role on 
various inflammatory as well as behavioral disorders [129, 
130].

It has recently been shown that the GM rapidly responds 
to altered diet in a diet-specific manner. It seems possible 
to modulate GM composition and activity within a single 
day, switching from herbivorous to carnivorous diet and as 
a consequence modulating GM metabolic pathways [131]. 
Thus, the dietary lifestyle represents a long-life stimulus 
for the GM, which responds by modifying its structure and 
functionality in the short term with multiple effects on the 
organism.

Recently, it has been postulated that the MedDiet exerts 
its health effects through hormetic mechanisms [132]. A life-
long exposure to the specific components of the MedDiet 
may, therefore, very likely counteract the effects of inflam-
matory stimuli, including those that may come from the GM 
metabolism, by acting as hormetins [132]. Epidemiologic 
evidence also suggests that coffee drinkers have a lower risk 
of PD [133]. It has been proposed that this protective effect 
impacts on the composition of the GM, counteracting the 
development of intestinal inflammation which is associated 
with less misfolding of the protein alpha-synuclein in the 
enteric nerves. This would reduce the risk of PD develop-
ment, minimizing propagation of the alpha-synuclein aggre-
gates to the CNS [118].

In animal models, interventions aimed at reducing calorie 
intake have been shown to be accompanied by structural 

modulation of the GM [134]. For instance, a life-long low-
fat diet significantly altered the overall structure of the GM 
in C57BL/6J mice. Calorie restriction was shown to enrich 
phylotypes positively correlating with longevity, such as the 
genus Lactobacillus, and to reduce phylotypes negatively 
associated with lifespan [135]. Since nutrient metabolism 
is highly dependent on the composition of the GM and vice 
versa [136], it can be assumed that certain anti-aging inter-
ventions may cause specific variations to gut microbial com-
munities causing chronic calorie restriction conditions and 
thus promoting both the health span and the life span. Sev-
eral documented clinical trials have investigated the effect 
of prebiotics and probiotics, particularly those containing 
Bifidobacterium and Lactobacillus, as a microbiota-targeted 
intervention to improve health status in elderly populations 
[137–140]. Most of the benefits are mediated by the activa-
tion of anti-inflammatory pathways in the residents’ micro-
organisms. Probiotic supplementation may also improve 
metabolic and cardiovascular health status [141] and pro-
mote longevity by stimulating the innate immune response 
[142, 143], improving resistance to oxidative stress [144], 
decreasing lipofuscin accumulation [145] and modulating 
serotonin signaling [146]. There is also evidence that pro-
biotic treatment can promote longevity in mice, possibly 
through suppression of chronic low-grade inflammatory 
processes in the colon [147]. Importantly, several findings 
suggest that direct modulation of the GM may not only be 
applied in treating particular age-related disorders, but can 
also be a promising therapeutic option to combat the aging 
process per se. For example, in a murine model, oral admin-
istration of purified exopolysaccharide fractions from Bifi-

dobacterium animalis RH that were isolated from the fecal 
samples of centenarians residing in Bama longevity villages 
(Guangxi, China) resulted in significantly increased activ-
ity by superoxide dismutase, catalase and total antioxidant 
capability in serum, as well as reduced levels of lipofuscin 
accumulation in the mouse brain [148].

Another approach to restoring the intestinal ecosystem is 
FMT, also called bacteriotherapy, a transfer of liquid filtrate 
feces from a healthy donor into the recipients’ gastrointesti-
nal tract to treat a particular disease or condition [149]. Ini-
tially, bacteriotherapy was developed as an effective method 
of treating Clostridium difficile infection, which is a major 
cause of healthcare-associated diarrhea through perturba-
tion of the normal GM [150]. More recently, its potential 
effectiveness and safety has been hypothesized in the preven-
tion and treatment of non-gastrointestinal pathologic con-
ditions, including those commonly associated with aging, 
e.g., atherosclerosis, metabolic syndrome, type 2 diabetes 
and neurodegenerative diseases [151, 152]. In a preliminary 
study of the effectiveness of FMT in humans, transferring 
GM from lean donors to persons with metabolic syndrome 
[153] beneficially affected the GM composition in recipients 
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by increasing amounts of butyrate-producing bacteria along 
with improved insulin sensitivity 6 weeks after the FMT pro-
cedure [154]. Improvements in symptoms of PD in patients 
receiving FMT were described in one case report [155], 
while no studies have been reported for AD so far.

In this scenario the knowledge emerging from GM stud-
ies in centenarians may soon be exploited for therapeutic 
purposes. For example, transplantation of centenarians’ GM 
into germ-free animal models will allow us to identify the 
bacteria or bacterium combination that could be protective 
against neurodegenerative diseases.

Gut microbiota and host genetics: an intimate 

evolutionary-shaped relationship

During the last few years, an impressive amount of literature 
has been published on the different strategies to modify and 
improve the GM diversity structure with a view to promot-
ing human health. Similarly, many pathologies ranging from 
obesity and inflammatory diseases to behavioral and physi-
ological abnormalities with neurodevelopmental disorders 
have been associated with different types of bacterial spe-
cies and their products [77], as described in the previous 
sections.

On the other hand, recent data have suggested a new and 
intriguing possibility that the host genome interacts and 
shapes its own GM. In this connection host genetics have 
been shown to influence the composition of the GM in twin 
studies [156, 157], while more recently in a wider population 
study, Christensenellaceae have been reported as the chief 
bacterium family associated with genetics [158]. The abun-
dance of Christensenellaceae was also associated with lower 
body mass index (BMI) in twins, and when introduced into 
a mouse model it led to reduced weight gain in treated mice 
compared with controls [158], suggesting that the microbi-
ome can be an important mediator between host genetics and 
phenotype. Intriguingly, these bacteria were found to char-
acterize the GM in extreme longevity [8], thus reinforcing 
the idea of a close association with the genetic background 
and suggesting a possible link to the inheritable component 
of human longevity. Nuclear, also mitochondrial, DNA plays 
a major role in the aging process so the complex interaction 
between these two host genetics [159] should be taken into 
account if we are to properly address the GM remodeling 
occurring during the human life span.

The intimate symbiotic relationship between host genet-
ics and the GM is very ancient since vertebrates coevolved 
along with their gut bacteria. Multiple lineages of the pre-
dominant bacterial taxa such as Bacteroidaceae and Bifi-

dobacteriaceae in the gut arose via co-speciation within 
hominids over the past 15 million years [160]. The diver-
gence times also indicate that nuclear, mitochondrial, and 

gut bacterial genomes diversified in concert during hominid 
evolution [160]. Interestingly, it seems that gut microbiomes 
have recorded the information of major dietary shifts that 
occurred during the evolution of mammals, allowing us 
to predict ancient diets from the reconstruction of ancient 
microbiomes [161].

Recently, genome-wide association screening for host 
genetic associations with GM composition identified 42 
loci (mainly related to innate immunity) associated with GM 
variation and function in humans [162]. Another study iden-
tified significant associations between gut microbial charac-
teristics and the VDR gene (encoding vitamin D receptor), in 
addition to a large number of other host genetic factors, and 
eventually quantified the total contribution of host genetic 
loci to diversity as 10.43% [163]. The non-genetic factors 
such as age, sex, BMI, smoking status and dietary patterns 
explain 8.87% of the observed variations in the GM [163]. 
Even though the effect of individual genes is small and 
comparable with the cumulative effect of key non-genetic 
covariates, the underlying biology of these studies provides 
a critical framework for future assessments of host–microbe 
interactions in humans with an adequate statistical power 
and sample size. Associations with gut microbial community 
composition at the VDR locus provide a link with secondary 
bile acids, which serve as ligands for VDR. Results from 
gene set enrichment analysis and the observation that the 
bile acid profile in serum associates with variation in the gut 
microbiome [163] further support this finding. A detailed 
description of the effect of host genetics on GM composi-
tion lies outside the scope of this review. Kurilshikov and 
colleagues recently published a comprehensive summary of 
the state of the art on host genetic determinants of GM with 
details as to techniques and populations analyzed, to which 
readers are referred [164].

A recent bioinformatics analysis predicts that long non-
coding RNAs expressed in the intestinal epithelial cell in 
murine models constitute molecular signatures reflecting 
the different types of microbiome [165]. In this direction, 
very recent data highlight the role of the host genome in 
shaping the GM, even if in terms of microRNAs (miRs). 
MiRs produced by gut epithelial cells enter bacterial mem-
brane, modifying bacterial gene expression in in vitro mod-
els [166]. In a mouse model (DICER deficiency), a severe 
dysbiosis develops when miR maturation is deficient. These 
important findings not only outline the tight coevolution and 
inter-organismal crosstalk leading to various profound cel-
lular and metabolic changes, but also lay the foundations for 
new miR-based therapies to counteract gut-related diseases.

Many variables may be responsible for GM remodeling 
associated with human longevity. Among these, the genetic 
makeup of extreme longevity [159, 167], and the epigenetic 
changes associated with aging could have a deep impact 
together with nutrition and lifestyle habits. These lifelong 
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interactions by variables are expected to have significant out-
puts in the production of specific blood/urine biomarkers 
or longevity-associated metabotypes. This is the case with 
centenarians. As reported above, Italian centenarians show 
increased excretion of bacterial products such as PAG and 
PCS in urine [7], specific blood lipid profiles and changes in 
amino acid levels [7, 71] (Fig. 2). By contrast, centenarians 
from the Bama County in China showed decreased levels 
of PCS and increased levels of fecal SCFAs and total bile 
acids [73]. All these findings support the hypothesis of a 
complex remodeling of the lipid and amino acid metabolism 
correlated with GM changes [7], as a result of lifelong adap-
tation and coevolution processes that could also be ethnic 
specific. Of note, it still remains to be clarified what role 
gender plays in GM modification studies on long-lived sub-
jects, since female centenarians outnumber males. A much 
deeper knowledge of the relationship between host genet-
ics and the GM emerged from a recent paper, which used 
shotgun analysis on 250 adult twins from the UK [168]. 
These data showed that GM composition and functions are 
inheritable and that twin pairs share microbial SNPs. Inter-
estingly, this similarity is lost after decades of living apart 
[168], emphasizing the impact of household and geographic 
region on the GM.

Lifelong interaction among sex, sex hormones and gut 

microbiota

Several studies have shown that sex hormones also play 
a role in the host–microbiota interaction. Indeed the term 
“microgenderome” defines the potential mediating and 
modulatory role of sex hormones on GM function and com-
position with implications for autoimmune and neuroim-
mune conditions [169]. Sexual dimorphism is common in 
autoimmune diseases. Using the non-obese diabetic mouse 
model of Type 1 Diabetes, Markle et al. showed that the gut 
commensal microbial community strongly conditions the 
pronounced sex bias in Type 1 Diabetes risk by controlling 
serum testosterone and metabolic phenotypes [170]. Their 
results revealed evidence of sex-specific microbial com-
munities and sex-specific responses to the same microbial 
communities. The same group also found that the recipients’ 
GM was stably altered in a sex-specific way, since male-
typical changes in the GM of female recipients were evi-
dent for several months. Unexpectedly, these experimental 
GM manipulations strongly protected the female mice from 
diabetes. The mechanism behind this protection critically 
depended on the impact of the GM on host metabolism and 
sex hormone signaling pathways [171]. A number of differ-
ent taxa have been found between male and female mice, 
while the sex differences in GM composition depend in part 
on genetic background [172]. Using gonadectomized and 
hormone-treated mice clearly revealed hormonal effects on 

the GM composition [172]. In humans, sex-specific inter-
actions between Firmicutes and neurological, immune and 
mood symptoms of myalgic encephalomyelitis/chronic 
fatigue syndrome have been reported [173], but we are just 
beginning to appreciate the links between human microbi-
ome composition and hormonal phenotypes. Twin studies 
have revealed that the once similar microbial composition of 
opposite-sex twins becomes distinctly different after puberty 
when compared to that of same-sex twins which remains 
compositionally similar [57]. These data suggest that age-
specific interactions of the host with specific microbes may 
exert beneficial and/or detrimental influences on the biology 
of the host, including either protection from or susceptibil-
ity to autoimmune disease. Furthermore, microbiota transfer 
studies in humans, mice, and rats reveal a high degree of 
host specificity on the part of the GM. Bacterial gene expres-
sion modulation by the host may partly explain the failure 
of FMT in certain specific cases, such as those related to 
Clostridium difficile infection treatment [174] and eventually 
impact on GM remodeling with age [8]. Efficient coloniza-
tion and associated effects also seem to be most successful 
in young animals, most likely because their microbiota is 
not yet stabilized [169].

Dietary effects on the composition and diversity of GM 
depend in part on sex-specific interactions [172, 175]. An 
interesting work showed that GM composition depends on 
interactions between host diet and sex within populations of 
wild and laboratory fish, laboratory mice and humans. The 
inter-individual diet variation correlates with individual dif-
ferences in the GM and these diet–microbiota associations 
are sex dependent. In mice, experimental diet manipulations 
confirmed that diet affects the GM differently in males ver-
sus females. Thus, the prevalence of the individual genotype 
interacting with the environment (e.g., sex by diet) implies 
that therapies to treat dysbiosis might have sex-specific 
effects [176].

Conclusions

Overall, the data available on lifelong changes in the GM are 
still too few for us to draw any definitive conclusions as to 
the basic question of how much can be set down to variables 
such as population, diet, genetics and gender, and how much 
to the aging process per se. In particular, the GM changes 
occurring in the last two or three decades of life (in nona-
genarians, centenarians, semi-supercentenarians and super-
centenarians, i.e., persons who reach the age of 110 years) 
have been insufficiently investigated, especially regarding 
the possible contribution of GM to health and longevity or 
to cognitive decline and neurodegeneration. Longitudinal 
studies envisaging metagenomics sequencing and in-depth 
phylogenetic analysis as well as an extensive phenotypic 
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characterization using up-to-date omics (metabolomics, 
transcriptomics and meta-transcriptomics, to mention a 
few) are urgently needed. The results of this comprehensive 
approach are likely to offer more satisfactory answers to the 
questions addressed in this paper.
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