
Gut microbiota-derived succinate: Friend or foe in human
metabolic diseases?

Sonia Fernández-Veledo
1,2

& Joan Vendrell
1,2,3

# The Author(s) 2019

Abstract

There is now a wealth of evidence showing that communication between microbiota and the host is critical to sustain the vital

functions of the healthy host, and disruptions of this homeostatic coexistence are known to be associated with a range of diseases

including obesity and type 2 diabetes. Microbiota-derived metabolites act both as nutrients and as messenger molecules and can

signal to distant organs in the body to shape host pathophysiology. In this review, we provide a new perspective on succinate as a

gut microbiota-derived metabolite with a key role governing intestinal homeostasis and energy metabolism. Thus, succinate is

not merely a major intermediary of the TCA traditionally considered as an extracellular danger signal in the host, but also a by-

product of some bacteria and a primary cross-feeding metabolite between gut resident microbes. In addition to maintain a healthy

microbiome, specific functions of microbiota-derived succinate in peripheral tissues regulating host nutrient metabolism should

not be rule out. Indeed, recent research point to some probiotic interventions directed to modulate succinate levels in the intestinal

lumen, as a new microbiota-based therapies to treat obesity and related co-morbidities. While further research is essential, a large

body of evidence point to succinate as a new strategic mediator in the microbiota-host cross-talk, which might provide the basis

for new therapeutically approaches in a near future.
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1 Introduction

Gut microbiota – the complex ecosystem of trillions of micro-

organisms that inhabit our gastrointestinal tract – has a pro-

found role in shaping the physiology of the healthy host, espe-

cially gut maturation, nutrient acquisition and energy metabo-

lism, and the immune system [1, 2]. It is well known that

compositional and metabolic changes to the gut microbiota –

termed dysbiosis – are associated with diverse pathological

processes. Indeed, increasing evidence points to gutmicrobiota

dysbiosis as a determining factor in the etiology of several

diseases, both intestinal such as inflammatory bowel disease

(IBD), and extra-intestinal, such as obesity, type 2 diabetes,

non-alcoholic fatty liver disease and cancer [3–5]. However,

whether there is a direct causal relationship between microbi-

ota dysbiosis and disease, or whether the former is a conse-

quence of the latter, remains uncertain in humans [6–10]. In

this context, products of bacterial metabolism have been linked

both to intestinal health and disease.

In this review, we focus on the tricarboxylic acid (TCA)

cycle metabolite succinate, which is quickly becoming a

poster child for microbiota-derived metabolites with impor-

tant roles in gut homeostasis, pathogen susceptibility and

inflammatory-related diseases such as IBD and obesity.

Notably, succinate has the distinction of being produced by

both the microbiota and the host (Fig. 1), placing it in the

unique position of being at the interface of host-gut micro-

biota metabolic interactions. Rather than an exhaustive sum-

mary of the literature, our goal in this review is to provide

some key concepts and highlight existing questions in rela-

tion to succinate as a friend or foe in microbiota-related

health and disease. We apologize in advance to our col-

leagues whose work has been omitted unintentionally and

due to space constraints.
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2 Succinate, a metabolite with pleiotropic
functions

In host cells, succinate is best known as an intermediate of the

TCA or Krebs cycle and is traditionally considered as a fuel

substrate for mitochondrial oxidative phosphorylation (Fig.

1). More recently, succinate has received growing attention

as a signaling molecule both in the cytosol and extracellularly.

In an ever-expanding list of processes, studies have demon-

strated that the accumulation of succinate in the cytosol is

directly related to protein post-translational modifications by

succinylation, stabilization of the hypoxia-inducible factor

family of transcription factors and activation of pro-

inflammatory programs, epigenetic regulation and reactive

oxygen species production [11–13]. There is also the general

assumption that succinate acts as a pro-inflammatory stimulus

[12, 14, 15] to regulate local stress, tissue damage and immune

response [11, 13, 16, 17]. On top of this, there is some evi-

dence supporting the beneficial effects of intracellular succi-

nate as a modulator of intestinal gluconeogenesis [18–20] and

thermogenesis [21].

At the extracellular level, succinate is sensed by its cognate

receptor SUCNR1 (GPR91), a G protein-coupled receptor

(GPCR) expressed on the plasma membrane of a broad range

of cells [22–24]. As with other GPCRs, SUCNR1 transmits

signals via multiple pathways in a cell-specific manner [25].

Our knowledge about the signaling and function of this

receptor is, nevertheless, limited. As mentioned above, succi-

nate has long been perceived as a stress-induced signaling

mediator that boosts pro-inflammatory responses for optimal

immune activation [14, 15, 26]. Conversely, anti-

inflammatory functions have also recently been ascribed to

SUCNR1 through its activation in neural stem cells [27].

Similarly, a recent study from our laboratory has uncovered

a hitherto unrecognized mechanism whereby SUCNR1 sig-

naling in macrophages is key for the active resolution of acute

inflammation in the context of obesity – a physiological cir-

cuit broken in human obesity [28]. Interestingly, obesity is

associated with higher circulating levels of succinate [29]

but impaired SUCNR1-signaling, which we have termed a

succinate-resistant state [28]. Remarkably, succinate-

SUCNR1 signaling has been described as a major driver of

helminth-triggered type 2 immunity in the intestine [30], al-

though the source of succinate (microbiota, diet or dying ep-

ithelial cells) remains to be determined. While the available

evidence supporting succinate as a harmful or a beneficial

signal is inconclusive, it would seem fairly evident that the

succinate/SUCNR1 axis might serve as a link between meta-

bolic stress and immune function [28, 31, 32].

The role of succinate in the metabolic regulation of immune

cells has been extensively reviewed by others [13, 33–35]; yet,

despite significant progress in recent years, further research is

necessary to build a complete picture of both intracellular and

extracellular functions of succinate, not only in immune cells

Fig. 1 Succinate synthesis by host and gut microbiota. (left) Succinate is

a tricarboxylic acid (TCA) cycle intermediary metabolite produced in the

mitochondria of host cells. Succinate occupies a pivotal position in host

metabolism as the only direct link between the TCA cycle and the

mitochondrial respiratory chain through reversible succinate

dehydrogenase (respiratory chain complex II) activity. Nonetheless,

when cells rely on anaerobic glycolysis, in hypoxic conditions, or upon

activation of certain innate immune cells, mitochondrial levels of

succinate might increase by alternative metabolic pathways such as

reverse succinate dehydrogenase activity, glutamine-dependent

anaplerosis and the gamma-aminobutyric acid (GABA) shunt.

Succinate is then released into the cytosol and the extracellular space,

where it can act as a signaling metabolite. (right) Succinate is also a

catabolic metabolite of microbial carbohydrate fermentation. The

succinate pathway is the most prevalent biochemical pathway of

propionate production by primary fermenters. Succinate and propionate

can also be formed as metabolites from amino acid fermentation.

Succinate is not only a common by-product of some bacteria, but it also

a key cross-feeding metabolite since it can be consumed by secondary

fermenters (see Table 1). TCA, tricarboxylic acid. (1) Acrylate pathway,

(2) Succinate pathway, (3) Propanediol pathway. Solid line: direct

reaction; dotted line: multiple reactions
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but also in other tissues and organs beyond the immune sys-

tem. This is important because, as a GPCR, SUCNR1 is a

highly druggable target accessible with available small mole-

cules [36–39]. Accordingly, the physiological and pathological

functions of extracellular succinate deserve further investiga-

tion to evaluate the potential of its receptor as a pharmacolog-

ical target. Indeed, a bulk of evidences point to SUCNR1 as a

masterpiece in the etiology of some disturbances associated

with obesity and T2D. Extracellular succinate induces inhibi-

tion of lypolisis in adipose tissue [31, 40] and SUCNR1-

signalling seems to be a major regulator of blood pressure in

T2D by a mechanism dependent on activation of the renin-

angiotensin system (RAS) [17].Moreover, SUCNR1 signaling

plays a key role in diabetic retinopathy through the induction

of retinal neovascularization by VEGF [41] and has patholog-

ical implications in hypertrophic cardiomyopathy [42],

steatohepatitis and liver fibrosis [43, 44]. For a comprehensive

review on SUCNR1-succinate signaling, see [22, 23].

Circulating levels of succinate are elevated in several phys-

iological conditions such as endurance exercise [45], and also

in somemetabolic- and inflammatory-related diseases, includ-

ing ischemic heart disease [42], hypertension [46], type 2 di-

abetes [29, 32] and obesity [29]. Nonetheless, the origin of

circulating succinate remains vague. While it is plausible that

tissue damage contributes to the succinate found in circulation

in a pathological context, a microbial origin of succinate

should not be ruled out. Along this line, we recently provided

the first demonstration of a close relationship between circu-

lating succinate and gut microbiota in human obese subjects

[29]. The following sections are intended to address succinate

as a microbiota-produced metabolite, which might play a key

role in both intestinal and extra-intestinal diseases associated

with microbiota dysbiosis.

3 Succinate, a common by-product
of microbiota

The gut microbiota metabolizes different dietary and host-

derived nutrients and produces end products that can be

absorbed by the host, for example, short-chain fatty acids

(SCFAs) and organic anions (lactate and succinate).

Specifically, dietary non-digestible carbohydrates are the

main source in the production of the SCFAs acetate, propio-

nate and butyrate, which are considered the most common

end products of microbial fermentation [47, 48]. Although

SCFAs have diverse effects on host physiology, they essen-

tially confer a range of health-promoting functions by acting

as key energy substrates for colonocytes, enterocytes and

hepatocytes, while at the same time acting as signaling mol-

ecules recognized by specific GPCRs targeting primarily

enteroendocrine and immune cells in the lamina propia of

gut mucosa [49–51].

Succinate is a metabolic end-product of some bacteria, but

it has been classically overlooked and has only been consid-

ered as a key intermediate in microbial propionate synthesis

(Fig. 1). Propionate is synthesized via two independent mi-

crobial pathways. The majority of pentose and hexose carbo-

hydrates are fermented through the succinate pathway, espe-

cially in Bacteroidetes and in the Negativicutes class of

Firmicutes [52], whereas the deoxy sugars are processed via

the propanediol pathway [53]. However, succinate is not only

a precursor of propionate – commonly produced by primary

fermenters such as Bacteroides – but it is also consumed by

secondary fermenters. Thus, an accumulation of succinate in

cultures of some Bacteroides spp. has been described under

specific growth conditions such as high concentrations of

CO2 [54], and also in cultures of Prevotella ruminocola

grown in the absence of vitamin B12 [55]. Remarkably, an

increase in the levels of cecal succinate was described in

conventional mice colonized with the succinate producer

Prevotella copri [18]. Similarly, some Ruminococcaceae,

such as Ruminococcus flavefaciens, have been described as

succinate-producing bacteria [56]. Conversely, some human

colonic bacteria belonging to the Negativicutes class of

Firmicutes, such as Phascolarctobacterium succinatutens

[57], possess the capacity to convert succinate to propionate

[52, 58]. There is no standard classification for succinate

producers and consumers, although succinate has been de-

scribed as an excreted/consumed product for some bacterial

species (see Table 1). It should be noted, however, that most

of these studies are based on cells grown in culture where

cross-feeding relationships (for example, the exchange of nu-

trients) are absent. In relation to gut microbiota, it is clearly

important to appreciate how the different ecological niches of

the community interact in terms of metabolism, and how this

could be used to better understand the role of microbial me-

tabolites such as succinate in physiology and in dysbiosis-

related diseases.

4 Microbiota-derived succinate in health
and disease

In a generally healthy status, colonic and cecal concentrations

of SCFAs range from 1 to 3 mM, whereas in circulation the

concentrations of thesemetabolites are in themicromolar range.

At the systemic level, acetate is the most abundant SCFA (5–

200 μM), followed by propionate and butyrate (≤12–13 μM)

[5, 34]. By comparison, succinate is detected at a relatively low

concentration in the gut lumen, likely related to its conversion

to propionate by cross-feeding between different gut bacteria

[59]. Studies comparing germ-free mice with control mice have

shown that fecal succinate levels are almost undetectable in the

former, which points to gut microbiota as the predominant

source of luminal succinate [60–62].
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In the context of disease, several studies have revealed a

clear association between gut microbiota disturbances, linked

for example to antibiotic-induced dysbiosis [63, 64], motility

disturbances [65] and specially IBD [34, 66, 67], and succi-

nate accumulation in the gut lumen. More specifically, there is

a wealth of evidence, both in mice and humans, demonstrating

that IBD causes an increase in fecal succinate, which has been

related to disease activity [68–71]. While the contribution of

intestinal damage versus gut microbiota dysbiosis to this in-

crease in succinate is not clear, a metagenomic study of the gut

microbiome of patients with IBD reported a significant de-

crease in the levels of specific succinate-consuming bacterial

strains [72]. By contrast, an increase of succinate-producing

Bacteroides has been described in a chemically-induced mod-

el of colitis in mice [71]. Remarkably, colonization of germ-

freemice with succinate-producing bacteria from IBD patients

worsens intestinal inflammation in a mouse model of dextran

sulfate sodium-induced colitis, which is associated with

higher levels of fecal succinate [73]. Thus, the available evi-

dence suggests a link between dysbiosis, succinate accumula-

tion in gut, and inflammation. However, whether this scenario

is directly related to disease outcomes is less clear.

By analogy to SCFAs, it is not unreasonable to expect that

levels of circulating succinate might depend on diet, microbi-

ota composition and also splenic extraction ratio. This might

be particularly relevant in pathological conditions associated

with alterations in intestinal barrier function (leaky gut).

Indeed, an increase in both serum and intestinal succinate

levels has been reported in patients with Crohn’s disease when

compared with healthy subjects [66]. Similarly, higher succi-

nate levels have been reported in breast milk from mothers

with IBD as compared with healthy peers [74]. Interestingly,

we recently reported a strong association between microbial

gut flora and circulating succinate in humans [29]. Using a

multi-cohort analysis of the intestinal metagenome based on

DNA extracted from fecal samples, we identified a specific

intestinal bacterial signature – the ratio of succinate producers

(Prevotellaceae + Veillonellaceae) versus consumers

(Odoribacteraceae +Clostridaceae) – as a main determinant

of plasma succinate, which was higher in obese patients than

in controls. We also established that modification of the gut

microbiota by dietary weight loss intervention, but also mi-

crobiota spontaneous evolution independent of body weight,

drives changes to the levels of circulating succinate, which are

closely linked to a specific molecular entity and metabolic

function of microbiota related to succinate metabolism [29].

Although we could not demonstrate a causal relationship be-

tween succinate levels and disease (in this case, obesity), all

evidence points to succinate as a new player in the pathophys-

iology of obesity-related metabolic disturbances.

Table 1 Bacterial species referred

to as succinate-producers or

succinate-consumers

SPECIES FAMILY PHYLUM References

Succinate-producers

Propionibacterium acidipropionici Propionibacteriaceae Actinobacteria [87]

Propionibacterium shermanii Propionibacteriaceae Actinobacteria [88]

Bacteroides fragilis Bacteroidaceae Bacteroidetes [88, 89]

Alistipes indistinctus Rikenellaceae Bacteroidetes [90]

Bacteroides vulgatus Bacteroidaceae Bacteroidetes [58, 73]

Paraprevotella clara Prevotellaceae Bacteroidetes [91]

Paraprevotella xylaniphila Prevotellaceae Bacteroidetes [57, 91]

Parabacteroides distasonis Tannerellaceae Bacteroidetes [20]

Blautia wexlerae Lachnospiraceae Firmicutes [58]

Faecalibacterium prausnitzii Ruminococcaceae Firmicutes [92]

Ruminococcus albus Ruminococcaceae Firmicutes [88]

Citrobacter freundii Enterobacteriaceae Proteobacteria [93]

Succinivibrio dextrinosolvens Succinivibrionaceae Proteobacteria [94]

Akkermansia muciniphila Verrucomicrobiaceae Verrucomicrobia [84]

Succinate-consumers

Bacteroides thetaiotaomicron Bacteroidaceae Bacteroidetes [19, 78]

Phascolarctobacterium faecium Acidaminococcaceae Firmicutes [95, 96]

Phascolarctobacterium succinatutens Acidaminococcaceae Firmicutes [57]

Ruminococcus bromii Ruminococcaceae Firmicutes [97]

Dialister propionicifaciens Veillonellaceae Firmicutes [98]

Dialister succinatiphilus Veillonellaceae Firmicutes [99]

Veillonella parvula Veillonellaceae Firmicutes [100]
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It is known that microbiota dysbiosis can provide a com-

petitive advantage to enteric pathogens. Moreover, the meta-

bolic functions of each specific bacterial strain are directly

related to the community structure. In this context, CO2 levels

seem to be a decisive factor in the selection of succinate or

propionate as a microbial by-product [75]. That said, few

studies have specifically examined the effects of succinate

on maintenance and resilience of gut microbiota, with most

ascribing a detrimental role to succinate (Fig. 2). Earlier pub-

lished works described succinate as a virulence factor that

might exacerbate enteric infections [76, 77]. As mentioned

above, conventional mice have low levels of succinate in the

gut lumen. However, antibiotic treatment or chemically-

induced intestinal motility disturbances leads to a transient

increase in its concentration, which could be exploited by

Clostridium difficile (a primary cause of antibiotic-associated

diarrhea) to efficiently proliferate [65]. Likewise, succinate-

rich environments are sensed by enterohemorrhagic patho-

gens such as Escherichia coli and Citrobacter rodentium to

activate virulence factors [78]. In addition, the mucosal in-

flammatory response triggered by Salmonella typhimurium

induces a metabolic adaptation in the pathogen itself to use

microbiota-derived succinate as a nutrient for colonization of

the intestinal tract [79].

Overall, it is clear that succinate plays a crucial role in

commensal-pathogen interactions. Nonetheless, as recently

described byKim and collaborators, succinate might also have

beneficial effects on bacterial ecosystems in neonatal states. In

the context of the neonatal gut, Bacteroides-derived succinate

might favor the colonization by strict anaerobes such as

Clostridia spp., which prevents the growth of diarrhea-

causing pathogens such as S. typhimurium [80]. Clearly, fur-

ther research is needed to more fully understand the role of

succinate in the gut ecosystem. It might be conceivable that

succinate acts as a primary cross-feeding metabolite essential

for the maintenance of a healthy resident gut microbiota. In

this sense, the increase in succinate in some pathological con-

ditions would be reflective of dysbiosis, but would also be

exploited by some pathogens.

5 Could probiotic interventions directed
to modulate gut-derived succinate be used
to treat obesity-related disorders?

While most published data link a succinate-enriched gut envi-

ronment to pathological states associated with dysbiosis, sev-

eral recent studies have described the metabolic benefits of

specific commensal bacteria via succinate production, partic-

ularly in obesity-related metabolic disturbances. For instance,

Kovatcheva-Datchary and colleagues found that the gut mi-

crobiota of those healthy subjects showing an improvement in

glucose metabolism following consumption of barley kernel-

based bread was enriched for P. copri – a well-established

succinate producer [19]. Moreover, microbiota from these

subjects improved glucose metabolism in germ-free mice

when compared with similar mice transplanted with the mi-

crobiota of non-responders to barley kernel-based bread con-

sumption. Accordingly, colonization of standard diet-fed mice

with P. copri increased cecal succinate and improved glucose

tolerance [19], a metabolic effect not detected with a propio-

nate producer such as Bacteroides thetaiotaomicron.

However, the authors concluded that the high levels of succi-

nate observed in P. copri-treated mice were not sufficient to

explain the metabolic beneficial effects of this bacterial strain

since co-colonization with a B. thetaiotaomicron mutant un-

able to convert succinate to propionate failed to improve glu-

cose response [19].

A subsequent study from the same group reported that col-

onization with P. copri inhibits hepatic glucose production in

mice [18]. Moreover, succinate has been revealed as an impor-

tant microbial product for the beneficial metabolic effects of

dietary fiber consumption, which increases Prevotella-

produced succinate [81–83]. Interestingly, the abundance of

Akkermansia muciniphila, which produces succinate as one

of the major metabolites from mucin degradation [84], has

been systemically found to be inversely correlated with

obesity-related metabolic disturbances. Indeed, some prebiotic

interventions that improve metabolic disorders associated with

obesity, antidiabetic drugs such as metformin, and bariatric

surgery, are associated with an increase in the abundance of

A. muciniphila [85]. Colonization with other succinate pro-

ducers such as Parabacteroides distasonis has also proven

effective for improvingmetabolic dysfunctions associated with

obesity [20]. Interestingly, the abundance of this commensal

bacterium has been negatively correlated with IBD, which has

been widely demonstrated to be linked to elevations in cecal

succinate levels [34, 66, 67]. Nonetheless, secondary bile acids

have also been identified as a potential mechanism involved in

the metabolic beneficial effects of P. distasonis [20].

The potential for probiotics to be used in the management

of metabolic disorders including obesity and type 2 diabetes

is becoming an important research topic. Indeed, the first

studies exploring this support succinate as a potential target

microbial-metabolite [18, 19]. Nevertheless, given that these

diseases are generally associated with higher succinate

levels, further investigation is needed to clarify the mecha-

nisms of succinate biology. Whether this perspective applies

to other dysbiosis-related diseases should also be considered

in future research.

6 Conclusions and future perspectives

Recent research has shed new light on the TCA cycle inter-

mediate succinate, which is now recognized both as a fuel

Rev Endocr Metab Disord (2019) 20:439–447 443



and as a signaling metabolite with unexpected pleiotropic

functions, such as a positive regulator of intestinal gluconeo-

genesis [18] and thermogenesis [21], as well as a key medi-

ator in the resolution of inflammation associated with obesity

[28]. Intriguingly, unlike other intermediary metabolites, suc-

cinate holds the unique distinction of being at the interface of

host-gut microbiota metabolic interactions. Accordingly, suc-

cinate has emerged as a gut microbial-derived metabolite

associated with dysbiosis-related diseases such as obesity

and IBD. Moreover, its contribution to cross-feeding interac-

tions might classify it as a primary metabolite essential for

the stability and resilience of gut microbiota. While tremen-

dous strides are currently being made in our understanding of

succinate function, much work remains to be done both in

mice and humans before claiming succinate as a microbial-

derived metabolite with potential health-promoting effects.

Moreover, and similar to other microbiota-derived

metabolites such as SCFAs [51, 86], succinate might reach

the circulation and act as a signaling metabolite in peripheral

tissues (Fig. 2), where it may have yet unidentified functions.

Finally, the use of probiotics to shape the gut microbiota has

the potential to herald a new era in the management of met-

abolic diseases linked to microbiota dysbiosis, such as obe-

sity, and succinate may serve as a promising metabolite tar-

get for this approach.
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renin-angiotensin system). In addition, the role of succinate in intestinal
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reconstitution of the gut bacterial ecosystem but also in commensal-

pathogen interactions
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