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Gut microbiota composition and 
butyrate production in children 
affected by non-IgE-mediated 
cow’s milk allergy
Roberto Berni Canani  1,2,3,4, Francesca De Filippis  4,5, Rita Nocerino1, Lorella Paparo1, 
Carmen Di Scala1, Linda Cosenza1, Giusy Della Gatta1,5, Antonio Calignano6, Carmen De Caro6, 
Manolo Laiola5, Jack A. Gilbert7 & Danilo Ercolini4,5

Cow’s milk allergy (CMA) is one of the earliest and most common food allergy and can be elicited by 
both IgE- or non-IgE-mediated mechanism. We previously described dysbiosis in children with IgE-
mediated CMA and the effect of dietary treatment with extensively hydrolyzed casein formula (EHCF) 
alone or in combination with the probiotic Lactobacillus rhamnosus GG (LGG). On the contrary, the 
gut microbiota in non-IgE-mediated CMA remains uncharacterized. In this study we evaluated gut 
microbiota composition and fecal butyrate levels in children affected by non-IgE-mediated CMA. We 
found a gut microbiota dysbiosis in non-IgE-mediated CMA, driven by an enrichment of Bacteroides and 

Alistipes. Comparing these results with those previously obtained in children with IgE-mediated CMA, 
we demonstrated overlapping signatures in the gut microbiota dysbiosis of non-IgE-mediated and 
IgE-mediated CMA children, characterized by a progressive increase in Bacteroides from healthy to IgE-
mediated CMA patients. EHCF containg LGG was more strongly associated with an effect on dysbiosis 
and on butyrate production if compared to what observed in children treated with EHCF alone. If 
longitudinal cohort studies in children with CMA will confirm these results, gut microbiota dysbiosis 
could be a relevant target for innovative therapeutic strategies in children with non-IgE-mediated CMA.

Food allergy (FA) results from an abnormal immune-mediated reaction against food antigens, such as cow’s milk 
proteins1,2. Due to its early introduction, cow’s milk allergy (CMA) is one of the earliest and most common FA3. 
�e immune mechanism of CMA can be IgE-mediated or non-IgE-mediated (cell mediated) and it is recognized 
as a �rst indicator of a dysregulated immune response in the pediatric age4. In fact, children a�ected by CMA 
in the �rst year of life have an increased risk to develop other atopic manifestations in their later life5,6, as well as 
other chronic immune-mediated disorders such as in�ammatory bowel diseases7. �erefore, understanding CMA 
pathogenesis is important in order to e�ectively prevent and manage the disease and its later life consequences. 
�e intestinal microbiota plays a critical role in the maturation and continued education of the host immune 
system8. Evidence suggests that selected bacterial species and their metabolites from healthy gut microbiota, in 
particular the short-chain fatty acid butyrate, may positively modulate immune tolerance mechanisms9–15. On 
the contrary, emerging data suggest that gut microbiota dysbiosis, characterized by imbalanced composition 
and function of the intestinal microbes, could be associated to the development of FA16–19. Data on gut micro-
biota features in FA seem still preliminary because the general small number of observations, di�erence in the 
experimental tools used, poor characterization  of the study subjects and lack of adequate matched controls20. We 
recently demonstrated that gut microbiota in IgE-mediated CMA infants shows signi�cantly higher diversity than 
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that of healthy controls. Bacterial families chacteristic of the healthy infant gut, such as Bi�dobacteriaceae were 
signi�cantly decreased in the IgE-mediated CMA gut15. Butyrate-producing bacteria were signi�cantly enriched 
by dietary treatment with extensively hydrolyzed casein formula (EHCF) with the probiotic Lactobacillus rham-
nosus GG (LGG)15.

In about one third to half of CMA patients a non-IgE-mediated mechanism is recognizable21. Gut microbiota 
features in children a�ected by non-IgE-mediated CMA are still poorly characterized. We aimed to compara-
tively evaluate gut microbiota composition and butyrate production in children a�ected by non-IgE-mediated 
CMA and in healthy controls. �e impact of treatment with EHCF alone or in combination with LGG was also 
investigated, and a comparative evaluation of gut microbiota features in IgE- and non-IgE mediated CMA was 
also performed.

Results
Study subjects. During a six month study period, 52 non-IgE-mediated CMA subjects were evaluated for 
the study. Four were excluded because of the presence of exclusion criteria and 2 were excluded because the lack 
of informed consent, thus 46 patients were enrolled in the study. According to disease state and dietary treat-
ment, the CMA patients were subdivided in three groups: Group 1 (CMA patients at diagnosis before any dietary 
intervention) (n = 23); Group 2 (CMA patients treated for 6 months with extensively hydrolysed casein formula, 
EHCF) (n = 9); Group 3 (CMA patients treated for 6 months with EHCF containing the probiotic L. rhamnosus 
GG, LGG) (n = 14).

During the same study period, consecutive healthy children, with negative clinical history for any allergic 
condition visiting our center because of minimal surgical procedures or vaccination program were also enrolled 
in the study, Group 4 (n = 23).

Main demographic and clinical features of the study subjects and p-value of paired comparisons are reported 
in Table 1. In particular, the age at enrolment, when stool sampling was performed, was similar among groups. 
All study subjects were weaned. Study subjects enrolled in Group 1 (CMA at baseline before any dietary interven-
tion) were on standard formula at the time of enrolment. �e adherence to treatment was optimal in all subjects. 
Dietary habits were similar among the four groups, with the exception of the type of hypoallergenic formula used 
for CMA treatment in subjects enrolled in Groups 2 and 3. �e hypoallergenic formula was previously prescribed 
by physicians when CMA diagnosis was con�rmed.

�e median (minimun-maximum) formula intake was 480 ml (400–500 ml) in Group 2 and 465 ml (400–
500 ml) in Group 3. �e protein (daily intake of 1–2 gr/kg) and fat (daily intake of 2.5–6.0 gr/kg) intakes were 
similar into the 4 study groups. All study subjects were caucasian and were from an urban area. All subjects were 
single child. Information about exposure to pets and/or history of maternal/infant dietary supplements were 
reported. Clinical manifestations in all CMA patients enrolled in Groups 1, 2 and 3 were limited to the gastroin-
testinal tract.

Subjects with non IgE-mediated CMA

At diagnosis Treated with EHCF
Treated with 
EHCF + LGG

Healthy 
subjects

Group 1 Group 2 Group 3 Group 4

N. 23 9 14 23

Male, n (%) 12 (52.2) 6 (66.7) 8 (57.1) 9 (39.1)

Age at enrolment, months (SD) 11.4 (7.2) 11.3 (1) 14.1 (5.8) 12.9 (7.4)

Age at diagnosis, months (SD) 11.4 (7.2) 5.3 (1) 8.1 (5.8) —

Vaginal delivery, n (%) 11 (47.8) 6 (66.7) 5 (35.7) 10 (43.5)

Birth weight, kg (SD) 3.1 (0.3) 2.9 (0.5) 2.9 (0.5) 3.1 (0.4)

Breastfeeding for at least 1 month, n (%) 19 (82.6) 8 (88.9) 9 (64.3) 14 (60.4)

Duration of breastfeeding, months (SD) 4.1 (2.7) 2.12 (2.03) 4.55 (4.1) 3.1 (2.05)

Age at weaning, month (SD) 5 (0.8) 4.9 (0.8) 4.9 (1.2) 4.7 (1)

p-value

Group 1 vs Group 2 vs Group 3 vs

Group 2 Group 3 Group 4 Group 3 Group 4 Group 4

Male, n (%) 0.694 0.769 0.375 1.000 0.243 0.286

Age at enrolment, months (SD) 0.967 0.255 0.483 0.179 0.521 0.634

Age at diagnosis, months (SD) 0.018 0.149 — 0.179 — —

Vaginal delivery, n (%) 0.444 0.471 0.767 0.214 0.433 0.641

Birth weight, kg (SD) 0.171 0.095 0.937 0.942 0.201 0.114

Breastfeeding for at least 1 month, n (%) 1.000 0.255 0.102 0.340 0.210 0.835

Duration of breastfeeding, months (SD) 0.079 0.733 0.246 0.150 0.309 0.260

Age at weaning, month (SD) 0.724 0.661 0.323 0.944 0.681 0.741

Familial allergy risk, n (%) 1.000 1.000 0.522 1.000 0.685 0.713

Table 1. Main demographic and clinical features of the study population. p-values of paired t-test were 
reported for all variables.
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Gut microbiota of children with non-IgE-mediated CMA differs from that of healthy controls.  
Non-IgE-mediated CMA children at diagnosis, before dietary treatment, presented signi�cant di�erences in gut 
microbial composition when compared to healthy controls, while the alpha diversity of the microbiota was not 
associated with the health status (Supplementary Fig. S1). A PLS-DA model was able to discriminate healthy from 
non-IgE-mediated CMA subjects (Fig. 1). Only one bacterial phylum, Bacteroidetes, was signi�cantly  enriched 
in non-IgE-mediated CMA patients (Wilcoxon pairwise tests, p < 0.05, Supplementary Fig. S2). However, at the 
level of genus, two Bacteroidetes genera, Bacteroides and Alistipes, and a single Firmicutes, Sarcina, were sig-
ni�cantly enriched in non-IgE-mediated CMA when compared to healthy controls (Wilcoxon pairwise tests, 
p < 0.05, Supplementary Table S1).

We applied a Generalized Linear Model (GLM) for Bacteroides abundance against eight features, including 
protein and fat consumption, mode of delivery, sex, age, age at weaning, breastfeeding duration and health status, 
to compare between non-IgE-mediated CMA (group 1) and healthy controls (group 4). Health status (healthy or 
non-IgE-mediated CMA) described the majority of the variance in the relative abundance of Bacteroides between 
these cohorts (Fig. 2A).

Dietary management and gut microbiota composition in children with non-IgE-mediated CMA.  
The abundance of Bacteroides and Alistipes significantly decreased with both dietary supplementation 
(Supplementary Table S1) compared to initial non-IgE mediated CMA samples at diagnosis. However, the rela-
tive abundance of both Bacteroides and Alistipes was signi�cantly lower in the samples from patients treated with 
EHCF + LGG (Wilcoxon pairwise tests, p < 0.05; Supplementary Table S1 and Fig. 2B). In addition, EHCF + LGG 
treated patients showed a signi�cantly greater relative abundance of Lachnospira, Ruminococcus, Oscillospira com-
pared to patients given EHCF alone (p < 0.05, Supplementary Table S1). Finally, Lactobacillus was observed at a 
greater relative abundance in EHCF + LGG treated children (Supplementary Fig. S3).

Sub-genus diversity of Bacteroides differentiates healthy and non-IgE-mediated CMA subjects.  
As Bacteroides had the strongest statistical association with non-IgE-mediated CMA, we further strati�ed the 
sequences annotated to this genus using oligotyping analysis. A total of 29 Bacteroides oligotypes were iden-
ti�ed, and the diversity in oligotype composition was not associated to the relative abundance of the genus 
(Supplementary Fig. S4). CMA children maintained a greater average number of Bacteroides oligotypes compared 
to healthy subjects (11.9 vs 4.4, respectively; Wilcoxon test, p < 0.001), and the oligotypes that were enriched 
substantially di�erentiated healthy versus CMA children (Fig. 3). In particular, oligotypes Bac10 and Bac12 were 
signi�cantly enriched and Bac8 and Bac9 were signi�cantly reduced in CMA at diagnosis (p < 0.05). Both dietary 
interventions altered the oligotype diversity of Bacteroides, but EHCF + LGG resulted in a Bacteroides diversity 
pattern similar to that seen in healthy controls (Fig. 3). Indeed, the abundance of oligotypes associated with 
CMA (Bac10 and Bac12) was signi�cantly reduced compared with CMA at diagnosis upon both the treatments 
(p < 0.05), but only EHCF + LGG resulted in an abundance of oligotype Bac8 similar to that found in the healthy 
controls (p > 0.05). Oligotype Bac9 also increased, but was still lower than the controls (p < 0.05). Oligotype 
representative sequences were queried against the NCBI nr database and 11 di�erent Bacteroides species were 
identi�ed, some showing exact match (100% identity on the whole length), with sequences in the database 
(Supplementary Fig. S5). Overall 11 of the oligotypes were most similar to sequences of species belonging to B. 
fragilis group (Supplementary Fig. S5).

Figure 1. Score plot of the sPLS-DA model based on the microbiota composition at genus level of healthy and 
non-IgE mediated CMA subjects.
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Figure 2. Generalized linear model �tting of patient demographic information across relative abundance of 
Bacteroides (A) and box plots showing the abundance of Bacteroides (B). In panel A, parallel x axis represents 
the relative contribution value of every factor, as predicted by the GLM model (*p < 0.05). In panel B, boxes 
represent the interquartile range (IQR) between the �rst and third quartiles, and the line inside represents the 
median (2nd quartile). Whiskers denote the lowest and the highest values within 1.5 x IQR from the �rst and 
third quartiles, respectively. Asterisks indicate a signi�cant di�erence as obtained by pairwise Wilcoxon test 
(p < 0.05).

Figure 3. Pie charts showing the abundance of Bacteroides oligotypes in the di�erent subject categories.
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Dietary treatments, fecal butyrate concentration and correlation with specific gut bacteria.  
Children with non-IgE-mediated CMA had a signi�cantly lower fecal concentration of butyrate compared to 
healthy controls (pairwise Wilcoxon tests, p < 0.05). While both dietary regimens were associated to a signi�cant 
increase in butyrate concentrations, the result was more evident in children treated with EHCF + LGG (Fig. 4). 
Butyrate concentration was signi�cantly correlated to the relative abundance of Lachnospira and two Bacteroides 
oligotypes (Bac7 and Bac8) that were enriched in EHCF + LGG treated children. On the contrary, the relative 
abundance of oligotype Bac12, which was enriched in the CMA group, was negatively correlated to butyrate 
concentration.

Gut microbiota features overlaps in IgE and non-IgE-mediated CMA children. �e sequence 
data from this study were re-analyzed alongside data produced in a previous study to compare the microbi-
ota in non-IgE-mediated CMA vs. IgE-mediated CMA patients15. Healthy subjects from both studies clustered 
together in a hierarchical clustering based on Ward distance (Fig. 5). IgE-mediated CMA children at diagnosis 
and a�er treatment clearly clustered apart, indicating strong di�erences in gut microbiota composition, while 
non-IgE-CMA patients (with or without treatment) were more similar to healthy subjects (Fig. 5). �is progres-
sive gradient of dysbiosis was also clear in the PLS-DA model, where non-IgE-CMA subjects were closer to the 
healthy controls and separated from IgE-mediated CMA children (Supplementary Fig. S6). Accordingly, the aver-
age weighted Unifrac distance between IgE-mediated CMA and healthy subjects was signi�cantly higher than that 
between non-IgE-CMA and healthy controls (0.68 ± 0.04 and 0.49 ± 0.08, respectively; p < 0.05). Interestingly, 
overlapping features characterized the gut microbiota dysbiosis in the two forms of CMA. In particular, a signi�-
cant enrichment in Bacteroides was observed from healthy to non-IgE-mediated, and then to IgE-mediated CMA 
pro�les (Fig. 6). Alistipes, Fusobacterium and Bilophila were signi�cantly enriched in IgE-mediated compared to 
non-IgE-mediated CMA subjects (Wilcoxon test, p < 0.05; Supplementary Table S2), while Eubacterium, Blautia, 
Akkermansia and Raoultella resulted increased in non-IgE-mediated CMA patients (Supplementary Table S2).

Discussion
We are witnessing a dramatic and apparently ongoing increase in the prevalence of FA22, but the cause of this 
increase is still largely unde�ned. Recent evidence has emphasized the role of intestinal bacteria in the preven-
tion or treatment of FA, and there is mounting evidence that microbial dysbiosis early in life represents a critical 
factor underlying FA development23,24. We observed that children with non-IgE-mediated CMA had elevated 
relative abundances of Bacteroides and Alistipes. Di�erent sub-genus patterns of Bacteroides were associated with 
CMA. An increase in Bacteroides has been associated with peanut and tree nut allergy and other atopic manifes-
tations25–27, and Bacteroides species are reported to alter gut permeability25,28. Conversely, Ling and co-workers29 
reported a decrease in Bacteroidetes in a cohort of Chinese children characterized by di�erent types of FA. �ese 
discrepancies may be due to di�erent variable regions of 16S rRNA gene targeted, to the low number of children 
evaluated in the study (non-IgE-mediated CMA children, n = 4), and to di�erent dietary patterns or ethnic-
ity29. We found that the relative abundance of Bacteroides was higher in children with IgE-mediated CMA com-
pared to patients with non-IgE-mediated CMA and healthy controls, suggesting a key role of this genus in CMA 
pathogenesis and pointing to potential common pathways predisposing to both non-IgE- and IgE-mediated FA. 
Interestingly, a transition to IgE serum level positivity has been demonstrated in up to 30% of non-IgE-mediated 
FA subjects21.

Both EHCF and EHCF + LGG treatments in�uenced gut dysbiosis in non-IgE-mediated CMA children, 
but the result was more pronounced in patients treated with EHCF + LGG. Remarkably, the treatment with 
EHCF + LGG appeared to restore the Bacteroides sub-genus composition and structure, which exhibited diver-
sity similar to that shown by the healthy controls.

Figure 4. Box plots showing faecal butyrate concentration in  CMA, healthy and treated children (*p < 0.05). 
For a description of the box plots, see Fig. 2 legend.
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Bacterial metabolites are an important communication tool between the commensal microbiota and the 
host immune system, and establish a broad basis for mutualism13. Short chain fatty acids (SCFAs) are among 
the most abundant microbial metabolites and play a critical role in mucosal integrity, local and systemic meta-
bolic function and regulation of immune response14,30–32. In agreement with previous �ndings15, EHCF + LGG 
treatment sign�cantly increased butyrate production. �is increase correlated with an enrichment of poten-
tial SCFA-producers as well as selected Bacteroides oligotypes. Previous clinical �ndings showed that dietary 

Figure 5. Hierarchical McQuitty-linkage clustering of the samples based on the Pearson’s correlation coe�cient 
of the abundance of OTUs present in at least 10% of the samples. Subjects from a previously published study 
(14) were included. �e color scale represents the scaled abundance of each variable, denoted as Z-score, with 
red indicating high abundance and blue indicating low abundance. Column bars are colored according to 
the subject categories. Row bar is colored according to the phylum: Actinobacteria, green; Bacteroidetes, red; 
Firmicutes, navy blue; Proteobacteria, grey; others, orange.

Figure 6. Box plots showing the abundance of Bacteroides in healthy, non-IgE mediated and IgE mediated 
CMA subjects (*p < 0.05). Subjects from a previously published study14 were included. For a description of the 
box plots, see Fig. 2 legend.
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management with EHCF + LGG results in a higher rate of tolerance acquisition in infants with non-IgE-mediated 
CMA33,34. Our data support the hypothesis that gut microbiota dysbiosis could be a relevant target of treatment 
in CMA and that EHCF + LGG-based diet can be an e�cient strategy for microbiome-targeted intervention.

�e use of a well characterized and homogeneous study population without ethnic diversities and with similar 
environmental in�uences (all weaned and living in urban area, similar breastfeeding rate, single child, no pets 
and no history of maternal/infant dietary supplements) represents a major strength of this study. Conversely, the 
relative small number of subjects and the cross-sectional design are the major limitations. Longitudinal cohort 
studies in children with CMA are advocated and could better assess the development of gut microbiota during 
the disease course, and also in response to di�erent therapeutic dietary strategies for CMA treatment. Moreover, 
although the age at enrolment (when faecal samples collection was done) was similar among the groups, we 
detected a signi�cant di�erence in the age at diagnosis between Group 1 and 2, that might have a�ected the dif-
ferences observed in the gut microbiota. Integrating these data with data generated throught transcriptome, epig-
enome, and metabolome investigations, will facilitate our understanding of FA and might drive the development 
of new preventive and therapeutic strategies.

Methods
Study subjects. From March to September 2014, 52 consecutive children (age range 1–26 months) visiting 
our tertiary pediatric allergy center for recent occurrence (last 2–4 weeks) of signs or symptoms of suspected 
non-IgE-mediated CMA, or for follow up visit a�er 6 months of exclusion diet upon a con�rmed diagnosis of 
non-IgE-mediated CMA were evaluated and invited to participate in a cross sectional study. �e exclusion criteria 
were: use of pre- or probiotic products and/or antibiotics in the previous 4 weeks; history of cow’s milk-induced 
anaphylaxis and/or other IgE-mediated signs of food allergy; concomitant presence of other food allergies or 
allergic diseases, eosinophilic disorders of the gastrointestinal tract, chronic systemic diseases, congenital car-
diac defects, active tuberculosis, autoimmune diseases, immunode�ciency, chronic in�ammatory bowel diseases, 
celiac disease, cystic �brosis, metabolic diseases, lactose intolerance, malignancy, chronic pulmonary diseases 
or malformations of the gastrointestinal tract. Written informed consent was obtained from the parents/guard-
ians of each subject. �e diagnosis of non-IgE-mediated CMA was based on clinical history, negative result of 
skin prick test, and/or negative level of IgE serum-speci�c anti-cow’s milk proteins, and the results of a double 
blind placebo-controlled oral food challenge (DBPCFC)33,34. All DBPCFC were performed in a double-blind, 
placebo-controlled manner in the outpatient clinic on 2 separate days with a 1-week interval. Parents of patients 
taking antihistamines were advised to withhold these medications for 72 hours before and during the challenge. 
Randomization and preparation of the challenges were performed by experienced dietitians who were not directly 
involved in the procedures. In detail, every 20 minutes, increasing doses (0.1, 0.3, 1, 3, 10, 30, and 100 mL) of fresh 
pasteurized cow’s milk containing 3.5% of fat or an amino acid formula were administered. Full emergency equip-
ment and medications (epinephrine, antihistamines, and steroids) were available. �e results were assessed simul-
taneously by experienced pediatric allergists. Study subjects were scored for 9 items divided into 4 main categories 
on a 0 to 3-point scale (0, none; 1, light; 2, moderate; and 3, severe): (1) general (decreased blood pressure plus 
tachycardia); (2) skin (rash and urticaria/angioedema); (3) gastrointestinal (nausea or repeated vomiting, crampy-
like abdominal pain, and diarrhea); and (4) respiratory (sneezing or itching, nasal congestion or rhinorrhea, and 
stridor deriving from upper airway obstruction or wheezing). If at least 2 of the 3 physicians independently scored 
one item at level 3 or 2 (or more) items at level 2, the test result was considered positive. Children were observed 
for up to 4 hours a�er the �nal dose and then discharged. In case of a positive DBPCFC result at any testing dose, 
the patient remained under observation until symptom resolution. If the patient did not show any symptoms 
within the �rst 24 hours, parents were advised to provide a single feed of 100 mL of the tested formula (verum or 
placebo) every day at home for 7 days. If any symptoms occurred during this period, the patients returned to the 
outpatient clinic on the same day. A�er 7 days of verum or placebo administration, the patients were examined, 
and the parents were interviewed at the center. Parents were asked to contact the center if any symptoms occurred 
in the 7 days a�er the DBPCFC procedures to rule out false-negative challenge results. �e challenge result was 
considered negative if the patient tolerated the entire challenge, including the observation period. Fi�y-two CMA 
patients were evaluated. Four patients were excluded because of the presence of exclusion criteria, and 2 were 
excluded for the lack of informed consent. �erefore, 46 CMA patients were included in this study. According 
to disease state and dietary treatment, CMA patients were divided in three groups: group 1 included patients 
with non-IgE-mediated CMA at diagnosis, before any therapeutic intervention and receiving standard formula 
(n = 23); group 2 (n = 9) included patients with diagnosis of non-IgE-mediated CMA a�er treatment for 6 months 
with an extensively hydrolyzed casein formula (EHCF; Nutramigen, Mead Johnson Nutrition, Evansville IN, US); 
group 3 (n = 14) included patients with diagnosis of non-IgE-mediated CMA a�er treatment for 6 months with 
EHCF added with the probiotic L. rhamnosus GG (EHCF + LGG; Nutramigen LGG, Mead Johnson Nutrition, 
Evansville IN, US). �e speci�c formula use was prescribed and adherence was checked according to the standard 
procedure adopted at our Center. Brie�y, the parents received written instructions regarding the commercial 
name of the product and the formula preparation procedure. �en, the adherence to the treatment was checked 
monthly during the �rst 3 months of treatment and then every 6 months. Formula use was evaluated at each time 
visit by dietitians, counseling parents about issues that could arise during the elimination diet and on how to 
reach the daily recommended intake for Italian children. �is allowed the study sta� to evaluate compliance with 
the formula and to ensure that the patients received an appropriate quantity of formula to meet their nutritional 
requirements. During the same study period, consecutive healthy children (group 4, n = 23), with negative clin-
ical history for any allergic condition visiting our center because of minimal surgical procedures or vaccination 
program were also enrolled. Anamnestic, demographic, anthropometric and clinical data were obtained from the 
parents of each subject and recorded in a clinical database. �e 3-day dietary diary was collected from all study 
subjects at enrolment. All diaries were assessed using a speci�c so�ware (Winfood, Medimatica srl, Colonnella, 
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Teramo, Italy). For all study subjects, a stool sample (3 g) was collected to evaluate gut microbiota composition and 
fecal butyrate concentration and stored at −80 °C until analyses.

Ethics. �e study was approved by the Ethics Committee of the University of Naples Federico II and was 
registered in the Clinical Trials Protocol Registration System on March 14, 2014 (https://clinicaltrials.gov - ID 
number: NCT02087930).

All methods were performed in accordance with the relevant guidelines and regulations.

DNA extraction and 16S sequencing. Fecal samples (about 1 g) were fully homogenized in STE bu�er 
(100 mMNaCl, 10 mMTris-Cl pH 8.0, 1 mM EDTA pH 8.0) and centrifuged (500 × g, 1 min) in order to pellet 
debris. �e supernatant was centrifuged again (12,000 × g, 2 min) and the pellet was used for DNA extraction 
with the PowerFecal DNA Isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA). V3-V4 region of the 16S rRNA 
gene was ampli�ed by using primer and PCR conditions recently described35. PCR products were puri�ed with 
the Agencourt AMPure XP beads (Beckman Coulter) and quanti�ed using a Plate Reader AF2200 (Eppendorf). 
Amplicon multiplexing, pooling and sequencing were carried out following the Illumina 16S Metagenomic 
Sequencing Library Preparation protocol, on a MiSeq platform and using the MiSeq Reagent kit v2, leading to 
2 × 250 bp, paired-end reads.

Fecal butyrate analysis. One gram of frozen feces was diluted with saline bu�er, vortexed and centrifuged 
(12,000 × g) for 10 min in 2 ml tubes. �e supernatant was �ltered (0.45 µm) and stored at −20 °C until analysis. 
Frozen fecal extracts were acidi�ed with 20 µl of 85% (w/v) phosphoric acid and 0.5 ml of ethyl acetate, mixed, 
centrifuged (12,000 × g) for 1 h, and extracted in duplicate. About 0.5 ml of the pooled extract containing the 
acidi�ed butyrate was transferred into a 2 ml glass vial and loaded onto an Agilent Technologies (Santa Clara, 
CA, USA) 7890 gas chromatograph (GC) system with automatic loader/injector. �e GC column was an Agilent 
J&W DB-FFAP (Agilent Technologies) of 30 m, internal diameter 0.25 mm and �lm thickness 0.25 µm. �e GC 
was programmed to achieve the following run parameters: initial temperature 90 °C, hold 0.5 min, ramp of 20 °C 
min−1 up to a �nal temperature of 190 °C, total run time 8.0 min, gas �ow 7.7 ml min−1 split less to maintain 3.26 
p.s.i. column head pressure, septum purge 2.0 ml min−1. Detection was achieved using a �ame ionization detec-
tor. Peaks were identi�ed using a mixed external standard and quanti�ed by peak height/internal standard ratio.

Statistical and bioinformatics analysis. All data were collected in a dedicated database and analysed by 
a statisticianwith IBM SPSS Statistics version 19.0 for Windows (SPSS Inc, Chicago, IL). �e χ2 test and Fisher’s 
exact test were used for categorical variables. �e level of signi�cance for all statistical tests was 2-sided, P < 0.05.

Raw sequence quality �ltering and pre-processing was carried out as recently reported35. Brie�y, demulti-
plexed, forward and reverse reads were joined by using FLASH36. Joined reads were quality trimmed (Phred 
score < 20) and short reads (<250 bp) were discarded by using Prinseq37. High quality reads were then imported 
in QIIME38. OTUs were picked through de novo approach and uclust method and taxonomic assignment was 
obtained by using the RDP classi�er and the Greengenes database39, following a pipeline previously reported35. 
In order to avoid biases deriving from di�erent sequencing depth, OTU tables were rare�ed to the lowest num-
ber of sequences per sample. Statistical analyses and visualization were carried out in R environment (https://
www.r-project.org).

To discriminate the microbial pro�les as a function of disease, a model based on projection on latent struc-
tures (PLS) in its discriminant (DA) version was built, based on the normalized abundance (log10) of the micro-
bial genera identi�ed. �e R package mixOmics was used. Permutational Multivariate Analysis of Variance 
(non-parametric (PER)MANOVA) based on Jaccard and Bray Curtis distance matrices was applied with 999 
permutations to detect signi�cant di�erences in the overall microbial community composition, by using the 
adonis function in vegan package. Non-parametric Kruskal-Wallis and pairwise Wilcoxon tests were carried out 
in order to �nd OTUs di�erentially abundant between the groups. A Generalized Linear Model (R function glm) 
was built in order to test the importance of continuous or discrete variables available for the subjects (mode of 
birth, age at weaning, age at sampling, sex, months of exclusive breastfeeding, average daily consumption of pro-
teins and fat, health status – that is, healthy or CMA) on the relative abundance of bacterial genera signi�cantly 
di�erent between healthy and CMA subjects. Spearman’s pairwise correlations were computed between OTUs 
or oligotypes and short-chain fatty acid abundance (corr.test function in psych package). Correction of p-values 
for multiple testing was performed40. Di�erences in fecal butyrate levels between the groups were evaluated by 
non-parametric Kruskal-Wallis and pairwise Wilcoxon tests. In order to compare the gut microbiota composi-
tion in children with non-IgE (analyzed in the present study) and IgE-mediated CMA from our previous study15, 
quality �ltered reads of the previous study were downloaded from MG-RAST. Since the reads from the previous 
study included only V4 region of the 16S rRNAgene, they were aligned to those produced in this study, that were 
trimmed in 5′direction to the same length. Reads from both the studies were re-analysed as described above.

Sub-genus diversity of Bacteroides. Reads assigned to Bacteroides genus were extracted and entropy 
analysis and oligotyping41 were carried out as described previously42. A�er the initial round of oligotyping, high 
entropy positions were chosen (−C option): 2, 30, 94, 104, 106, 107, 109, 114, 302, 380. To minimize the impact of 
sequencing errors, we required an oligotype to be represented by at least 100 reads (−M option). Moreover, rare 
oligotypes present in less than 10 samples were discarded (−s option). �ese parameters led 70,142 sequences 
le� in the dataset. BLASTn was used to query the representative sequences against the NCBI nr database, and 
the top hit was considered for taxonomic assignment. Statistical analyses and visualization were carried out in R 
environment as described above.

https://clinicaltrials.gov
https://www.r-project.org
https://www.r-project.org
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Data availability. The 16S rRNA gene sequences produced in this study are available at the Sequence 
Read Archive (SRA) of the National Center for Biotechnology Information (NCBI), under accession number 
SRP092171.
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