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Abstract: The gut microbiota has emerged as a key modulator of cancer treatment responses in terms
of both efficacy and toxicity. This effect is clearly mediated by processes impacting the activation
and modulation of immune responses. More recently, the ability to regulate chemotherapeutic drug
metabolism has also emerged as a key driver of response, although the direct mechanisms have
yet to be fully elucidated. Through fermentation, the gut microbiota can produce several types of
metabolites, including short-chain fatty acids (SCFAs). SCFAs play an important role in maintaining
epithelial barrier functions and intestinal homeostasis, with recent work suggesting that SCFAs
can modulate response to cancer treatments and influence both anti-tumor immune response and
inflammatory-related side effects. In this review, we will discuss the importance of SCFAs and their
implications for cancer treatment response and toxicities.

Keywords: microbiota; short-chain fatty acids; cancer; chemotherapy; radiotherapy; immunotherapy;
treatment response; supportive care

1. Introduction

The collection of bacteria and other microorganisms residing in the gastrointestinal
tract, termed the gut microbiota, has emerged as an important target in improving and
personalizing oncology treatment. A growing body of research has shown potential roles
for specific microbial taxa in the efficacy of cancer treatment, as well as in the development
of associated toxicities [1–3]. The richness of the microbiome has also been investigated,
with higher microbial diversity shown to be a key predictor of survival in people having
chemoradiation for cervical cancer [4]. A seminal study by Gopalakrishnan et al. [1] clearly
showed significant differences in both the diversity and composition of the gut microbiota
of people who responded to PD-1 inhibitor immunotherapy for melanoma compared to
non-responders. These compositional differences may lead to altered treatment response in
a variety of ways, including via changes in direct drug metabolism (for example the action
of beta-glucuronidase in the intestinal toxicity of irinotecan [5]), or modulation of the host
immune responses [6,7].

With the advent of more sophisticated analytical methods, there is now more appreci-
ation for the functional aspects of the microbiota, including the production of metabolites.
Short-chain fatty acids (SCFAs) are one important class of metabolites produced by the
gut microbiota. SCFAs, which include butyrate, acetate, propionate, and others (discussed
below), are produced in the gut by bacterial fermentation of indigestible fibers and have
a variety of functions both in the gut and distal sites including the brain and kidneys [8].
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SCFAs have previously been linked to colorectal cancer development, with multiple stud-
ies showing that butyrate, propionate, and acetate induce apoptosis in colorectal cancer
cells but not in healthy cells. In addition, some studies have suggested that butyrate
and propionate have potent anti-neoplastic effects [9]. This has led to suggestions that
SCFA manipulation may be a useful preventative or therapeutic strategy in a variety of
cancers [9–13].

Results linking the microbiota and cancer treatment outcomes have been promising but
have so far failed to provide significant improvements to clinical practice [14]. It is therefore
now increasingly important to move beyond simply correlating the abundance of particular
bacterial taxa with a disease or phenotype, and to understand how the functional capacity
of the microbiota may be critical [15]. Furthermore, in the development of microbial-based
therapeutics, there is a strong rationale to investigate metabolites such as SCFAs, rather
than bacteria themselves. This is because direct metabolite supplementation would remove
the need to ensure microorganisms successfully colonize the host, such is the case with
probiotics. This review will examine current literature and suggest future research paths to
understand the possible benefits and uses of SCFAs in optimizing cancer treatment and
response.

A semi-structured search of PubMed for full-text articles in English was completed
using search terms including short chain fatty acid, cancer treatment, cancer treatment toxic-
ities, mucositis, graft-versus host disease, chemotherapy, radiotherapy and immunotherapy.
The findings of the key studies identified were summarised in Tables 1 and 2.

2. Short-Chain Fatty Acids

SCFAs are small organic carboxylic acids with 1 to 6 carbon atoms, and in the in-
testine, are the main product of anaerobic fermentation of indigestible polysaccharides
such as resistant starch, inulin, cellulose, and pectin (Figure 1) [16]. Acetate, propionate,
and butyrate are the most commonly produced SCFAs in the human gut, in a roughly
3:1:1 ratio [17]. Other SCFAs include formate, isobutyrate, valerate, isovalerate, and 2-
methylbutanoate. SCFAs can move from the gut via the bloodstream in differing amounts.
A study using stable isotopes in healthy human subjects found that systemic availability of
acetate, propionate, and butyrate was 36%, 9%, and 2%, respectively, [18]. Subsequently,
SCFAs have a range of functions both in the gut and elsewhere, with differences in local
and systemic effects governed by their systemic availability. These include being a key
energy source for colonocytes and playing roles in G-protein coupled receptor (GPCR)
binding, histone deacetylation, and immune modulation [16,19]. SCFA quantification in
fecal samples is commonly used to quantify SCFA production. This may however not be an
accurate measure, as previous research has suggested that a majority of SCFAs produced in
the colon are absorbed by the gut mucosa [16,20]. In addition, systemic SCFA levels may
be affected by gut epithelial integrity [21].

A wide range of bacteria, many of which have previously been implicated in the
efficacy or toxicity of cancer treatment, can produce SCFA, with the amounts and types of
SCFA produced dependent on the types of bacteria present. Acetate is the SCFA produced
in the highest levels in the gut. This is due to acetate production pathways being widely
distributed among multiple types of bacteria, whereas other SCFAs such as butyrate and
propionate production is restricted to a small group of bacterial types [22]. The phylum
Firmicutes is the main butyrate-producing taxa, particularly Faecalibacterium prausnitzii
(F. prausnitzii) (Ruminococcaceae) and Roseburia spp. (Lachnospiraceae). Eubacterium and
Coprococcus are also important butyrate-producers [23]. These key butyrate-producing
bacteria are generally anaerobes, and therefore flourish in the low-oxygen environment
of the colon. In addition, Bifidobacterium species are also able to produce acetate and
lactate, and Akkermansia muciniphila, among others, produce propionate and acetate, with
most propionate producers in the colon belonging to the Bacteroidota phylum [8,16,24].
Luminally, SCFAs serve to acidify their environment, and in doing so restrict the growth
of pathogenic microbes by preventing cellular respiration [25]. Similarly, SCFAs such
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as acetate are potent nutrient sources for other commensal microbes (including butyrate
producers), and this cross-feeding mechanism is critical for the maintenance of a healthy
and diverse microbial ecosystem.
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Figure 1. Dietary fiber and other fermentable substrates are fermented by the gut microbiota leading
to the production of SCFAs. These metabolites interact with GPCRs or MCTs and SMTCs transporters
leading to the regulation of gene transcription and energy productions in IECs. SCFAs can also
passively cross the intestinal mucosa and regulate intestinal immunity and pass into the circulation to
modulate metabolic and immune functions in different body organs. SCFAs; short-chain fatty acids,
GPRs; G protein-coupled receptors, MCTs; Monocarboxylate transporters, SMTCs; Sodium-coupled
monocarboxylate transporter; DC, dendritic cell, Treg; T regulatory cell, Mφ; Macrophage.

SCFAs are absorbed by colonocytes via hydrogen or sodium-dependent monocar-
boxylate transporters [19], where much is used as an energy source for these cells. SCFAs,
primarily butyrate and propionate, not metabolized within colonocytes are transported
into the portal circulation and often then used as an energy source for hepatocytes [26,27].
Butyrate is a particularly important energy source for colonocytes, with previous research
showing that colonizing germ-free mice with butyrate-producing bacteria increased oxida-
tive phosphorylation and contained autophagy to normal levels in the gut [28]. Butyrate is
also important in stabilizing gut epithelial barrier function, via the consumption of local
oxygen molecules and subsequent stabilization of the barrier protecting transcription factor
hypoxia-inducible factor (HIF) [29].

Aside from the above-mentioned monocarboxylate transporters, SCFAs can activate G
protein-coupled receptors (GPCR), also known as free fatty acid receptors [16,30]. GPR41,
GRP43, and GPR109A can be activated by multiple SCFAs and subsequently inhibit the
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production of cAMP [31]. These GPCRs are expressed on epithelial cells, neutrophils, and
macrophages both within and outside of the gut, as well as a variety of other cell types
including sympathetic neurons and pancreatic beta cells [32]. The wide range of GPCR
sites shows the broad potential for SCFA-mediated effects. Enteroendocrine cells also
express these receptors and respond by releasing contents that regulate neuroendocrine
pathways controlling local and distant activity. Activities include appetite regulation,
glucose homeostasis, and mucosal growth. See van der Hee and Wells [32] for further
discussion of these effects.

Butyrate and propionate can modulate inflammatory responses in the gut mucosa
via histone deacetylase (HDAC) inhibition. Previous research has shown that butyrate
can suppress colonic inflammation via HDAC1-dependent Fas upregulation [33]. SCFAs
can also alter the immune response in numerous other ways [34]. For example, butyrate
can induce Treg differentiation [35] and increase the generation of Th1 and Th17 cells [36].
Microbiota-derived SCFA has also been shown to promote the cellular metabolism of
antigen-activated CD8+ T cells and enhance their differentiation into long-term memory T
cells [37]. Combined, these functions support the central role of SCFAs in the modulation
of the immune system.

While it is beyond the scope of this paper to describe all individual differences in
metabolism and function of different SCFAs, it is important to note that each SCFA has
specific functions, which may be important in understanding their role in cancer treatment
outcomes. As mentioned above, pathways for acetate production are spread amongst a
range of bacterial types, leading to its high production in the gut, of which a relatively high
level is able to move into the bloodstream. Acetate also has specific functions systemically,
including involvement in lipid synthesis and acetylation reaction [38]. Butyrate is primarily
produced via butyryl CoA:acetate CoA transferase pathways, and is one of the most
researched SCFAs, due to its important role as an energy source. Propionate is produced
via two pathways; the succinate pathways and the propanediol pathway. See Deleu,
Machiels [8] for further description of SCFA production pathways. Propionate has also been
suggested to have roles in lipogenesis in hepatocytes, as well as having antiproliferative
effects in colon cancer cell lines [39].

3. SCFAs and Cancer Treatment Response

A body of evidence is developing that SCFAs may have a role in the efficacy of various
cancer treatment types, including chemotherapy, immunotherapy, and radiotherapy. Key
to this is the immunomodulatory properties of SCFA that can alter anti-tumor effects,
such as amounts of tumor-killing CD4+ and CD8+ T cells, as well as immune-suppressing
Tregs [40]. Additionally, HDACs, of which butyrate in particular can inhibit, are linked to
cell cycle regulation and proliferation, with a variety of other HDAC inhibitors tested as
anti-cancer agents [41]. Different treatment modalities affect the gut microbiota differently
and therefore may interact with SCFA in different ways (Figure 2).
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Figure 2. Role of SCFAs in cancer treatment based on current evidence. For chemotherapy, responders
to treatment had a higher abundance of SCFA-producing microbiota and higher levels of plasma
butyrate. Butyrate and propionate can increase the intratumoral T cells and TNF-α and reduce
HDACs and hence increase chemosensitivity, tumor apoptosis and inhibit cell growth, migration,
and invasion. Responders to immunotherapy also had a higher abundance of butyrate-producing
microbes and higher levels of fecal and plasma SCFAs. SCFAs (butyrate and valerate), fiber, or
SCFA-producing bacteria supplements increase the intratumoral T cells, INF-γ and TNF-α and result
in inhibition of tumor growth and improving anti-tumor immune response. For radiotherapy, a
higher abundance of butyrate-producing bacteria and higher levels of fecal SCFAs correlates to
a better response. While butyrate administration was found to reduce anti-tumor efficacy, the
administration of total SCFAs or a fiber-rich diet improved tumor radiosensitivity. SCFAs, short chain
fatty acids; 5-FU, 5-fluorouracil; HDACs, histone deacetylases; TNF-α, tumor necrosis factor-alpha;
PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; CTLs, cytotoxic T cells;
CAR T cells, chimeric antigen receptor T cells; INF-γ, interferon-gamma; APCs, antigen-presenting
cells.

3.1. Chemotherapy

Accumulating data suggests that SCFAs, particularly butyrate and propionate, could
impact the efficacy of chemotherapy by enhancing tumor sensitivity to chemotherapeutic
agents or augmenting anti-tumor immune responses (Table 1). It has been shown that
decreased abundance of SCFA-producing taxa (Coprococcus, Dorea, and uncultured Ru-
minococcus) is linked to lower efficacy of neoadjuvant chemotherapy (cyclophosphamide,
anthracycline, taxol, or herceptin) in patients with breast cancer, and subsequently asso-
ciated with a lower number of intratumoral CD4+ and CD8+ cells and peripheral CD4+
T cells [42] (Figure 2). More specifically, He et al. demonstrated that, in a mouse model,
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butyrate enhances the efficacy of oxaliplatin by enhancing the anti-tumor activity of intra-
tumoral and draining lymph node CD8+ T cells in an IL-12 signaling pathway-dependent
manner. In the same study, the authors found that oxaliplatin responder patients with gas-
trointestinal cancer had higher levels of plasma butyrate compared to non-responders [43].

Table 1. Impact of SCFA-based interventions on cancer treatment anti-tumor efficacy.

Ref. Subjects/Model Treatment Key Findings

Geng et al.
[44]

HCT116 human colorectal
cancer cell line

5-FU +/− butyrate Butyrate enhanced 5-FU-induced apoptosis on colorectal cancer
cells

Butyrate improved cell sensitivity to 5-FU by augmenting
5-FU-induced inhibition of DNA synthesis.

Encarnação
et al. [45]

WiDr, C2BBe1, and LS1034
colorectal cancer cells

WiDr colorectal mouse model

Irinotecan +/− butyrate In vitro, butyrate reduced the IC50 of irinotecan by enhancing
cancer cell apoptosis and reducing proliferation.

Butyrate significantly decreased the expression of
chemoresistant-related protein.

In vivo, butyrate delayed tumor growth following irinotecan
treatment.

Panebianco
et al. [46]

BxPC-3 and PANC-1 pancreatic
cancer cell line

BxPC-3 pancreatic cancer
mouse model

Gemcitabine +/−
butyrate

In vitro, butyrate administration enhanced gemcitabine-induced
inhibition of cancer cell growth and apoptosis.

In vivo, butyrate did not affect tumor volume but suppressed
stromatogenesis by reducing the density of stroma collagen

bundles, and expression of myofibroblasts, vascular architecture,
and M2-polarized macrophage markers in tumors.

Li et al. [47] HGC-27 and SGC-7901 gastric
cancer cell lines

SGC-7901 gastric cancer mouse
model

Cisplatin +/− butyrate Butyrate synergized cisplatin-induced tumor cell apoptosis by
increasing mitochondrial ROS levels and mitochondrial

membrane potential.
Suppressed cell migration and invasion in vitro by reducing the

levels of MMP-2, -9 proteins.
Cisplatin augmented cisplatin-induced suppression of tumor

growth by increasing the levels of apoptosis makers.

Kobayashi
et al. [48]

HepG2, HuH-7, JHH-4
hepatocellular carcinoma cell

lines
HepG2 human hepatocellular

carcinoma mouse model

Cisplatin +/− propionate In vitro, combined therapy inhibited proliferation and enhanced
apoptosis through the GPR41 signaling pathway.

Enhanced levels of activated DNA fragmentation markers
(cleaved caspase-3).

Enhanced the expression of TNF-α by downregulating the
expression of HDACs and enhancing histone H3 acetylation.

In vivo, combined therapy suppressed tumor growth and
enhanced histone H3 acetylation and mRNA expression of

TNF-α.

He et al. [43] MC38 colon cancer/ EG7
lymphoma mouse model

Patients with gastrointestinal
cancer (n= 21)

Oxaliplatin +/− butyrate Butyrate augmented oxaliplatin efficacy by enhancing the
anti-tumor activity of CD8+ T cells in an IL-12 signaling

pathway-dependent manner.
Butyrate prompted cytotoxic CD8+ T cell anti-tumor responses

in vitro and in vivo through the IL-12 signaling pathway.
Clinically, responders to oxaliplatin had higher concentrations of

serum butyrate compared to non-responders.

Zhang et al.
[49]

MC38 colon cancer mouse
model

Anti-PD-1 +/− butyrate Pre- immunotherapy butyrate supplement improved anti-PD-1
efficacy in mice humanized with gut microbiota from CRC

patients
Butyrate increased infiltration of tumor-killing CD4+ and CD8+

cells in the tumor.

Luu et al.
[10]

B16-OVA melanoma/ PancOVA
pancreatic cancer mouse model

CTLs and CAR T cells
+/− valerate / butyrate

Transferring valerate or butyrate-treated cytotoxic T cells and
chimeric antigen receptor T cells into tumor-bearing mice
increased the production of CD25, IFN-γ, and TNF-α and

enhances the anti-tumor activity.

Jing et al.
[50]

MC38 colon adenocarcinoma
mouse model

Anti-PD-L1 +/−
fiber-rich powder or

SCFAs

Administrating fiber-rich powder improved anti-PD-L1 efficacy
by increasing the production of acetate, propionate, butyrate, and

valerianate.
Oral butyrate supplements did not affect anti-PD-L1 efficiency or

total leukocytes and CD8+ T cell proportion.
Oral SCFAs did not increase cecum or colon SCFA levels
In vitro, culturing lymphocytes with SCFAs increased the

proportion of CD8+ T cells.
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Table 1. Cont.

Ref. Subjects/Model Treatment Key Findings

Han et al.
[51]

CT26 colon cancer mouse model Anti-PD-1 +/− Inulin
(dietary fiber) or SCFAs

Inulin improved anti-tumor response and delayed tumor growth
by increasing systemic tumor-specific CD8+ cells count.

Inulin increased SCFA-producing Lactobacillus, Akkermansia, and
Roseburia, and fecal SCFAs.

Negative correlation between the tumor size and the fecal
propionate and butyrate.

Inulin increased systemic tumor-specific CD8+ cells, splenic
IFN-γ+ CD8+ T cells, intratumoral CD8+, CD4+, activated

dendritic cells and decreased PD-1 positive CD8+ cells.
Oral administration of free SCFAs did not improve the

anti-tumor response.
Antibiotic treatment and GPR43 knockdown abrogated

anti-tumor activity.
In vitro, SCFAs enhanced the memory response of IFN-γ+ CD8+

T cells and upregulated T-cell factor 1.

Spencer et al.
[52]

Patients with metastatic
melanoma (n = 128)

B2905 and HMel melanoma
mouse model

Anti-PD-1 +/− fiber-rich
diet

High fiber dietary intake improved progression-free survival in
patients.

Fiber-rich diet delayed tumor growth in mice.
Fiber-rich diet had no impact on tumor response in germ-free

mice.
Higher propionate levels were observed in mice receiving a

fiber-rich diet.
Fiber-rich diet increased the number of tumor-infiltrating CD4+

cells and IFNγ+ cytotoxic T cells.

Coutzac et al.
[12]

Patients with metastatic
melanoma (n = 85)

CT26 and MC38 Colon/
MCA101OVA fibrosarcoma

mouse model

Ipilimumab +/−
systemic butyrate

Higher serum levels of propionate and butyrate were associated
with poor clinical outcome and high serum SCFAs was positively

correlated to the proportion of Tregs.
Butyrate administration reduced treatment efficacy by

suppressing dendritic cell maturation and decreased T-cell
expansion and functions in mice.

Tomita et al.
[53,54]

Patients with advanced
non–small cell lung cancer
received antibiotics or PPI

(n = 118)

Immune
checkpoint blockade +/−

C. butyricum

C. butyricum was associated with longer progression-free and
overall survival, particularly in patients who received PPI

with/without antibiotics.
C. butyricum administration increased beneficial microbiota and

reduced oral-related pathobionts in the gut.

Then et al.
[55]

RT112 bladder carcinoma
mouse model

RT112 bladder cell line

Radiation+
fiber-containing diet
Cells irradiation +/−

SCFAs

Soluble high-fiber diet delayed tumor growth following
irradiation

Soluble high-fiber diet increased acetate-producing Bacteroides
acidifaciens, which was associated with better radiation response

and long survival.
In vitro, SCFAs increased histone acetylation and reduced cell

proliferation while butyrate only significantly enhanced
radiosensitivity.

Yang et al.
[56]

MC38 colon/ B16F1 melanoma
mouse model

Local radiation +/−
Systemic or intratumoral

butyrate

Both systemic and intratumoral butyrate impaired anti-tumor
response in MC38 and B16F1 models.

Intratumoral butyrate did not directly protect tumor cells from
radiation but inhibited radiation-induced anti-tumor immune

responses.
Intratumoral butyrate inhibited type I IFN expression in dendritic
cells and hence suppressed dendritic cell functions and activation

of CD8+ T cell immune responses.

Uribe-
Herranz et al.

[57]

B16OVA melanoma/ TC-1 lung
cancer mouse model

Local irradiation +/−
butyrate

Depletion of butyrate-producing taxa and reducing tumor
butyrate levels by vancomycin improved anti-tumor activity.

Butyrate administration reduces antigen-presenting cells
activation and functions.

Butyrate has also been found to enhance the activity of 5-fluorouracil (5-FU) in colon
cancer cells [44]. Furthermore, treating pancreatic carcinoma cell lines with sodium bu-
tyrate increases cell sensitivity to SN-38, cisplatin, and fluorouracil chemotherapies by
inducing histone acetylation and p53 expression and subsequently increasing apopto-
sis [58]. A similar synergic effect was also observed after combined butyrate treatment with
docetaxel, irinotecan, gemcitabine, or cisplatin both in vitro and in vivo against various
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types of tumors [45–47,59]. The co-administration of docetaxel and butyrate enhanced
docetaxel response by upregulation and downregulation of apoptosis and proliferation-
related proteins, respectively, [59]. Further, butyrate reduced irinotecan’s half maximal
inhibitory concentration, expression of the chemoresistant-related protein P-glycoprotein
and enhanced cancer cell apoptosis and anti-tumor efficiency of irinotecan against colon
cancer cell lines [45]. Combined gemcitabine and butyrate treatment also further prompted
apoptosis and reduced tumor-associated stromatogenesis in pancreatic ductal adenocarci-
noma models [46]. Additionally, butyrate enhanced tumor apoptosis and the suppression
of tumor growth, migration, and invasion capacity of gastric cancer cell lines treated with
cisplatin [47] (Figure 2). Similar to butyrate, it has been demonstrated that propionate
enhances the anti-tumor activity of cisplatin against human hepatocellular carcinoma cells.
This was mediated by a GPR41-dependent reduction in the expression of HDACs and
hence the enhancement of TNF-α expression [48] (Figure 2). Overall, evidence suggests
that increased levels of SCFAs lead to increased immune cell killing of tumor cells, and less
tumor cell growth.

3.2. Immunotherapy

Due to the critical role SCFAs play in regulating immune responses, as well as the
importance of microbiota composition in immunotherapy, SCFAs potential ability to aug-
ment immunotherapy efficacy is receiving increasing attention. While some studies have
reported that SCFAs negatively impact the immunotherapy response, the majority of
the current evidence supports a positive role (Table 1). It has been widely shown that
responders to immunotherapy, such as ipilimumab and nivolumab, have an increased
abundance of butyrate-producing bacteria compared to non-responders [1,3,60] (Figure 2).
For instance, F. prausnitzii is a butyrate-producing bacteria that have been associated with
better treatment response and prolonged progression-free survival in patients treated with
immunotherapy [1]. Further, the administration of butyrate-producing Clostridium bu-
tyricum (C. butyricum) was found to improve both progression-free and overall survival in
patients with lung cancer treated with immune checkpoint inhibitors [53,54]. Additionally,
Botticelli et al. analyzed the metabolomic profile of 11 patients with non-small cell lung
cancer treated with nivolumab immunotherapy and demonstrated that higher levels of
fecal SCFAs including butyrate and propionate were associated with long responders
(>1-year progression-free survival) [61]. Similarly, Nomura et al. analyzed SCFAs from
52 patients with solid tumors treated with immunotherapy (nivolumab or pembrolizumab)
and reported that higher fecal SCFA concentration (acetic, propionic, butyric, valeric acid)
and plasma isovaleric acid prior to treatment initiation was found in responders compared
to non-responders and was associated with longer progression-free survival [11]. Mechanis-
tically, Zhang et al. found that butyrate enhanced the efficacy of an anti-PD-1 by promoting
the infiltration of T cells in the tumor microenvironment in mice humanized with gut micro-
biota obtained from patients with colorectal cancer (CRC) [49]. Further, in mouse models
with melanoma or pancreatic tumors, Luu et al. reported that microbial-derived valerate
and butyrate improved the anti-tumor activity of cytotoxic T cells and chimeric antigen
receptor (CAR) T cells. A mechanistic in vitro study in this paper showed that treatment of
these cells with the SCFAs valerate and butyrate enhanced the production of CD25, IFN-γ,
and TNF-α by both cytotoxic T cells and CAR T cells [10] (Figure 2). A range of other
in vivo studies have also shown similar results, with high-fiber diets, and subsequently
increased SCFA levels, improving response to various immunotherapies [50–52].

Conversely, some evidence has suggested a negative role of SCFAs in ipilimumab effi-
cacy. Coutzac et al. investigated the association between SCFAs and response to ipilimumab
in patients with melanoma and a melanoma mouse model [12]. They first assessed the gut
microbiome of 88 patients with metastatic melanoma treated with ipilimumab and reported
that higher proportions of F. prausnitzii were associated with prolonged progression-free
and overall survival. However, serum SCFA measurements showed that F. prausnitzii was
negatively correlated to serum butyrate. Butyrate concentration was also negatively corre-
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lated to progression-free and overall survival. High butyrate and propionate in the blood
were associated with resistance to CTLA-4 blockade and a higher proportion of Treg cells.
The negative correlation between the abundance of butyrate-producing F. prausnitzii and
serum butyrate levels could be explained by the increase in systemic butyrate levels due to
the disruption of intestinal barrier integrity caused by ipilimumab. Elevated levels of serum
SCFAs have been reported previously in patients with type 2 diabetes and this was also
associated with higher levels of serum zonula occludens-1, an indicator of a leaky gut [62].
However, the negative impact of butyrate on anti-tumor immunity is not explained. In
the same abovementioned ipilimumab study, authors found that in a mouse model, bu-
tyrate administration impaired anti-tumor immune response by impacting dendritic cell
maturation and T cell function [12]. Another mouse study also showed that oral butyrate
supplementation did not enhance anti-PD-L1 treatment, although did not decrease efficacy
either [50]. These results may suggest that the efficacy of immunotherapy is not universally
enhanced by increased SCFAs and may be population-dependent. Alternatively, measure-
ment of serum SCFA, which depends on the production of SCFA as well as absorption
in the gut and elsewhere in the body, may lead to different conclusions than studies only
measuring fecal SCFA.

3.3. Radiotherapy

Currently, there is contradicting evidence on the role of SCFA in radiotherapy efficacy
(Table 1). Sánchez-Alcoholado and colleagues showed that, in patients with colorectal
cancer treated with neoadjuvant radiochemotherapy, the gut microbiota of responders was
enriched with butyrate-producing bacteria, compared to treatment non-responders. These
patients also had significantly higher fecal levels of SCFAs (acetate, butyrate, and hexanoic
and isobutyric acids) compared to non-responders [63]. Further, Yi et al. reported an in-
crease in butyrate-producing bacteria (e.g., Roseburia, Dorea, and Anaerostipes) were enriched
in responders to chemoradiotherapy in patients with locally advanced rectal cancer [64]
(Figure 2). In contrast, pre-clinical studies have found that butyrate administration impairs
the anti-tumor response of ionizing radiation [56,57]. Yang et al. administered germ-free
mice with Kineothrix alysoides, a member of the butyrate-producing Lachnospiraceae family.
This resulted in decreased ionizing radiation efficacy, with increased systemic and tumor
levels of butyrate. As butyrate can suppress the expression of type I interferons in dendritic
cells and the cross-presentation of tumor-associated antigens to tumor-specific cytotoxic T
cells; it was suggested that this mechanism led to reduced anti-tumor immune response [56]
(Figure 2).

Other studies have used indirect methods of altering SCFA output, with varying
results. Uribe-Herranz et al. demonstrated that treating tumor-bearing mice with the
antibiotic vancomycin improved radiation-induced anti-tumor activity. Butyrate-producing
taxa were depleted by vancomycin and subsequently reduced butyrate levels in tumors
and tumor-draining lymph nodes. They also reported that butyrate reduced antigen-
presenting cell (APC) activation and function and hence impaired the radiation-induced
anti-tumor response [57] (Figure 2). Conversely, Then et al. [55] showed in mice that a
soluble high-fiber diet delayed tumor growth following irradiation and was associated
with a high abundance of Bacteroides acidifaciens. Using in vitro models of bladder cancer,
this effect was suggested to be via an increase in SCFA production (Figure 2). While much
of this pre-clinical evidence suggests that butyrate alone may not have a beneficial effect
on the efficacy of radiotherapy-based treatment regimens, the clinical evidence described
did show beneficial effects of butyrate. It is possible that the effects of butyrate alone
are tempered when in combination with other SCFAs and other metabolites in a clinical
population. Further metabolomic analyses are likely required to completely understand
these relationships.
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4. SCFAs and Cancer Treatment Toxicities

Cancer therapies are associated with a wide range of adverse events, including gas-
trointestinal, cardiovascular, hematological, and psychoneurological toxicities (Table 2).
These toxicities not only have significant short- and long-term impacts on patients’ quality
of life but also negatively affect treatment efficacy and patient prognosis. The patho-
physiology of these toxicities represents complex processes and involves the interaction
between tissue injury, oxidative stress, and inflammation [65,66]. Given the protective,
anti-inflammatory, and antioxidant properties of SCFAs [67], these metabolites have been
found to attenuate the severity of these toxicities. This effect is mediated by attenuation of
tissue damage, inflammatory responses, and or oxidative stress and improving intestinal
integrity and reducing intestinal permeability (Figure 3).
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Figure 3. The role of SCFAs in cancer treatment toxicities based on current evidence. SCFAs can
alleviate chemotherapy, radiotherapy, and HSCT-induced GI damage associated with mucositis
and GvHD by reducing cell death, inflammatory and oxidative stress responses, and decreasing
intestinal permeability by protecting villi length and enhancing mucin production. Butyrate protects
against chemotherapy-related cardiac toxicities by reducing tissue injury, inflammation, oxidative
stress, and mitochondrial dysfunction. Butyrate also has beneficial effects against chemotherapy-
induced behavioral changes and neuroinflammation. Propionate protects against hematological
toxicities by enhancing bone marrow cellularity and reducing DNA damage, oxidative stress, and
progenitor cell death. SCFAs, short chain fatty acids; GI, gastrointestinal; CTx, chemotherapy; RTx,
radiotherapy; IMx, immunotherapy; ROS, reactive oxygen species; GvHD, graft-versus-host disease;
HSCT, hematopoietic stem cell transplantation.
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Table 2. Impact of SCFA-based interventions on cancer treatment toxicities.

Ref. Subjects/Model Treatment Toxicity Key Findings

da Silva
Ferreira et al.

[68]

3D intestinal
organoids

Methotrexate
+/− SCFAs

GI toxicity Butyrate and propionate reduced the reduction in metabolic
activity caused by methotrexate.

Ferreira et al.
[69]

Mice 5-FU +/− SCFAs/
butyrate

GI toxicity SCFA and Butyrate reduced or prevented the 5-FU-induced
reduction in body weight and intestinal length.

SCFA and Butyrate reduced tissue damage and mucosal
ulceration in the small intestine.

SCFA and Butyrate had no effect on inflammatory infiltrates
but prevented 5-FU induced increase in EPO enzyme activity

(a marker for eosinophil infiltration).
Butyrate decreased intestinal permeability and ZO-1

expression associated with 5-FU.

Yue et al. [70] THP-1 cells and
Caco-2 cells

Mice

5-FU +/− SCFAs/
L. rhamnoides

GI toxicity SCFAs (in vitro):
Suppressed ROS production

Reduced expression of NLRP3 and proinflammatory
cytokines

Reduce autophagy markers.
Lactobacillus rhamnoides (in vivo):

Increased fecal SCFAs
Increased serum IL-1β, IL-6 and IgA
Decreased splenic NLRP3 and IL-17

Increased intestinal ZO-1 and occludin

Wang et al.
[71]

Colon
carcinoma-bearing

mice

5-FU +/− Car-
boxymethylated

pachyman
(modified

polysaccharide)

GI toxicity Acetate, propionate, and butyrate reduced while isobutyrate
and isovalerate increased following 5-FU.

Carboxymethylated pachyman restored normal levels of
SCFAs

Intervention reduced 5-FU-induced intestinal tissue injury,
apoptosis, and inflammation.

Panebianco
et al. [46]

Pancreatic
adenocarcinoma-

bearing
mice

Gemcitabine +/−
butyrate

GI toxicity Butyrate attenuated toxicity by protecting villi structure,
increasing mucin production, and enrichment of
anti-inflammatory SCFA-producing microbiota.

Guo et al. [72] Mice TBI (8 – 8.2 Gy)
+/− SCFAs

Haemopoietic +
GI toxicity

Radiation-resistant mice had higher concentrations of fecal
total SCFA and propionate.

Propionate enhanced the survival rate.
Propionate increased bone marrow cellularity and splenic
pulp recovery and reduced the radiation-induced loss of

hematopoietic progenitor cells.
Propionate increased crypt length and mucus thickness.

SCFAs attenuated DNA damage and reactive oxygen species
production in hematopoietic and gastrointestinal tissues

Huang et al.
[73]

Mice Doxorubicin +/−
sodium butyrate

Cardiotoxicity Doxorubicin reduced levels of fecal and serum butyrate
Butyrate increased arginase-1 and CD206 levels and decreased

cardiomyocyte apoptosis and myocardial enzymes.
Butyrate promotes the polarization of colonic

anti-inflammatory M2 macrophages.

Russo et al.
[74]

Mice
Cardiomyocytes/
endothelial cells

Doxorubicin
+/−butyrate

derivative
(phenylalanine-

butyramide
(FBA))

Cardiotoxicity FBA:
Reduced Doxorubicin-induced left ventricle dilatation and

volume
Prevented fibrosis, apoptosis, and reduction in cardiomyocyte

size
Reduced expression of cardiac dysfunction and remodeling

markers
Reduced oxidative stress markers and prevented

mitochondrial dysfunction
Prevented cell damage and apoptosis.

Chen et al.
[75]

Melanoma-bearing
mice

PD-1/PD-L1
inhibitor +/− P.

loescheii/ butyrate

Cardiotoxicity Lower fecal butyrate in cardiotoxicity model
SCFA-producing bacteria (P. loescheii) or butyrate reduced

myocardial apoptosis and serum myocardial enzymes.
P. loescheii and butyrate downregulated proinflammatory

factors in the colonic and cardiac tissues.
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Table 2. Cont.

Ref. Subjects/Model Treatment Toxicity Key Findings

Mathewson
et al. [76]

Mice BMT +/−
butyrate /
butyrate-

producing
Clostridia strains

GI GVHD BMT reduced intestinal butyrate and reduced histone
acetylation in IECs.

Butyrate restored histone acetylation, reduced apoptosis, and
enhanced tight junction integrity.

Butyrate + Clostridia strains attenuated GI GVHD severity.

Cristiano et al.
[77]

Mice Paclitaxel +/−
sodium butyrate

GI + behavioral
dysfunctions

Paclitaxel reduced intestinal barrier integrity, caused
microbial dysbiosis, and decreased fecal butyrate.

Oral butyrate attenuated disruption of intestinal barrier
integrity and microbial dysbiosis.

Oral butyrate attenuated depressive and anxiety-like behavior
and neuroinflammation.

4.1. Gastrointestinal Toxicity

Due to the high sensitivity of gastrointestinal mucosa to cytotoxic agents, almost all
cancer treatments cause some degree of mucosal injury along the gastrointestinal tract. This
is observed in 80-100% of patients depending on treatment type and site, and dose [78].
Gastrointestinal mucositis (GIM), inflammation of the lower intestinal mucosa, is one of the
most common and distressing adverse reactions of cancer therapies including chemother-
apy, radiotherapy, and immunotherapy. GIM is characterized by initial DNA damage and
production of reactive oxygen species (ROS), activation of inflammatory responses and
production of pro-inflammatory mediators, tissue injury, and impairment of intestinal
barrier functions [79]. As a result of these factors, gut microbial dysbiosis, an imbalance in
the number and/or type of bacteria comprising the microbiota, is also observed [79]. Due
to the close relationship between the types of bacteria in the microbiome and the SCFAs
produced, this dysbiosis would therefore suggest changes in the amounts and types of
SCFAs in GIM. As such, the gut microbiota and its metabolites could be a target for the
management of GIM.

SCFAs can influence the pathogenesis of intestinal injury by promoting crypt cell
proliferation, modulation of immune responses, and maintenance of intestinal barrier
integrity [80]. Therefore, the protective effect of SCFA against cancer treatment-induced
intestinal injury has been an area of interest for decades. For instance, Ramos et al. showed
in 1997 that the administration of SCFAs reduced histological damage and inflammation in
the intestine of mice treated with the chemotherapeutic drug cytarabine [81]. Since then,
several studies have investigated the protective effect of SCFA in both in vitro and in vivo
GIM models of several chemotherapeutic agents as well as radiotherapy. For instance, in an
in vitro study, SCFAs, mainly butyrate, attenuated methotrexate-induced toxicity in a 3D
intestinal organoids model [68]. In mice treated with 5-FU, Ferreira et al. demonstrated that
the administration of mixed SCFAs reduced intestinal injury; however, it did not impact
intestinal permeability. Conversely, when butyrate was administrated alone, it resulted
in a similar result with a reduction in intestinal permeability [69]. In another model of
5-FU-induced GI toxicity, treating human mononuclear macrophage (THP-1) and colorectal
adenocarcinoma (Caco-2) cells with any of acetate, butyrate, and propionate, reduced cell
death and suppressed the production of ROS and expression of proinflammatory media-
tors including NLRP3 inflammasome and cytokines in both cell lines compared to 5-FU
without SCFAs. The study also reported a reduction in autophagy markers, LC3-II and
Beclin-1, in THP-1 cells and increased expression of mucosal barrier markers, occludin,
and MUC2, in Caco-2 cells. In the same study, the oral administration of SCFA- producing
Lactobacillus rhamnosus (L. rhamnosus) in a mouse model of 5-FU induced GIM restored the
reduction in fecal SCFAs and increased the expression of intestinal ZO-1 and occludin and
serum IgA. L. rhamnosus also reduced IL-1β and IL-6 in serum and spleen, splenic NLRP3
inflammasome, and increased splenic anti-inflammatory IL-10 [70]. Furthermore, Gallotti
et al. demonstrated that a high-fiber diet enriched with SCFA-producing Bifidobacterium
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and Lactobacillus was associated with improved intestinal histopathological changes and
decreased intestinal permeability in mice model of irinotecan-induced mucositis. However,
administering free acetate had no impact on both the histopathology and intestinal perme-
ability, but it did reduce immune cell infiltration and attenuate inflammation in the same
model. The lack of effect of free acetate on intestinal tissue injury or permeability could be
due to the fact that acetate is mostly absorbed in the upper GI tract (esophagus, stomach,
and small intestine) [82] and hence only a small fraction may reach the lower GI tract.
This suggests that modulating the gut microbiota with diet, to enhance the production of
endogenous SCFAs, may be more beneficial than orally administrating SCFAs, which could
be rapidly metabolized [83]. Other agents that restore the normal levels of SCFAs have also
been found associated with lower 5-FU GI toxicity. Wang et al. reported that the use of the
polysaccharide, Carboxymethylated pachyman, in a colon tumor-bearing mouse model,
reduced 5-FU-associated colon injury by reducing oxidative and inflammatory mediators.
This agent also prevented gut microbial dysbiosis and the reduction in fecal SCFAs caused
by 5-FU treatment [71]. SCFAs may also help protect against GI toxicity of gemcitabine,
a standard treatment for pancreatic cancer. It has been shown that, in a pancreatic can-
cer mouse model treated with gemcitabine, butyrate supplements can reduce intestinal
injury by preserving villi structure, increasing mucin production, enriching butyrate and
propionate-producing bacteria, and suppressing pro-inflammatory microbes [46].

SCFAS may also play an important role in radiotherapy-induced GIM through the
attenuation of inflammation [84]. Clinically, Ferreira et al. reported a significant reduction
in butyrate levels during pelvic radiotherapy, and this was correlated to higher GI toxicities
in patients with prostate cancer [85]. Further, the administration of SCFA- producing
Lachnospiraceae strains or propionate protected against radiation and improved animal
survival in a mouse model of total body irradiation. Propionate ameliorated GI injury by
increasing crypt length and mucus thickness while both propionate and butyrate treatment
reduced DNA damage markers in intestinal epithelial cells [72].

Another form of GI toxicity is radiotherapy-induced proctitis—inflammation of the
rectal mucosa. This is a common complication in patients treated with radiotherapy for
pelvic malignancies including rectal, bladder, gynecological, and prostate cancer [86]. Mul-
tiple studies have clinically investigated the effectiveness of butyrate in alleviating proctitis.
This includes two small studies and one more recent large study. Vernia et al. evaluated
the efficacy of topical butyrate in treating acute radiation proctitis in 20 patients receiving
radiotherapy for pelvic malignancies and reported that butyrate led to the remission of
proctitis symptoms [87]. In another small study that included 31 patients with prostate
cancer, Hille et al. reported that sodium butyrate enema significantly reduced the incidence
and severity of acute radiation proctitis but had no effect on late proctitis [88]. Conversely,
a randomized placebo-controlled phase 2 trial, that included 166 patients with prostate
cancer, found that the daily administration of increasing doses of sodium butyrate enemas
had no significant impact on the incidence, severity, or duration of acute radiation proc-
titis [89]. As such, the current evidence does not support butyrate as an intervention for
radiation proctitis [90]. Alternatively, Sasidharan et al. investigated whether oral resistant
starch supplements could be used to prevent acute radiation proctitis in patients with
cervical cancer treated with chemoradiotherapy. The study reported no difference between
patients who received resistant starch and those who received digestible starch in terms of
the severity of clinical and functional proctitis. The study also reported no difference in
the levels of fecal SCFAs between groups [91]. The use of concurrent chemotherapy, which
negatively impacts the gut microbiota composition and intestinal permeability, could limit
the positive impact of resistant starch supplements and may explain why there was no
change in SCFAs levels in the intervention group. This suggests that butyrate enema and
resistant starch are not effective against radiation proctitis, and hence alternative SCFAs
administration approaches need to be investigated.

Collectively, accumulating evidence supports the role of SCFAs in protecting against
cancer treatment-related GI toxicities (Figure 3). Although the use of SCFAs orally [83]
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or as enemas [89] has shown limited success, the use of a fiber-rich diet to enhance the
production of endogenous SCFAs offers a more effective approach [83]. Further research
into the clinical implication of SCFAs and the best SCFA-based interventional strategy is
warranted.

4.2. Cardiotoxicity

Cardiotoxicity is one of the life-threatening complications of cancer therapies including
doxorubicin chemotherapy and programmed cell death-1 (PD-1) and programmed death-
ligand 1 (PD-L1) inhibitor immunotherapies [92]. Generally, cardiotoxicity can manifest as
myocarditis, cardiac fibrosis, cardiomyopathy /heart block, or heart failure [93,94]. Doxoru-
bicin’s cardiotoxic effects are widely attributed to oxidative stress, which is characterized
by increased accumulation of iron and the production of ROS in myocardiocytes. Increased
levels of iron and ROS result in mitochondrial dysfunction and myocardial damage. This
impacts cardiac contractile function and cardiac dilatation and may eventually lead to
cardiac dysfunction [95,96]. Gut microbial dysbiosis and activation of immune response
could contribute to doxorubicin-induced cardiotoxicity [73]. In terms of immunotherapy-
associated cardiac toxicity, the proposed mechanism involves the activation of immune
responses, increased expression of proinflammatory mediators, and increased infiltration
of activated T-cell lymphocytes into the myocardium [97], which could also be altered by
systemic SCFAs.

Due to their antioxidant and anti-inflammatory properties, SCFAs could modulate
chemotherapy and immunotherapy-related cardiac side effects; however, this only has
been investigated in a few pre-clinical studies. Russo et al. demonstrated that the butyric
acid derivative phenylalanine-butyramide (FBA) protects against changes in left ventricle
dilatation and systolic and diastolic volume in mice treated with doxorubicin [74]. This
effect was mediated by reducing cardiac fibrosis and apoptosis as well as reducing the
levels of nitrosative (nitrotyrosine and nitric oxide synthase) and oxidative stress (hydrogen
peroxide and mitochondrial superoxide dismutase) mediators, hence improving mitochon-
drial dysfunction. This study also reported a protective effect of FBA against cell damage
and apoptosis in doxorubicin-treated cardiomyocytes and endothelial cells in vitro. More
importantly, treating breast cancer cells with combined FBA and doxorubicin did not affect
the anti-tumor activity of doxorubicin [74]. In another pre-clinical study, doxorubicin
caused gut microbiota dysbiosis and reduced fecal and serum butyrate levels, and this
was associated with cardiotoxicity. Furthermore, oral administration of butyrate reduced
cardiomyocyte apoptosis and induced an anti-inflammatory effect by promoting the po-
larization of the anti-inflammatory M2 macrophages in the colon [73]. Similarly, Chen
et al. demonstrated that the PD-1/ PD-L1 inhibitor-induced cardiotoxicity mouse model
was associated with gut microbial dysbiosis characterized by a significant reduction in
SCFA-producing Prevotellaceae and Rikenellaceae and lower production of butyrate. The oral
administration of butyrate-producing Prevotella loescheii or butyrate itself attenuated car-
diotoxicity by reducing the expression of pro-inflammatory cytokines IL-1β and TNF-α and
M1 macrophages polarization in the colon resulting in lower inflammatory responses [75].

Together, current evidence suggests that microbiota-derived butyrate alleviates
chemotherapy and immunotherapy cardiotoxic effects by decreasing oxidative stress, ROS
production, and apoptosis in cardiac tissues as well as attenuating inflammatory responses
(Figure 3). However, these have only been investigated in a few pre-clinical studies. Further
research is required to validate these findings and to assess the effectiveness of butyrate
treatments on cardiotoxicity clinically.

4.3. Hematological Toxicities

Several cancer treatments are associated with hematological complications including
bone marrow suppression, and reduction in hematopoietic progenitor cells. This results in
anemia, neutropenia, and a higher risk of infections [98,99]. Gut microbiota-derived SCFAs
have been found to modulate hematopoiesis in the bone marrow to regulate inflammation
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in different body sites [100]. As such, SCFAs could play a protective role in cancer treatment-
associated hematological toxicities. In mouse models of total body irradiation, a therapy
used in combination with high-dose chemotherapy for hematopoietic stem cell transplant
(HSCT) conditioning and associated with significant hematopoietic toxicity, survival was
positively associated with levels of fecal total SCFAs and propionate. Further, the study
showed that the oral administration of high-SCFA producer Lachnospiraceae strains or
propionate supplements protected mice against radiation and improved survival. This was
also associated with increased bone marrow cellularity and spleen pulps recovery. Further,
propionate promoted hematopoiesis and reduced the loss of hematopoietic progenitor cells
including megakaryocyte-erythroid progenitors and granulocyte-macrophage progenitors.
Additionally, both butyrate and propionate were able to reduce DNA damage markers
and levels of ROS in bone marrow-derived cells [72]. Finally, one study of patients with
advanced esophageal cancer receiving neoadjuvant chemotherapy tested synbiotics as a
supportive care strategy [101]. Participants receiving synbiotics had more positive outcomes
than participants receiving antibiotics, with the occurrence of febrile neutropenia and the
severity of diarrhea significantly inversely correlated with acetic acid concentration [101].
Together, preliminary evidence suggests that SCFAs, particularly propionate, could protect
hematopoietic tissues against cytotoxic agents.

4.4. Graft Versus Host Disease

HSCT prepared using donor stem cells (allogeneic/allo-HSCT) can cause life-threatening
graft versus host disease (GvHD); a multisystem condition affecting several body organs
including the gastrointestinal tract, skin, liver, and lung, manifesting acutely (aGvHD)
and/or chronically (cGvHD) reaction [102]. GI injury is a major acute manifestation of
GvHD characterized by diarrhea and abdominal pain. GI GvHD pathophysiology involves
tissue injury and inflammation caused either by pre-HSCT conditioning regimens or the
subsequent activation of donor APCs cells post-HSCT. This leads to the disruption of intesti-
nal barrier integrity and tissue injury leading to enhanced production of proinflammatory
cytokines including TNF-α and IL-1 [103].

Currently, there is growing evidence supporting a role of SCFA depletion in the
development and severity of both aGvHD and cGvHD. It has been shown that allogeneic
HSCT causes a significant reduction in SCFA-producing taxa and fecal levels of the three
major SCFAs and this is associated with the severity of aGvHD [104]. Further, another study
has shown that patients who did not develop acute GvHD had significantly higher levels
of total fecal SCFA and propionate prior to HSCT [105]. This association between aGvHD
development and lower levels of fecal SCFAs was also observed in pediatric patients
undergoing allogeneic HSCT [106]. Additionally, lower levels of plasma propionate and
butyrate were reported in allogeneic HCT recipients who developed cGVHD [107]. In
contrast, butyrate levels in the stool collected at baseline or HSCT engraftment (two weeks
post-HSCT) were not associated with GI aGvHD; however, those with lower pre-HSCT
butyrate levels had a high risk of bloodstream infections [108]. In an experimental mouse
model of allogeneic bone marrow transplant (BMT) with irradiation preconditioning, BMT
was associated with a significant reduction in butyrate in intestinal tissues but not in serum
or stool samples, and this was associated with a reduction in histone H4 acetylation in
intestinal epithelial cells (IECs). The reduction in IECs butyrate was found to be caused by
a reduction in butyrate uptake due to inflammation-induced downregulation of butyrate
receptors and transporters. Conversely, the oral administration of butyrate or butyrate-
producing bacteria restored histone acetylation and was associated with less weight loss
and GvHD severity score, and increased survival. The study also suggested that the
protective effect of butyrate was mediated by improving intestinal barrier integrity and
reducing apoptosis [76]. In another study, both butyrate and propionate showed protection
against GvHD, and this effect was mediated by the GPR43 signaling pathway [109].
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Overall, similar to GIM, most of the present research supports a protective role for
SCFAs in GI injury associated with GvHD (Figure 3). Again, further research into the best
approach for intervention is warranted.

4.5. Psychoneurological Toxicities

Although a relatively strong body of evidence exists to support the role of the micro-
biota, and indeed SCFAs in modulating the toxicities described above, emerging data is
now beginning to suggest a possible role in psychoneurological symptoms. This cluster of
related symptoms includes cognitive impairments affecting memory, executive function,
processing speeds, and learning [110–112], as well as psychological elements including
depression/anxiety, fear of recurrence, and personality changes [113,114]. Although the
current evidence is limited, this mechanism is supported by: i) changes in the gut micro-
biota that coincide with psychoneurological symptoms in people with cancer, and ii) direct
involvement of SCFAs in other neurological conditions that share similar symptom profiles.

The first evidence of an association between gastrointestinal microbiota composition,
post-chemotherapy, and fear of cancer recurrence was reported with lower microbial diver-
sity, increased Bacteroidetes, and decreased Firmicutes at phylum level linked with symptom
occurrence in survivors of breast cancer [115]. Additionally, a pilot study investigating the
link between psychosocial factors and changes to gastrointestinal microbiota composition
in 12 survivors of breast cancer, reported associations between fatigue and changes in
SCFA-producing Faecalibacterium and Prevotella abundance as well as anxiety and changes
in Coprococcus and Bacteroides abundance [116].

Mechanistically, SCFAs are thought to be critical mediators in gut–brain communica-
tion due to their effect on blood–brain barrier permeability, microglial activity, neuronal
function, and neuroinflammation [19]; each of which has been reported after cancer ther-
apy [117,118]. Clinically, decreases in fecal SCFA concentrations have been associated with
the presence of both major depressive disorder and Alzheimer’s disease (AD) [119,120].
Additionally, SCFA concentrations were closely linked to the progression of AD with lev-
els decreasing progressively across control, mild cognitive impairment, and AD patient
groups, following the deterioration seen in cognitive function [120]. Pre-clinical studies
have also demonstrated the ability of SCFAs to mitigate symptoms of cognitive impairment
in mouse models of AD, as well as cognitive impairment induced by a variety of other
factors including radiation, isoflurane, and scopolamine [121–124]. Similar evidence has
also been generated in Parkinson’s disease [125].

In the context of cancer therapies, only one pre-clinical study has directly investigated
the impact of SCFAs on chemotherapy-associated behavioral dysfunctions. Cristiano et al.
demonstrated that treating mice with the chemotherapeutic agent paclitaxel caused gut
microbial dysbiosis, impaired intestinal barrier integrity, reduced fecal butyrate levels, and
increased systemic inflammation. This was also associated with enhanced anxiety and
depression-like behaviors as well as neuroinflammation. Conversely, the authors showed
that the administration of oral butyrate restored the reduction in fecal butyrate levels and
was able to minimize the alterations in the intestinal environment and improve behavioral
changes and neuroinflammation [77]. Considering this, along with the mounting evidence
implicating the microbiota-gut–brain axis in the development of the psychoneurological
complications of chemotherapy treatment, SCFAs present as a feasible therapeutic target
warranting further investigation in the context of neurotoxicity associated with cancer
treatments.

5. Targeting SCFA to Improve Cancer Treatment Outcomes

Overall, current evidence suggests that SCFAs may provide a potential non-invasive
target to enhance the efficacy and alleviate the toxicities of cancer therapies. This can
be achieved through oral administration of SCFAs, the consumption of a fiber-rich diet
to enrich indigenous SCFA-producing gut microbiota, or through the ingestion of SCFA-
producing microorganisms. However, some evidence has shown that oral administration
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of SCFA has a limited impact due to rapid metabolism and absorption [51,83]. While free
SCFAs can be used to increase the systemic levels of SCFAs, the consumption of dietary
fiber or SCFAs-producing bacteria offer more effective tools to enhance the production
of endogenous SCFAs. For example, the ingestion of SCFA-producing bacteria like C. bu-
tyricum has shown some positive impact in improving immunotherapy efficacy [53,54,126].
The use of chemically modified SCFAs with a more potent activity also has been explored.
For instance, the use of the butyrate derivative, phenylalanine-butyramide (FBA), which
has comparable chemical properties to butyrate but is more potent and palatable, could be
used as an alternative to butyrate administration [74,127].

Alternative indirect methods of altering gut microbiota composition, and therefore
SCFA-producing bacteria, might include the use of probiotics, prebiotics, or fecal microbiota
transplant, all of which have been tested with varying success in cancer settings [2,128,129].
However, as more information comes to light regarding the actions of specific SCFAs in
efficacy and toxicity, these methods may need to be refined to produce a specific, beneficial
response. More precise methods to directly alter specific SCFA effects on a variety of cell
types may be via activating particular SCFA receptors [130]. This has been previously
shown by Singh et al, who showed that directly activating the butyrate receptor Gpr109a
suppressed colonic inflammation and carcinogenesis [131]. These methods are still in their
infancy in clinical practice. In developing methods of using SCFAs to improve efficacy and
toxicity, awareness would need to be had around how these treatments would work for
different populations of people, with different microbiota compositions, as well as different
treatment regimens. In addition, balancing effects on efficacy and toxicity concurrently
would need to be managed [132].

This paper has focused on SCFAs, as they are likely the most widely understood
and studied bacterial metabolites, however other key classes of metabolites may also be
useful research targets in the future for their role in enhancing cancer treatment efficacy
and toxicity. For instance, inosine, tryptophan metabolites (Indole-3carboxaldehyde),
and secondary bile acids have been found to improve immunotherapy outcomes [133,134].
Further, these metabolites may provide protection against therapy-related toxicities [72,135].
Additionally, microbiota-derived L-Histidine and imidazole propionate have shown a
protective effect against radiation-induced cardiopulmonary toxicities in mice. A study
showed that chest irradiation was associated with reduced fecal L-Histidine, while fecal
microbiota transplant and L-Histidine and imidazole propionate oral supplement helped
reduce lung and heart injuries following irradiation. Further analysis showed imidazole
propionate can decrease pro-inflammatory mediators, inhibit inflammation-induced cell
death, and prompt cellular proliferation [135].

We suggest that assessing microbiota composition alone is no longer sufficiently infor-
mative to properly understand the role of the microbiota in cancer treatment efficacy and
toxicity, and untargeted metabolomic analyses (including SCFAs, indole-3carboxaldehyde,
and secondary bile acids) will add an additional layer of actionable information.

6. Current Limitations and Future Considerations

Results from current studies suggest that the SCFAs based interventions could be used
to promote cancer treatment efficacy and alleviate their toxicities. However, none of these
interventions has been implemented clinically due to the limitations of the current evidence.
For both treatment efficacy and toxicity, most of the present studies have investigated SCFAs
impacts in pre-clinical settings with the majority of these studies focusing on chemotherapy
and only a few studies on immunotherapy and radiotherapy. For the few clinical studies
that have been conducted, they mainly aimed to evaluate the association between SCFAs
levels and treatment outcomes and not to investigate SCFAs as an intervention. Further,
some of these studies have often not been completed in a linear fashion, with clinical studies
occurring before pre-clinical studies. Additionally, there is still a lack of understanding of
the most efficient SCFA-based intervention strategy for each treatment outcome. Moreover,
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different studies have used different methodological approaches resulting in inconsistent
outcomes. All these limitations need to be addressed in future studies.

The use of different methodologies could have critical implications on studies out-
comes, and this also may explain some of the inconsistencies observed across the different
studies described here. As such, different factors related to study design including the
type of models (in vitro cell lines or in vivo models), type of SCFAs, type of dietary fibers,
and SCFAs source or administration method (free SCFAs, SCFAs complexes, or microbiota-
produced SCFAs) should be considered when designing future SCFAs studies depending
on the target sites and the intended impact of SCFAs interventions (local or systemic).
Firstly, the use of in vitro models can only be used to assess the local effects of SCFAs. For
instance, treating cell lines with butyrate will only reflect its local effects and is unlikely
to reflect its effects in tumors at distant sites because most butyrate is used by colonic
cells and only a small fraction (~2%) can reach the systemic circulation [18]. As such,
to assess the systemic effects of butyrate or other SCFAs, in vivo pre-clinical and clinical
studies are needed. Further, direct administration of SCFAs or methods to promote SCFA
production are important determinants of their local and systemic effects. To achieve local
effects in the colon, dietary fiber or SCFAs-producing probiotics could be used to enhance
the production of endogenous SCFAs. Conversely, for direct SCFA action in tumors in
the upper GI, such as in gastric cancer, or in other distant tumors, administration of free
SCFAs would be potentially more effective. This is because oral SCFAs could be absorbed
in the upper GI tract and reach the systemic circulation, inducing a beneficial effect on
local upper GI tract epithelium and distant body sites [136]. However, the effects of gut
microbiota-derived SCFAs related to colonic anti-inflammatory pathways that may also
affect distal sites should not be neglected. It is also worth mentioning that while the use
of fermentable fibers can increase the levels of systemic SCFAs [137]; the interindividual
variations in SCFA production may impose a limitation on this approach. Another factor
that may impact study outcomes is the type of dietary fiber used. In studies using this
method, the type of each dietary fiber should be carefully considered as different types of
fibers can promote the growth of different bacterial types, and therefore the production of
different types of SCFAs [138].

Generally, in future studies, it would be ideal to complete high throughput-screening
of a wide range of SCFA-based products in cell culture models to identify potential leads,
before using animal models (ideally with a humanized microbiota) to assess effects on
toxicity and efficacy in a range of tumor and treatment settings. Finally, these results could
be tested in clinical studies. The most appropriate experimental settings, type of SCFAs or
SCFAs-based products as well as administration method should be taken into account for
both pre-clinical and clinical studies.

7. Conclusions

Microbiota-derived SCFA are important regulators of intestinal cell function, as well
as local and systemic immune and inflammatory responses. Given this, they have been
found to influence cancer treatment efficacy, through modulation of immune functions,
and toxicity, through their protective epithelial functions and anti-inflammatory effects.
Determining the best strategy to target SCFAs and their broad effects to improve cancer
treatment outcomes will be important.
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