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Gut microbiota components are 
associated with fixed airway 
obstruction in asthmatic patients 
living in the tropics
Emiro Buendía1, Josefina Zakzuk1, Homero San-Juan-Vergara  2, Eduardo Zurek  3,  

Nadim J. Ajami  4 & Luis Caraballo1

Microbiome composition has been associated to several inflammatory diseases, including asthma. 
There are few studies exploring the relationships of gut microbiota with airway obstruction pheonotypes 
in adult asthma, especially those living in the tropics. We sought to evaluate the relationships of gut 
microbiota with the airway obstruction and other variables of interest in asthmatic patients living 
in the tropics according to three phenotypes: No Airway Obstruction (NAO), Reversible Airway 
Obstruction (RAO) or Fixed Airway Obstruction (FAO). We found that Streptococcaceae:Streptococcus 

and Enterobacteriaceae:Escherichia-Shigella consistently discriminated asthmatic individuals suffering 
FAO from NAO or RAO, plus Veillonellaceae:Megasphaera when comparing FAO and RAO (p < 0.05; 
FDR < 0.05). In the FAO, the network showing the genus relations was less complex and interconnected. 
Several Rumminococcaceae, Lachnospiraceae and Clostridiales were enriched in patients with low specific 
IgE levels to mites and Ascaris. All patients shared a common exposure framework; control medication 
usage and smoking habit were uncommon and equally distributed between them. In conclusion, in this 
tropical asthmatic population, components of human gut microbiota are associated with the presence of a 

FAO phenotype and lower specific IgE response to mites and Ascaris.

Asthma is a chronic in�ammatory respiratory disease a�ecting about 10% of humans. Although genetic predis-
position is determinant for disease development, environmental factors also have a role. Microbial colonization of 
body sites may be shaped by both, host genetics and environment (i.e. diet and geography). Microbiome composi-
tion has been associated to several in�ammatory diseases, including asthma1–3. �ere are an increasing number of 
publications that shows a link between intestinal or airway microbial composition and the incidence or severity of 
asthma in animal models and humans4–9. Di�erent mechanisms derived from microbiome-host interactions and 
metabolites could explain how a microorganism could impact disease presentation1,2,4,5. Moreover, restoration of 
gut microbiota, through the use of prebiotics or probiotics, has shown positive results in asthma-related clinical 
outcomes10. Heterogeneity at di�erent levels, personal and geographical, makes it di�cult to identify microor-
ganisms or microbial networks associated with diseases11. In the case of asthma, it is also recognized that it has 
di�erent disease phenotypes12. Further pro�ling and characterization of the microbiome associated with di�erent 
asthma phenotypes is necessary for identifying novel microbiota-related mechanisms of disease.

Other authors have found association of airway obstruction phenotypes with di�erent immune traits and 
disease severity13. Bronchodilator response (BDR) is a classical asthma phenotype that means reversibility of air-
way obstruction a�er the administration of a short-acting Beta 2 agonist, a common relief medication for asthma 
symptoms. Although its patophysiology and relationships with clinical outcomes are partially understood, it is 
recognized as complex trait involving interactions of di�erent cell types and genetical determinants14. Reversible 
airway obstruction is considered as a criterium for asthma diagnosis and it has been associated with biomarkers 
of eosinophilic in�ammation, atopy and bronchial hyperreactivity15–17. Cluster analysis has suggested that the 
BDR is an important component in de�ning asthma phenotypes18. On the other hand, lack of airway obstruction 

1Institute for Immunological Research, University of Cartagena, Cartagena, Colombia. 2Department of Medicine, 
Universidad del Norte, Barranquilla, Colombia. 3Department of System Engineering, Universidad del Norte, 
Barranquilla, Colombia. 4Alkek Center for Metagenomics and Microbiome Research, Baylor College, Houston, USA. 
Correspondence and requests for materials should be addressed to L.C. (email: lcaraballog@unicartagena.edu.co)

Received: 14 March 2018

Accepted: 12 June 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-3808-4647
http://orcid.org/0000-0002-9816-6863
http://orcid.org/0000-0002-3808-8576
mailto:lcaraballog@unicartagena.edu.co


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |  (2018) 8:9582  | DOI:10.1038/s41598-018-27964-3

reversibility (also known as �xed airway obstruction) is another phenotype of asthma found in some asthmatic 
individuals19,20.

In general, there are few studies about microbiome di�erences in regard to asthma phenotypes, but less infor-
mation exist about microbiome composition of tropical populations, especially from Latin America21,22. �e aim 
of this study was to evaluate the relationships of gut microbiota with the airway obstruction and other variables 
of interest in adult asthmatics living in the tropics.

Methods
Design, location and study population. �is study analyzes the gut microbiome of asthmatic subjects 
included in the Ascaris and Asthma Severity program; which assesses the relationship between asthma severity 
and Ascaris lumbricoides sensitization23. Patients live in Cartagena de Indias in the North Caribbean coast of 
Colombia, a tropical city (10° 23′ 59″ North, 75° 30′ 52″ West) with around 1 million inhabitants, most of them 
poor according to the govermental indexes24. Socioeconomic strati�cation in Colombia ranges from 1 to 6, and 
the majority of the city population, as well as the study participants, belonged to the lowest strata 1–3 and shared 
environmental conditions. �e genetic background resulted from racial admixture between Native Americans, 
Spaniards, and an important proportion (37.9%) of African ancestry25,26. �e study was approved by the Ethics 
Commitee of the University of Cartagena (Cartagena, Colombia), all experiments were performed in accordance 
with and following the Declaration of Helsinki Principles. Signed informed consent was obtained from patients 
or their parents. Stool sample for microbiota analysis was collected from 202 subjects of the program.

Eligibility criteria and enrollment procedures. Subjects attending �ve public primary health care 
centers and the University Hospital were screened for eligibility by physicians of the research sta� between June 
2010 and March 2011. �ese centers serve the lowest social strata in the city. Eligibility criteria were: subjects 
in the age range of 8 to 70 years who answered a�rmatively to the question: Have you ever been diagnosed with 
asthma? Inclusion in the study depended on the con�rmation of asthma diagnosis made by the physician. Control 
medication usage was de�ned as the regular use of oral (OCS) or inhaled corticosteroids (ICS) and evaluated by 
questionnaires. Patients with chronic obstructive pulmonary disease (COPD) or another chronic respiratory 
co-morbidity were excluded as well as those belonging to the highest socio-economical strata of the city (4 to 6).

Variables All patients (n = 182) FAO (n = 42) RAO (n = 74) NAO (n = 66) p-value

Gender (male) 23.6 21.4 18.9 30.3 0.26

Age (mean ± SD) 33.7 ± 17.3 36.5 ± 17.5 39.4 ± 16.9 25.4 ± 14.3 <0.0001

Socio-economical strata 0.32

   1 63.18 64.28 68.91 56.06

   2 29.12 28.57 21.62 37.87

   3 7.69 7.14 9.45 6.06

Smoking habit 2.74 2.38 4.05 1.51 0.64

Co-habitation with a smoker 25.27 33.33 25.67 19.69 0.26

Predicted baseline FEV1 (%) 71.87 ± 21.47 66.03 ± 12.29 56.63 ± 18.79 92.50 ± 8.67 <0.0001

Predicted baseline FEV1/FVC (%) 86.57 ± 15.44 88.04 ± 14.56 77.14 ± 15.41 96.5 ± 7.65 <0.0001

Episodes of severe dyspnea 66.48 69.04 71.62 59.09 0.27

Nocturnal awakenings 87.36 79.57 93.24 86.36 0.06

>4 ER visits int the last year 26.37 23.80 35.13 18.18 0.07

Hospitalizations in the last year 13.73 23.80 13.51 7.57 0.06

Bronchodilator responsiveness 12.63 ± 19.40 2.45 ± 6.90 27.95 ± 21.92 1.93 ± 5.29 <0.0001

Use of oral corticosteroids 30.81 26.31 35.71 28.12 0.50

Use of inhaled corticosteroids 30.81 26.31 35.71 28.12 0.5

Current Ascaris infection 4.39 4.76 5.40 3.03 0.81

Antecedent of worm expulsion 60.43 66.66 62.16 54.54 0.43

Allergic rinitis 84.61 88.69 83.78 83.33 0.80

Atopy (>1 positive SPT) 83.51 78.5 86.4 83.3 0.54

Sensitization to B. tropicalis 64.20 59.52 69.53 61.53 0.46

Sensitization to D. Pteronyssinus 69.88 64.28 76.81 66.15 0.27

Total IgE‡† 654.6695 ± 602.8 525.70 ± 979.54 826.76 ± 1767.43 543.78 ± 637.61 0.09

Speci�c IgE to B. Tropicalis† 19.52 ± 33.54 20.31 ± 30.39 19.42 ± 33.60 19.12 ± 35.79 0.6

Speci�c IgE to D. Pteronyssinus† 19.12 ± 36.61 11.02 ± 24.51 27.08 ± 44.70 15.36 ± 31.32 0.01

Speci�c IgE to A. lumbricoides† 3.82 ± 2.745 2.82 ± 6.51 4.29 ± 8.4 3.93 ± 9.41 0.07

Table 1. Socio-demographic characteristics of the study population. †Comparison by Krukal-Wallis test. 
Frequency rates (%) for categorical variables are shown. ‡Geometric mean (standard deviation of mean) are 
reported.
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Asthma diagnosis. Eligible subjects were further interviewed and asthma diagnosis was con�rmed in those 
with at least two respiratory symptoms (cough, wheezing, dyspnea, and nocturnal cough/wheezing/dyspnea) 
or a history of recurrent asthma attacks. �ese questions were done by sta� physicians following a validated 
questionnaire27,28.

Skin prick test. Skin prick test (SPT) was done in the forearm with a battery of allergen extracts (kindly 
supplied by Leti; Madrid, Spain) as previously described23. Atopy was de�ned as at least one positive SPT to any 
of the tested allergens.

Assessment of lung function and the airway obstruction phenotypes. Spirometry was performed 
with a Microlab spirometer (Carefusion Corporation, San Diego, USA) following the American �oracic Society 
recommendations29. Height and weight were measured; patients were instructed to avoid use of short-acting 
bronchodilators for at least 12 hours before testing. �e best forced expiratory volume in one second (FEV1) 
was selected and was taken as an objective indicator of basal airway obstruction; bronchodilator response 
was de�ned as >12% improvement in the predicted basal FEV1 levels a�er 200 µg of salbutamol inhalation. 
According to spirometry results, subjects were classi�ed into 3 di�erent phenotypes: No Airway Obstruction 
(NAO: Symptoms + FEV1 ≥ 80% predicted; n = 66), Reversible Airway Obstruction (RAO: Symptoms + FEV
1 < 80% + Bronchodilator Response; n = 74), Fixed Airway Obstruction (FAO: Symptoms + FEV1 < 80% pre-
dicted + Lack of Bronchodilator Response; n = 42).

Quantification of total and specific IgE. In the tropics, helminthiases are common and house dust mites 
(HDM) exposure is perennial. We previously showed that Ascaris and HDM sensitization is associated with 
indicators of asthma severity23; therefore, we evaluated the relationship of speci�c IgE levels with microbiota 
composition. Brie�y, blood samples were taken by venipuncture using anticoagulant-free tubes to obtain serum 
for antibody determinations. Serum total IgE and speci�c IgE levels against B. tropicalis, D. pteronyssinus and A. 
lumbricoides were determined by ImmunoCap system (Phadia100, �ermo, Sweden).

Stool DNA extraction. Participants were asked to bring a recently collected stool sample in a hermetic 
recipient provided by the research team. Samples kept refrigerated less than 12 hours between collection and 
frozing at −20 °C until processing. Samples were thawed for the �rst time and DNA extraction was performed 
using Qiamp DNA stool minikit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA 
concentration was quanti�ed using a Nanodrop spectrophotometer (�ermo Scienti�c, Waltham, USA). Eluted 
DNA was stored at −80 °C until ampli�cation reaction and V4 region sequencing.

Amplification and sequencing of variable 4 (V4) region of 16S rRNA gene. Genomic bacterial 
DNA extraction methods were optimized to maximize the yield of bacterial DNA while keeping background 

Figure 1. Comparison of alpha diversity among di�erent airway obstruction phenotypes using Chao 1 (A) and 
Shannon diversity indexes (B). Violin plot includes the median, 95% CI, IQR, and density plot where the width 
of the di�erently colored lines indicate frequency.
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ampli�cation to a minimum. 16S rRNA gene sequencing methods were adapted from the methods developed 
for the NIH-Human Microbiome30,31. Brie�y, the 16S rDNA V4 region was ampli�ed by PCR and sequenced in 
the MiSeq platform (Illumina, San Diego, USA) using the 2 × 250 bp paired-end protocol yielding pair-end reads 
that overlap almost completely. �e primers used for ampli�cation contain adapters for MiSeq sequencing and 
dual-index barcodes so that the PCR products may be pooled and sequenced directly32, targeting at least 10,000 
reads per sample.

Our standard pipeline for processing and analyzing the 16S rRNA gene data incorporates phylogenetic and 
alignment-based approaches to maximize data resolution. �e read pairs were demultiplexed based on the unique 
molecular barcodes, and reads were merged using USEARCH v7.0.100133, allowing zero mismatches and a mini-
mum overlap of 50 bases. Merged reads were trimmed at �rst base with Q5. In addition, a quality �lter as applied 
to the resulting merged reads and reads containing above 0.05 expected errors were discarded.

16S rRNA gene sequences were assigned into OTUs or phylotypes at a similarity cuto� value of 97% using the 
UPARSE algorithm. OTUs were then mapped to an optimized version of the SILVA Database34,35 containing only 
the 16S v4 region to determine taxonomies. Abundances were recovered by mapping the demultiplexed reads to 
the UPARSE OTUs. A custom script constructed an OTU table from the output �les generated in the previous 
two steps, which was then used to calculate alpha-diversity, beta-diversity36, and provide taxonomic summaries 
that were leveraged for all subsequent analyses discussed below.

Parasitological examination. Parasitological analyses were done using 0.85% saline solution and lugol 
staining; counting helminth eggs were done by the Kato Katz method using a commercial kit (Copro Kit, C&M 
Medical, Campinas, Brazil). �e presence of eggs from geohelminths or parasite visualization was considered 
diagnostics of active infection.

Statistical and network analysis. In socio-demographic analyses, di�erences between proportions were 
analyzed by Pearson chi-squared test (or Fisher exact test when appropriate). Total and speci�c IgE values were 
not normally distributed and they were therefore reported as the median value and its interquartile range, except 
total IgE (geometric mean). Kruskal-Wallis (KW) test was used for comparison of continuous variables among 
three groups. Post hoc analyses were also performed.

Figure 2. Partial least squares discriminant analysis of gut microbiome composition between patients with 
�xed airway obstruction versus no obstruction sPLS-DA plot based on the relative abundance of bacterial taxa 
of gut microbiota from patients with �xed airway obstruction (blue circle) or without obstruction (orange 
triangle) and their 95% con�dence ellipses (A). Contribution plot indicating genera contributing to component 
1 of the sPLS-DA plot that discriminate these phenotypes (B). �e abundance of the most consistent OTUs was 
compared using Metagenomeseq and presented on a violin plot, which includes the median, 95% CI, IQR, and 
density plot where the width of the blue lines indicate frequency (C).
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Analysis of microbiota datasets presented several technical challenges. First, OTU abundances are compo-
sitional and not independent, thus conventional comparison or correlation between OTU abundances using 
traditional statistical methods can lead to spurius results. Secondly, variables in an OTU table outnumber the 
tested individual samples, thus inference of OTU-OTU association networks is underpowered37. Analyses were 
done using R scripts and to reduce false positive, only OTUs with at least 1 count in 50% of samples were included 
in the analysis. �e compositional nature of the data, characterized by non-negative counts whose weight is 
relative to the other components of a given sample, restricts the analysis of the data to a simplex space. In order 
to carry the data to a normal space, a Centered Log Ratio Transformation (CLR) of Aitchinson was applied, this 
transformation was done using the function logratio.transfo of the mixOmics package38. Since this is a logarithmic 
transformation, it requires a pre-conditioning of the data to replace the zeros, this substitution was performed 
with a multiplicative Bayesian replacement strategy using the cmultRepl function of the zCompositions package39.

Alpha diversity was calculated using Chao 1 and Shannon indexes using the Phyloseq package40. sPLS-DA 
used an approach that asks and identi�es which features (OTUs) separates patients according to airway obstruc-
tion phenotypes based on a discriminant analysis of the partial least square metric. To select the most predic-
tive/discriminative OTUs classifying the samples according to the airway obstruction phenotypes or speci�c 
IgE levels, Sparce Partial Least Square Linear Dyscriminant Analysis (sPLS-DA) was done using the package 
Mixomics including 10 variables in the �rst component38. �e Percentile 25th and 75th were calculated to select 
the extremes of the distribution of speci�c IgE levels to Ascaris, B. tropicalis and D. pteronyssinus in order to 
discriminate between high IgE responders (HR, levels ≥ percentile 75th to the highest) and low IgE responders 
(LR, levels ≤ percentile 25th). Since percentile 25th values were 0,2, 0,2 and 0,1 kUL for Ascaris, B. tropicalis and 
D. pteronyssinus – speci�c IgE, respectively, all patients included in LR were not sensitized to that speci�c source. 
Percentile 75th values were 3,1, 23,7 and 13,03 for Ascaris, B. tropicalis and D. pteronyssinus – speci�c IgE, respec-
tively. �us, those in HR group were sensitized individuals with the the highest responses.

As individuals living in the tropics are exposed to Ascaris infection and this could alterate the gut microbiota, 
sPLS-DA was also done using Ascaris infection status as a binary category. Iterative cross validation method 
allowed us to select the most stable OTUs in the model of classi�cation; wich means those OTUs always indi-
cating di�erences in the individuals belonging to the category of interest a�er iterative comparison with the 
individuals of the other category. To avoid a type 1 error a�er the selection of the most consistent OTUs (Stability 

Figure 3. Partial least squares discriminant analysis of gut microbiome composition between patients with 
�xed versus reversible obstruction. sPLS-DA plot based on the relative abundance of bacterial taxa of gut 
microbiota from patients with �xed airway obstruction (blue circle) or reversible airway obstruction (orange 
triangle) and their 95% con�dence ellipses (A). Contribution plot indicating genera contributing to component 
1 of the sPLS-DA plot that discriminate these phenotypes (B). �e abundance of the most consistent OTUs was 
compared using Metagenomeseq and presented on a violin plot, which includes the median, 95% CI, IQR, and 
density plot where the width of the blue lines indicate frequency (C).
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Index = 1), row counts were later compared between phenotypes of inteterest using the Metagenomeseq package 
normalizing the data with Cumulative Sum Scaling by applying the cumNorm function and performing the anal-
ysis with a zero-in�ated log-normal model by applying the �tFeatureModel, this package employ the Wilcoxon 
signed-rank test and posterior correction for multiple comparisons with the Benjamini-Hochberg method41. Due 
to signi�cant di�erences in age among phenotypes, the in�uence of age as a continuous variable on OTU counts 
was evaluated the MaAsLin package42.

To predict OTUs networks’ interactions within each asthma group, undirected conditional independence 
network graphs were constructed using Sparce and Compositionally Robust Inference of Microbial Ecological 
Networks (SPIEC-EASI) statistical method37, which used the Meinshausen-Buhlmann strategy as the graph esti-
mator. Finally, di�erentially enriched OTUs, detected by sPLS-DA, were localized into the predicted interaction 
network to �nd nodes and clusters of interest di�erentiating the groups.

Results
Characteristics of the study population. Twenty out of 202 sequenced samples were excluded from the 
analysis because OTU counts were too low (n = 3) or due to lack of spirometry data23. �e V4 region of the 16S 
rRNA was ampli�ed and sequenced in all of them obtaining at least 10.000 sequencing reads per sample (see 
Supplementary Fig. S1,2). Sociodemographic and clinical features of the study population are shown in Table 1. 
Overall, we included asthmatic patients sharing an environmental exposure framework. NAO patients were 
younger than those with obstruction. Speci�c IgE levels to D. pteronyssinus were di�erent among phenotypes, 
being higher in RAO patients than those with FAO.

Gut microbial richness and diversity was similar among airway obstruction phenotypes.  
Microbial richness and diversity were evaluated by means of the Chao 1 and Shannon indexes, respectively. Based 
on the OTUs distribution, the average value of Chao 1 was not di�erent between phenotypes, showing the fol-
lowing mean values: 76.8 ± SD 13.91, 79.1 ± SD 11.25 and 75 ± SD 11.02 for FAO, RAO and NAO phenotype, 
respectively (KW Test; p = 0.25; Fig. 1A). Mean Shannon index values were neither di�erent among groups: 
2.37 ± SD 0.58, 2.31 ± SD 0.59 and 2.32 ± SD 0.59 in asthmatics with FAO, RAO and NAO, respectively (KW test; 
p = 0.79; Fig. 1B).

Streptococcaceae:Streptococcus and Enterobacteriaceae:Escherichia-Shigella consistently  
discriminated and were enriched in patients with the FAO phenotype. sPLS-DA analyses were 
used to identify OTUs associated with airway obstruction phenotypes. As observed in the bi-plot, microbial  
composition showed a clear differentiation between patients with FAO and NAO (Fig. 2A). Several differ-
entially abundant OTUs in FAO and NAO stool samples that contributed to their separation in compo-
nent 1 were identi�ed (Fig. 2B). Enterobacteriaceae:Escherichia-Shigella, Streptococcaceae:Streptococcus and 
Enterococcacea:enterococcus were enriched in FAO patients and accurately discriminated them from those with 
NAO. �ese bacteria were also the most consistent OTUs (Stability index = 1), being present in 90.9%, 98.8% and 
56.7% of samples, respectively. A�er correction by multiple comparisons, only Enterococcus:Escherichia-Shigella 
and Streptococcaceae:Streptococcus showed significant enrichment (Fig. 3C and Supplementary Table S1). 
Microbial composition of patients with FAO was also clearly discriminated from those with RAO. 
Streptococcaceae:Streptococcus and Enterococcus:Escherichia-Shigella plus Veillonellaceae:megasphaera were sig-
ni�cantly enriched in FAO and were the most consistent taxa (Stability index = 1) and (Fig. 3A,B). Furthermore, 
a�er correction by multiple comparisons, all of them kept signi�cantly enriched (Fig. 3C and Supplementary 
Table S1). In addition, none of the above was signi�cantly associated with age and remained discriminant a�er 
removing patients younger than 18 years in sensitivity analysis with sPLS-DA (data not shown). �e sPLS-DA 
analysis showed that in females the same OTUs remained discriminant, but in males only Enterobacteriaceae: 
Escherichia-Shigella remained discriminant (see Supplementary Figs S3,4). However, as we found no di�erences 

Figure 4. MB Networks from patients with �xed (A), reversible (B) and no airway obstruction (C) using 
SPIEC-EASI method. Overall, networks display a di�erential association pattern between OTUs according 
to airway obstruction phenotypes. Consistently discriminative OTUs identi�ed in sPLS-DA as di�erentially 
enriched are marked with asterisks inside the graph.
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on male proportion between phenotypes (Table 1), it seems that gender distribution is not a confounding var-
iable. Comparison of the two other phenotypes (NAO vs RAO) did not let to signi�cantly enriched taxa a�er 
adjustment (see Supplementary Fig. S5 and Table S1).

FAO phenotype harbour a distinctive network of OTUs. The networks were dominated by the 
Rumminococcaceae and Lachnospiraceae families and were clustered by taxonomic families in the network graph. 
Airway obstruction phenotype groups showed a similar number of OTU nodes in the networks (λ index: 0.56 
for the three groups) (Fig. 4A–C). However, the networks in FAO group were less complex (see Supplementary 
Fig. S6A) and interconnected as showed by a lower sparsity index (SI: 0.55) when compared with NAO (SI: 
0.75) and RAO phenotypes (SI: 0.79); however, the strengths of edges were greater (see Supplementary Fig. S6B). 
Also, this network highlighted the enrichment of Streptococcaceae:Streptococcus (OTU546) and Enterococcus
:Escherichia-Shigella (OTU92) and their di�erence in the connectivity compared to those networks derived from 
individuals in the NAO and RAO or NAO phenotypes (Fig. 4A–C and Supplementary Table S3).

Several Rumminococcaceae, Lachnospiraceae and Clostridiales were enriched in patients with 
lower levels of IgE to Ascaris and HDM. Although cases of current Ascaris infection were scarce (n = 8), our 
analysis showed two groups according to infection status and various di�erentially enriched OTUs however it did 
not reach statistical signi�cance a�er correction by multiple comparisons (see Supplementary Fig. S7). Gut micro-
biome of high and low speci�c IgE responders to Ascaris and HDM species, B. tropicalis and D. pteronyssinus, was 
also compared. �e sPLS-DA bi-plots show discrimination of OTUs between low and high IgE responders to Ascaris 
(Fig. 5A), B. tropicalis (Fig. 6A) and D. pteronyssinus (Fig. 7A). Several OTUs supported those di�erences and were 
di�erentially enriched, contributing to the separation in the �rst component (Figs 5B, 6B and 7B). However, none of 
them kept signi�cantly associated a�er adjustment by multiple comparisons (Figs 5C, 6C and 7C).

Discussion
In this study, we compared gut microbiota composition among di�erent airway obstruction phenotypes in asth-
matic patients, representative of a socio-economically deprived population living in a tropical city. Although 
gut microbial richness and diversity was similar among phenotypes, there were differentially enriched 

Figure 5. Partial least squares discriminant analysis of gut microbiome composition between low and high IgE 
responders to Ascaris. sPLS-DA plot based on the relative abundance of bacterial taxa of gut microbiota from 
low (blue circle, percentile 1) and high IgE responders (orange triangle, percentile 4) and their 95% con�dence 
ellipses (A). Contribution plot indicating genera contributing to component 1 of the sPLS-DA plot that 
discriminate �rst and fourth sIgE percentiles (B). �e abundance of the most consistent OTUs was compared 
using Metagenomeseq and presented on a violin plot, which includes the median, 95% CI, IQR, and density plot 
where the width of the blue lines indicate frequency (C).
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microorganisms, being Streptococcaceae:Streptococcus and Enterococcus:Escherichia-Shigella more abundant in 
patients with FAO. In addition, a distinctive interconnected network enriched with those OTUs was characteristic.

A previous report by Hevia et al. comparing the gut microbiota composition between asthmatics and a healthy 
control group showed that patients with long term asthma harbour lower levels of Bi�dobacterium adolescentis 
in the gut, but they did not found microbiota clustering according to asthmatic status, suggesting to some extent 
that globally gut microbiota in asthmatics is similar to healthy control subjects, except for the abundance of par-
ticular commensals43. Also, Hua et al. reported that the gut microbiota does not di�er when compared between 
asthmatics and healthy controls according to α or β-diversity, but the identi�cation of asthmatic category was 
not speci�c as included other lung disease44. �e present study is the �rst evaluating associations between gut 
microbiota and the airway obstruction in a population of adult asthmatic individuals living in a tropical region. 
We sougth to explore di�erences in the gut microbiota composition explaining the airway obstruction pheno-
type in a population sharing the environmental exposure framework, looking for particular OTUs and their 
networks. In our study we found a consistent association between Streptococcaceae:Streptococcus and Enterococc
us:Escherichia-Shigella with the FAO, and also Veillonellaceae:Megasphaera when comparing the FAO with RAO 
phenotype. Interestingly, a recent report by Arrieta et al. found an association between various Streptococcus and 
Veillonella species in the gut and the occurrence of wheeze in children from a low income tropical population at 
three months of age22 and at least for Streptococcus spp, associations for their increased abundance in the airway 
and wheeze45,46 or a severe asthma phenotype have been reported before8. Also, it has been shown that various 
species of Streptococcus and Veillonella populate the small intestine47 and appeared to block IL-12p70 production, 
while augmenting IL-8, IL-6, IL-10, and TNF-a responses by dendritic cells in in-vitro assays48, indeed these 
cytokines have been linked to airway obstruction and severe asthma phenotype49–53.

Although there is not a consensus de�nition for the FAO phenotype, it have been recognized as an asthma 
phenotype di�erentiated from COPD54–58 and explained by the progressive decline in FEV1 as a result of airway 
remodelling asscociated with allergic airway in�ammation, allergen exposure and elevated IgE levels throughout 
life, in agreement with this is the fact that NAO patients were younger than the patients in the other phenotypes. 
As showed in other cohorts of patients19,20, in our study the FAO phenotype was not necessarily associated with 
more asthma symptoms, but a slightly increased prevalence of hospitalizations in the last year that deserves some 
mention. In contrast, in the RAO phenotype there was a stronger sIgE response to D. pteronyssinus and a tendency 

Figure 6. Partial least squares discriminant analysis of gut microbiome composition between low and high IgE 
responders to B. tropicalis. sPLS-DA plot based on the relative abundance of bacterial taxa of gut microbiota 
from low (blue circle, percentile 1) and high IgE responders (orange triangle, percentile 4) and their 95% 
con�dence ellipses (A). Contribution plot indicating genera contributing to component 1 of the sPLS-DA 
plot that discriminate �rst and fourth sIgE percentiles (B). �e abundance of the most consistent OTUs was 
compared using Metagenomeseq and presented on a violin plot, which includes the median, 95% CI, IQR, and 
density plot where the width of the blue lines indicate frequency (C).
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to more symptoms as described in other studies17,59,60, but a lower prevalence of hospitalizations, possibly those 
two di�erent phenotypes of airway obstruction re�ects two di�erent clinical patterns of asthma. Smoking habit 
and exposure to cigarrete smoke can be aggravating factors, but they are not the only necessary condition for 
�xed airway obstruction outcome to occur in long lasting asthmatics61. As smoking habit and exposure to cigar-
rete smoke were uncommon and equally distributed across airway obstruction phenotypes in our population, it 
unlikely that those exposures explained the FAO phenotype. Instead, speci�c gut microbiota components appear 
as risks factors associated with the FAO phenotype, and this �nding deserves more investigation employing more 
re�ned methodologies such as microbial whole genome sequencing to disentangle possible genetic pathways 
explaining the association.

In the other hand, NAO individuals showed an enrichment of various Ruminococcaceae and Lachnospiraceae 
when compared with the RAO or FAO phenotypes, but they were not signi�cant a�er adjustment for multiple 
comparisons. Also, those belonging to the lowest sIgE responders to Ascaris and B. tropicalis showed enrich-
ment of members from those two families plus various Clostridiales members. Various members of those families 
cooperatively metabolize the diet �ber and produce anti-in�ammatory metabolites in the colon62 that decrease 
sIgE levels against D. pteronyssinus extract in a mice model of mite sensitization feeded with a high �ber diet63. 
On the other hand, gut microbiota signalling through TLR-5 and MyD88 dependent pathways regulates IgG 
and IgE levels against bacterial and non-bacterial antigens in mice64–66, also signalling through various pattern 
recognition receptor such as TLR-2 and TLR-4 has been associated with IgE mediated eccema67 and food allergy 
in humans68, suggesting that microbiota produced metabolites or speci�c structural components could stimulate 
innate immunity and in�uence systemic antibody levels. Although, a�er correction by multiple comparisons the 
abundance of commensal associated with protection was not signi�cant, we speculate that protection against 
airway obstruction and sIgE levels could be accomplished by the combined presence of all those commensal as 
showed by sPLS-DA, but we can not assure causality or a speci�c mechanism.

As the gut comprises an extensive area populated with lymphoid organs and is highly vascularized and is prox-
imal to the lung, the migration of dendritic, or another proin�ammatory immune cells and cytokines induced 
by the microbiota to the lung is possible69, indeed previous �ndings in another in�ammatory diseases such as 
arthritis and cerebrovascular diseases supports this possibility70–72. However, because of the cross sectional design 

Figure 7. Partial least squares discriminant analysis of gut microbiome composition between low and high 
IgE responders to D. pteronyssinus. sPLS-DA plot based on the relative abundance of bacterial taxa of gut 
microbiota from low (blue circle, percentile 1) and high IgE responders (orange triangle, percentile 4) and their 
95% con�dence ellipses (A). Contribution plot indicating genera contributing to component 1 of the sPLS-DA 
plot that discriminate �rst and fourth sIgE percentiles (B). �e abundance of the most consistent OTUs was 
compared using Metagenomeseq and presented on a violin plot, which includes the median, 95% CI, IQR, and 
density plot where the width of the blue lines indicate frequency (C).
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of the study and the lack of an experimental animal model evaluating the e�ects of those commensals on allergic 
asthma, we cannot assure causality between the found taxa and airway obstruction phenotypes.

In our analysis we used sPLS-DA and network analysis assuming data to be compositional and sparse; in 
consequence CLR transformation was done, avoiding spurius association between some taxa and airway obstruc-
tion phenotypes. In undirected network construction, we used the SPIEC-EASI algorithm to robustly predict 
OTU-OTU interrelationships and construct a characteristic network for each phenotype. �is algorithm begins 
with a neighborhood selection of commensals and selects those that better characterize the network (represented 
by the λ index) and calculate inverse covariance between them based on the concept of conditional independ-
ence to construct edge between nodes. �e construction of edges is based on the abundance of commensals in 
the metadata for each patient belonging to a particular phenotype, remaining only with those conections that 
robustly reproduce in all patients a�er iteration and showing their number and weights represented by sticks 
connecting the nodes. Our results shows that OTUs clustered with another family related OTUs, as was described 
by Kurtz et al.37 for the analysis of fecal samples of healthy individuals belonging to the AGP. �e fact that those 
OTUs discriminating between phenotypes of airway obstruction in SPLS-LDA (Streptococcaceae:Streptococcus 
and Enterococcus:Escherichia-Shigella) were also enriched in undirected network graphs supports our �ndings, 
as these two independent methods using compositinal data highlighted the importance of the same commensals 
and their networks.

Several limitations of this study should be mentioned. Although we only explored the association between gut 
microbiota composition and various clinical phenotypes of airway obstruction in asthma, the use of biological 
markers would have contributed to better characterize the severity of airway in�ammation and its relationship 
with microbiome con�guration. Although di�erences in age distribution among asthma phenotypes could intro-
duce bias in the results, its relevance is low according to our sensitivity and age-OTU abundance association 
analyses. Also, dietary information and weight associated variables were not obtained. Corticosteroid use might 
also in�uence gut microbiome; however, in this study it was scarce and equally distributed between patients.

In summary, we found that Streptococcaceae:Streptococcus and Enterococcus:Escherichia-Shigella were con-
sistently enriched in asthmatic individuals su�ering a �xed airway obstruction in a socio-economically deprived 
population with poor controlled asthma sharing the environmental framework.
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