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Abstract

Background: Recently, the potential role of gut microbiome in metabolic diseases has been revealed, especially in
cardiovascular diseases. Hypertension is one of the most prevalent cardiovascular diseases worldwide, yet whether
gut microbiota dysbiosis participates in the development of hypertension remains largely unknown. To investigate
this issue, we carried out comprehensive metagenomic and metabolomic analyses in a cohort of 41 healthy
controls, 56 subjects with pre-hypertension, 99 individuals with primary hypertension, and performed fecal
microbiota transplantation from patients to germ-free mice.

Results: Compared to the healthy controls, we found dramatically decreased microbial richness and diversity, Prevotella-
dominated gut enterotype, distinct metagenomic composition with reduced bacteria associated with healthy status and
overgrowth of bacteria such as Prevotella and Klebsiella, and disease-linked microbial function in both pre-hypertensive and
hypertensive populations. Unexpectedly, the microbiome characteristic in pre-hypertension group was quite similar to that
in hypertension. The metabolism changes of host with pre-hypertension or hypertension were identified to be closely
linked to gut microbiome dysbiosis. And a disease classifier based on microbiota and metabolites was constructed to
discriminate pre-hypertensive and hypertensive individuals from controls accurately. Furthermore, by fecal transplantation
from hypertensive human donors to germ-free mice, elevated blood pressure was observed to be transferrable through
microbiota, and the direct influence of gut microbiota on blood pressure of the host was demonstrated.

Conclusions: Overall, our results describe a novel causal role of aberrant gut microbiota in contributing to the
pathogenesis of hypertension. And the significance of early intervention for pre-hypertension was emphasized.
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Background

In recent decades, the potential role of the gut mi-

crobiome in altering health status of the hosts has drawn

considerable attention. Emerging evidence suggests a

link between gut microbiome and various diseases,

including colorectal cancer, liver cirrhosis, arthritis, type

2 diabetes, and atherosclerosis [1–5]. A number of mi-

crobial biomarkers specific to these diseases have been

discovered, and fecal microbiome-targeted strategies are

recommended to be a powerful tool for early diagnosis

and treatment of different diseases.

More importantly, by fecal transfer experiment and

gut microbiota (GM) remodeling, intestinal microbiome

has been further indicated to conduce to the pathogen-

esis of multiple diseases such as obesity, depressive dis-

order, chronic ileal inflammation, liver diseases, and

atherosclerosis [6–12]. Specific mechanisms underlying

the causal function of GM have been revealed. For ex-

ample, the metabolism by intestinal microbiota of dietary

L-carnitine, a nutrient in red meat, was demonstrated to
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promote atherosclerosis and lead to cardiovascular disease

risk via producing trimethylamine and trimethylamine-N-

oxide [12]. Targeting gut microbial production of trimethy-

lamine specifically and non-lethal microbial inhibitors were

confirmed to relieve diet-induced atherosclerotic lesion

development [13]. Thus GM may serve as a potential thera-

peutic approach for the treatment of cardiovascular and

metabolic diseases.

Hypertension (HTN) has become a global public health

concern and a major risk factor for cardiovascular, cere-

brovascular, and kidney diseases [14, 15]. It is believed that

the etiology of HTN depends on the complex interplay of

both genetic and environmental factors [16, 17], and the

precise cause of this morbidity has not been elucidated to

date. It has been suggested that the germ-free (GF) mice,

in which the intestinal bacteria is completely absent,

present relatively lower blood pressure (BP) when com-

pared to conventional mice [18]. And therefore we sus-

pected that GM might have the potential to regulate BP.

Most recently, many lines of seminal evidence, which

for the first time demonstrate that aberrant gut micro-

bial community are linked to BP changes of the host,

support this hypothesis. For example, disordered GM as

a result of decreased microbial richness, diversity, even-

ness, and increased Firmicutes/Bacteroidetes ratio was

reported in hypertensive animals and seven HTN pa-

tients, as sequenced by 16S ribosomal RNA [19]. In Dahl

rats, distinct metagenomic composition have been re-

vealed between salt-sensitive and salt-resistant strains,

and the GM of salt-sensitive rats was suggested to be in

a symbiotic relationship with the host [20]. In addition,

by rat models of HTN and meta-analyses in randomized

human clinical trials, investigators have revealed that ad-

ministration of probiotics can reduce BP [21, 22]. This

drove us to speculate that the alteration in GM by pro-

biotic use may lead to BP changes. Furthermore, it has

been proved that transplantation of cecal contents from

hypertensive obstructive sleep apnea rats on high-fat diet

into recipient rats on normal chow diet lead to higher

BP levels, and a major contributor to the gut dysbiosis

of obstructive sleep apnea-induced HTN is high-fat diet

[23]. These studies have emphasized a strong correlation

between gut dysbiosis and HTN, and further implied the

significance of GM in BP regulation, yet animal models

could not perfectly substitute human disease, and the

sample size of human participants for microbial analysis

was quite limited.

In consideration of the BP levels being classified into

optimal, pre-hypertension (pHTN), and HTN according

to the most recent clinical guidelines [24], it remains ob-

scure how exactly the composition of gut microbes and

the products of microbial fermentation change in human

patients with HTN, especially in pHTN populations. In

addition, decisive evidence is still needed to determine

whether gut dysbiosis is a consequence or an important

causal factor for the pathogenesis of HTN. Fecal trans-

plantation from human samples into GF mice is re-

quired to uncover the involvement of GM dysbiosis in

pathophysiology of HTN. Collectively, these key issues

are the major goal of the present study.

To address the questions above, we performed deep

metagenomic sequencing of stool samples from 196 par-

ticipants of healthy control, pHTN, and HTN; took

metabolomic analyses of their metabolic profiles, further

constructed a disease classifier for pHTN and HTN

based on GM and metabolites; and demonstrated the

crucial role of disordered GM in triggering thigh BP by

human fecal microbiota transplantation into GF mice.

Results
GM diversity and enterotype in pHTN and HTN

To identify whether gut microbial changes are associated

with HTN, we performed shotgun metagenomic sequen-

cing of fecal samples from a cohort of 196 Chinese indi-

viduals. The cohort consisted of 41 healthy controls, 56

subjects with pHTN, and 99 patients with primary HTN.

All the participants were from a cohort study among

employees of the Kailuan Group Corporation. The Kai-

luan study is a prospective cohort study focusing on the

Kailuan community in Tangshan, a large modern city in

northern China. All the subjects in the hypertension

group were newly diagnosed hypertensive patients prior

to antihypertensive treatment. Patients suffering from

cancer, heart failure, renal failure, smoking, stroke, per-

ipheral artery disease, and chronic inflammatory disease

were all excluded. Drugs including statins, aspirin, insu-

lin, metformin, nifedipine, and metoprolol were not used

on the patients, and other drug consumption was not

compared because the sample size was quite small. Indi-

viduals were also excluded if they had received antibi-

otics or probiotics within the last 8 weeks. Other than

SBP and DBP, there was no significant difference in

other clinical parameters among groups, except for fast-

ing blood glucose level (FBG) (P = 0.026, C vs H;

Kruskal-Wallis test, Additional file 1: Table S1). Bacterial

DNA was extracted from stool samples, sequenced on

the Illumina platform, and a total of 1211 Gb 125-bp

paired-end reads were generated, with an average of

6.18 ± 1.43 (s.d.) million reads per sample (Additional file

2: Table S2). For each sample, a majority of high-quality

sequencing reads (83.74–97.24%) were de novo assem-

bled into long contigs or scaffolds, which were used for

gene prediction, taxonomic classification, and functional

annotation.

To characterize the bacterial richness, rarefaction ana-

lysis was performed by randomly sampling 100 times

with replacement and estimating the total number of

genes that could be identified from these samples. The
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curve in each group was near saturation, which sug-

gested the sequencing data were great enough with very

few new genes undetected. The rate of acquisition of

new genes in control samples rapidly outpaced new gene

acquisition in disease samples, suggesting lower levels of

gene richness in the pHTN and HTN groups (Fig. 1a).

The number of genes in both pHTN and HTN groups

were significantly decreased as compared to the controls

(P = 0.024, C vs P; P = 0.04, C vs H; Kruskal-Wallis test,

Fig. 1b). Shannon index based on the genera profile was

calculated to estimate the within-sample (α) diversity.

Consistently, the α diversity at the genus level was much

lower in pHTN and HTN groups (P = 0.023, C vs P; P =

0.016, C vs H; Kruskal-Wallis test, Fig. 1c). The reduced

richness of genes and genera in the GM of pHTN and

HTN groups is consistent with previous findings [19],

suggesting possible deficiency of healthy microflora in

hypertensive patients.

To explore the difference between the microbial commu-

nities at different stages of HTN, enterotypes were identi-

fied based on the abundance of genera using Partitioning

Around Medoid (PAM) clustering method. The optimal

number of enterotypes was two as indicated by Calinski-

Harabasz (CH) index (Additional file 3: Figure S1). Then

Principal Coordinate Analysis (PCoA) using Jensen-

Shannon distance was performed to cluster the 196 sam-

ples into two distinct enterotypes (Fig. 1d). Prevotella was

the most enriched genus in enterotype 1; Bacteroides was

a
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Fig. 1 Decreased diversity and shift of gut enterotypes in human adults with pHTN and HTN. a Rarefaction curves for gene number in control (n = 41),

pHTN (n = 56), and HTN (n = 99) after 100 random sampling. The curve in each group is near smooth when the sequencing data are great enough
with few new genes undetected. b, c Comparison of the microbial gene count and α diversity (as accessed by Shannon index) based on the genera
profile in the three groups. C, control; P, pHTN; H, HTN. P = 0.024, C vs P; P = 0.04, C vs H; for gene count. P = 0.023, C vs P; P = 0.016, C

vs H; for α diversity. P values are from Kruskal-Wallis test. d A total of 196 samples are clustered into enterotype 1 (blue) and enterotype
2 (red) by PCA of Jensen-Shannon divergence values at the genus level. The major contributor in the two enterotypes is Prevotella and Bacter-

oides, respectively. e Relative abundances of the top genera (Prevotella and Bacteroides) in each enterotype. P = 6.31e−31 and P = 2.09e−15, respectively;

Wilcoxon rank sum test. f The percentage of control, pHTN and HTN samples distributed in two enterotypes. 26.83% normotensive controls, 48.21%
pHTN, and 45.45% HTN are found in enterotype 1. P = 0.02, C vs P; P = 0.03, C vs H; Fisher’s exact test. Boxes represent the inter quartile ranges, the

inside line or points represent the median, and circles are outliers
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the most enriched genus in enterotype 2 (P = 6.31e−31 and

P = 2.09e−15, respectively; Wilcoxon rank sum test, Fig. 1e).

Both contributors in the two enterotypes have been re-

ported in European and Chinese populations before [2, 3].

There was a higher percentage of pre-hypertensive and

hypertensive patients distributed in enterotype 1 (48.21%

for pHTN, and 45.45% for HTN), while more healthy con-

trols (73.17%) were found in enterotype 2 (P = 0.02, C vs P;

P = 0.03, C vs H; Fisher’s exact test; Fig. 1f). These findings

suggest that enterotype 2 may represent a GM community

structure associated with healthy control, while enterotype

1 may be associated with pHTN and HTN.

Considering the higher percentage of HTN patients in

enterotype 1, we clustered the genera in this enterotype

and further explored the microbial co-occurrence net-

work by Spearman’s correlation. There was a positively

interacted network constituted by 12 genera, which were

negatively correlated with Prevotella, the core genus in

this enterotype (Additional file 4: Figure S2a). All these

genera were decreased in enterotype 1 as compared with

enterotype 2 (Additional file 4: Figure S2b). Eight out of

them were directly linked to Prevotella, while the other

four, including Oscillibacter, Faecalibacterium, Butyrivibrio,

and Roseburia, were indirectly linked to Prevotella. These

findings highlighted the possibility of Prevotella as a key

genus associated with pHTN and HTN. The difference in

gut enterotype distribution revealed profound changes of

the intestinal microbiome structure in both pHTN and

HTN, implying the significance of gut microbes in the de-

velopment of HTN.

pHTN and HTN-associated genera in GM

Genes were aligned to the NR database and annotated

to taxonomic groups. The relative abundance of gut mi-

crobes was calculated by summing the abundance of

genes as listed in Additional file 2: Table S3–S4. P values

were tested by Wilcoxon rank sum test and corrected

for multiple testing with Benjamin & Hochberg method

as others previously did [4, 25]. It is worth mentioning

that 44 genera were differentially enriched in control,

pHTN, and HTN (P < 0.1, Wilcoxon rank sum test,

Fig. 2a and Additional file 2: Table S5). Fifteen of them

were further shown in Fig. 2b. Genera such as Prevotella

and Klebsiella were overrepresented in individuals with

pHTN or HTN (Fig. 2b). Prevotella, originated from

mouth and vagina, was abundant in the microbiome of

our study cohort. The pathogenesis of periodontal

diseases and rheumatoid arthritis are thought to be

attributed to Prevotella [3, 26]. A wide range of infec-

tious diseases are known to be attributed to Klebsiella

[27, 28]. Porphyromonas and Actinomyces, which were

also elevated in the HTN group, are morbific oral bac-

teria that cause infections and periodontal diseases [29].

By contrast, Faecalibacterium, Oscillibacter, Roseburia,

Bifidobacterium, Coprococcus, and Butyrivibrio, which

were enriched in healthy controls, declined in pHTN

and HTN patients (Fig. 2b). Our observations were con-

sistent with the genera negatively correlated with Prevo-

tella in the network of enterotype 1 (Additional file 4:

Figure S2), and these bacteria are known to be essential

for healthy status. For example, reduced levels of Faeca-

libacterium and Roseburia in the intestines are as-

sociated with Crohn’s disease and ulcerative colitis [30,

31]. Both bacteria are crucial for butyric acid production

[30, 32]. Moreover, Bifidobacterium is an important pro-

biotic necessary to intestinal microbial homeostasis, gut

barrier, and lipopolysaccharide (LPS) reduction [33].

The divergence of GM composition in each sample

was assessed to explore the correlation of microbial

abundance with body mass index (BMI), age, and gender

(Additional file 5: Figure S3). Although the gender ratio

is discrepant among groups (Additional file 1: Table S1),

we found no remarkable regularity of bacterial abun-

dance based on BMI, age or gender.

To further validate the bacterial alterations in HTN,

an independent metagenomic analysis was performed

using the sequencing data generated from a previous

study of type 2 diabetes [2]. From a total of 174 non-

diabetic controls in the study, normotensive controls

with SBP ≤125 mmHg or DBP ≤80 mmHg were en-

rolled, and HTN were elected with the inclusion criteria

of SBP ≥150 mmHg or DBP ≥100 mmHg. The FBG

levels between normotensive controls and HTN were

similar. Finally, six subjects (HTNs, n = 3; normotensive

controls, n = 3) were included in our analysis (Additional

file 2: Table S6). As expected, the microbial diversity was

decreased in HTN (Additional file 6: Figure S4a), and

there were at least 20 genera showing consistent trends

with our findings, including decreased Butyrivibrio,

Clostridium, Faecalibacterium, Enterococcus, Roseburia,

Blautia, Oscillbacter, and elevated Klebsiella, Prevotella,

and Desulfovibrio (Additional file 6: Figure S4b,

Additional file 2: Table S7).

Collectively, these results supported our hypothesis that

bacteria associated with healthy status were reduced in pa-

tients with HTN. This phenomenon together with the

overgrowth of bacteria such as Prevotella and Klebsiella

may play important role in the pathology of HTN.

Co-abundance groups enriched in pHTN and HTN

Firstly, for each gene, an OR score was calculated ac-

cording to the abundance of each gene. Then, for the

comparative analysis between control and HTN samples,

the HTN-associated genes were classified as HTN-

enriched (OR >2) or HTN-depleted (OR <0.5) as previ-

ously described [34]. When calculating HTN-associated

ORs, samples of pHTN were excluded, and samples
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labeled as HTN were excluded as well when calculating

pHTN-associated ORs. A total of 1,120,526 genes signifi-

cantly different in relative abundance across groups were

identified (Additional file 7: Table S8). Secondly, we

clustered genes by a rather high threshold (Spearman’s

correlation coefficient ≥0.7) according to previous

methods [4, 35]. Spearman’s correlation coefficient was

analyzed by R. The cluster groups with at least 50 genes

were defined as co-abundance groups (CAGs) [4], and

used for further analysis [35]. One thousand ninety-nine

distinct CAGs were obtained (Additional file 2: Table S9–

S11 and Additional file 8: Figure S5a). Seven hundred

fourteen CAGs were assigned to known bacterial genera

based on the tracer genes, with at least 80% of the genes

mapped to the reference genome at an identity higher

than 85% (Additional file 8: Figure S5b).

CAGs were further clustered by Spearman’s correlation

based on the abundance. Compared with the controls,

there were 316 CAGs and 372 CAGs enriched in pHTN

and HTN, respectively (Additional file 2: Table S12). In

the control group, Firmicutes and Roseburia were more

abundant (Fig. 3a, b). Most CAGs enriched in pre-

hypertensive samples were originated from Enterobacter, a

disease-causing bacteria linked to obesity. Klebsiella, caus-

ally implicated in various infections, was also overrepre-

sented in pre-hypertensive and hypertensive patients [27].

Additionally, most recent studies revealed that Fusobac-

terium was enriched in the fecal samples of patients with

liver cirrhosis, colorectal carcinoma, or ulcerative colitis

[4, 36, 37]. We also detected several clusters of CAGs

assigned to Fusobacterium enriched in pHTN and HTN

groups. About 200 CAGs were different in pHTN and

HTN. Most of them in pHTN were from Enterobacter

and Klebsiella, while Prevotella and Fusobacterium were

more abundant in HTN.

To further examine the relationship between clinical

indices and CAGs of GM, physiological parameters of

SBP, DBP, BMI, FBG, total cholesterol (TC), triglyceride

Fig. 2 Genera strikingly different across groups. a Relative abundance of the top 44 most different genera across groups at the criteria of P value
<0.1 by Wilcoxon rank sum test. C, control; P, pHTN; H, HTN. The abundance profiles are transformed into Z scores by subtracting the average
abundance and dividing the standard deviation of all samples. Z score is negative (shown in blue) when the row abundance is lower than the

mean. Genera at P value <0.01 are marked with dark green star, P value <0.05 with light green star, and P value ≥0.05 with gray circle. b The box

plot shows the relative abundance of four genera enriched in pHTN and HTN patients, and 11 genera abundant in control. Genera are colored

according to the phylum. Boxes represent the inter quartile ranges, lines inside the boxes denote medians, and circles are outliers
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(TG), and low-density lipoprotein (LDL) were included

in a Spearman’s correlation analysis. We observed that

SBP and DBP could negatively influence the CAGs

enriched in the control group, such as Firmicutes and

Roseburia, and positively interacted with Prevotella and

Desulfovibrio, which were abundant in pHTN and HTN

(Additional file 9: Figure S6). Whereas, both TC and TG

were negatively correlated with Enterobacter, that was

enriched in pHTN and HTN groups. Altogether, these

results indicated that the bacterial communities in indi-

viduals with pHTN and HTN are similar, and the col-

lective effect of these bacteria may account for intestinal

dysbiosis in HTN.

Functional alteration in GM of pHTN and HTN

Using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Carbohydrate-Active EnZymes (CAZy) [38]

database, we evaluated gut microbial functions across

groups in our study cohort. All the genes were aligned

to the KEGG database and CAZy database, and proteins

were assigned to the KEGG orthology and CAZy fam-

ilies (Additional file 2: Table S13–S15). Principal compo-

nent analysis (PCA) based on KEGG orthology revealed

striking differences in microbial functions at the first

principal component (PC1) between controls and patients

(P < 0.001, Wilcoxon rank sum test, Fig. 4a). Nearly all the

KEGG modules and CAZy families displayed a similar dis-

crepancy in pHTN and HTN when compared with the

controls (Fig. 4b, c), illustrating the common functional

features in pHTN and HTN. Sixty-five (n = 65) KEGG

modules were differentially enriched among the three

groups (adjusted P value <0.05, Wilcoxon rank sum test,

Additional file 2: Table S12). The thirty-nine (n = 39) mod-

ules decreased in pHTN and HTN groups were involved in

branched-chain amino acid biosynthesis and transport, ke-

tone body biosynthesis, two-component regulatory system,

Fig. 3 Comparative analysis of GM enrichment across groups based on CAGs. a CAGs are defined as a minimum of 50 linked genes, and the

correlation network of CAGs differentially enriched in pHTN and the control group is performed by Spearman’s correlation based on the abundance. b
The network of CAGs enriched in HTN is compared to controls. CAGs are colored according to the taxonomic assignment as labeled, and the node

size is scaled with the number of genes within the CAG. Edges between nodes denote Spearman correlation >0.8 (red) or between 0.7 and 0.8 (gray)
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and degradation of methionine and purine (Fig. 4b). These

metabolic functions are essential for the host and have been

observed in healthy populations [4, 5, 39, 40]. Although

previous studies have found that iron, phosphate, and

amino acid transport system, GABA biosynthesis, and

methanogenesis were enriched in the patients subjected to

colorectal cancer or liver cirrhosis [4, 39], these metabolic

functions were not enriched in our patient cohort. We ob-

served seventeen (n = 17) modules elevated in pHTN and

HTN, including LPS biosynthesis and export, phospholipid

transport, phosphotransferase system (PTS), biosynthesis of

phenylalanine and phosphatidylethanolamine, and secretion

system (Fig. 4b). The capacity to synthesize and export

LPS of the gut microbiome in patients with colorectal car-

cinoma has been suggested to represent an important

mechanism whereby inflammation contributes to tumor

progression [5, 41, 42]. PTS system, phosphatidylethanol-

amine biosynthesis, secretion system, and transport of

phospholipid, which were overrepresented in pHTN and

HTN, are also linked to diabetes, liver cirrhosis, and

rheumatoid arthritis [2, 4]. Additionally, the metagenome

of patients were enriched in genes associated with

cellulose-binding domains but depleted in host glycan-

utilizing enzymes (Fig. 4c). These gut microbial functions

in hypertensive patients are commonly associated with

other diseases. Although the functional annotation ana-

lyses are predictive, it indicated that impairment of GM

may evoke a disease-linked state through interference of

physiological metabolic functions.

Metabolic profiling of GM in pHTN and HTN

Considering the aberrant function profiles of gut microbes

in disease subjects, we wondered the microbe-host inter-

actions in HTN. As some end products of fermentation

by the GM could enter the bloodstream and exert import-

ant influences on the physiology of the hosts, we explored

Fig. 4 Microbial gene functions annotation in pHTN and HTN. a PCA based on the relative abundance of KEGG orthology groups in 196 samples.
Significant differences across groups are established at the first principal component (PC1) values, and shown in the box plots above. **P value

<0.001, Wilcoxon rank sum test. b The average abundance of KEGG modules differentially enriched in control, pHTN, and HTN gut microbiome.
Twenty nine modules enriched in control, and 11 modules overrepresented in both pHTN and HTN are shown in green and pink, respectively.
The functional potential of KEGG modules are demonstrated on the right. c Heat map showing the abundance of 11 most significantly altered

CAZy family in pHTN or HTN as compared to control
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the host metabolic profiling in fasting serum of a subset of

124 subjects by high-throughput liquid chromatography-

mass spectrometry (LC/MS) and examined the relation-

ship between GM and metabolites in the circulation. Thirty

healthy controls, 31 pHTNs, and 63 patients of HTN from

our previous cohort were randomly enrolled. The serum

samples were subjected to LC/MS analysis in both positive

ion mode (ES+) and negative ion mode (ES−). After elimin-

ating the impurity peaks and duplicate identifications, we

identified a total of 1290 chromatographic peaks in ES+

and 2289 variables in ES− for further analyses. To discrim-

inate the metabolic profiles across groups, we performed

clustering analyses based on partial least-squares discrimin-

ant analysis (PLS-DA) and orthogonal partial least-squares

discriminant analysis (OPLS-DA). The serum samples from

distinct groups were largely separated according to the

PLS-DA plots (Fig. 5a). The scatter plots in pHTN group

were closer to those in HTN, suggesting a similar metabolic

mode. Furthermore, individuals in either pHTN or HTN

groups were separated from the controls as further

evidenced by the OPLS-DA score scatter plots (Fig. 5b).

The compositional changes in patients involved 167

analytes that were significantly different between pHTN

and control, and 215 analytes altered in HTN (Fig. 5c).

There were 26 metabolites which were obviously differ-

ent in both pHTN and HTN groups as compared to the

control (Additional file 2: Table S16). Notably, these me-

tabolites exhibited statistically analogous profiles of alter-

ations in pHTN and HTN, which was consistent with our

findings based on gut microbiome (Fig. 5d). Endogenous

compounds whose levels significantly decreased in pHTN

and HTN include phosphatidylserine (PS), 3,4,5-tri-

methoxycinnamic acid, lysophosphatidylcholine (LysoPC),

S-carboxymethyl-L-cysteine, and lysophosphatidylethano-

lamine (LysoPE). 3,4,5-Trimethoxycinnamic acid is cap-

able to protect against inflammatory diseases through

suppressing cell adhesion molecules in vascular endothe-

lial cells [43]. Also S-Carboxymethyl-L-cysteine exerts

anti-inflammatory properties [44]. These observed down-

regulations could promote the inflammatory environment

associated with HTN. On the other hand, endogenous

compounds whose levels significantly increased in pHTN

and HTN include metabolites such as Nα-acetyl-L-argin-

ine, stearic acid, phosphatidic acid (PA), and glucoside. El-

evated levels of Nα-acetyl-L-arginine and stearic acid have

been previously observed in uremia and spontaneously

hypertensive rats [45, 46]. These compounds may repre-

sent possible markers for the development of HTN and

might be derived from gut microflora or their fermented

products. To explore this idea, the relationship between

26 representative metabolites and the 44 most different

genera was examined by correlation analysis (Fig. 5e).

Control-enriched trichloroethanol glucuronide was posi-

tively correlated with Bifidobacterium and Akkermansia,

but negatively linked to Prevotella. Conversely, there

was a positive association between 9,10-dichloro-octa-

decanoic acid (stearic acid) and microflora including

Klebsiella, Prevotella, and Enterbacter, which were all

overrepresented in HTN. It was accordant that both

Bifidobacterium and Roseburia negatively interacted

with 9,10-dichloro-octadecanoic acid, which was hence

considered as an important GM-influenced metabolic

product in HTN. Thus the distinguished metabolic pro-

filing in HTN was closely connected to intestinal

microflora variation, although whether these metabolic

products were directly metabolized by the intestinal mi-

croorganisms remained to be explored.

Identification of pHTN and HTN basing on gut

microbiome

To illustrate the microbial and metabolic signature of

pHTN and HTN, and further exploit the potential of gut

microbiome and metabolites in HTN identification, ran-

dom forest disease classifier using explanatory variables

of CAGs, metabolites, and species abundances were per-

formed. Tenfold cross-validation was repeated for five

times and the receiver operating characteristic (ROC)

curves for classifying pHTN and HTN patients from

controls were developed.

We could detect HTN individuals accurately based on

the gut CAGs + metabolites, as indicated by the area

under the receiver operating curve (AUC) of up to 0.91,

and 95% confidence interval (CI) of 0.75–1 (Fig. 6a).

Similarly, comparing to the other variables, the variable

of CAGs + metabolites was more effective to classify

pHTN samples from controls, showing an AUC of 0.89,

and 95% CI of 0.65–1 (Fig. 6b). Thus, we conducted a

testing set consisted of 13 randomly chosen subjects

based on CAGs + metabolites. In this assessment ana-

lysis, both pHTN and HTN patients possess remarkable

features in gut microbiome and metabolites as compared

to the controls (Fig. 6c). However, we observed poor

performance on the test set when discriminating be-

tween pHTN and HTN by lower specificity and sensitiv-

ity (AUC, 0.57; 95% CI, 0.21–0.93; Fig. 6c). This further

validated the similarity of pHTN and HTN in our previ-

ous findings. Among the most discriminatory CAGs to

distinguish pHTN or HTN from control, there were

some CAGs similarly enriched in both pHTN and HTN

subjects, including CAG-172 (Prevotella), CAG-197

(Prevotella), CAG-759 (Faecalibacterium), CAG-765

(Faecalibacterium), and CAG-793 (Faecalibacterium)

(Fig. 6d). These CAG markers were the common micro-

bial characteristics of pHTN and HTN and contributed

a lot to the identification of pHTN and HTN.

We also investigated the utility of the classifier based on

microbial CAGs + species. Consistently, the AUC for iden-

tifying pHTN and HTN from the controls was 0.67 (95%

Li et al. Microbiome  (2017) 5:14 Page 8 of 19



CI, 0.39–0.95) and 0.81 (95% CI, 0.53–1), respectively, and

the performance on pHTN and HTN individuals was not

as satisfactory (AUC, 0.47; 95% CI, 0.19–0.75; Additional

file 10: Figure S7a). For HTN classification, CAGs and spe-

cies taxonomic annotated to Prevotella, including Prevotella

sp. CAG:5226.CAG-377, Prevotella bivia, and CAG-184

were typically important (Additional file 10: Figure S7b).

Overall, the pHTN- and HTN-associated microbial and

metabolic features captured by the classifier offered further

evidence for dysbiotic gut microbiome and highlighted

great potential ability for detection of pHTN and HTN

populations by GM and metabolites.

Fig. 5 Aberrant metabolic patterns in pHTN and HTN. a PLS-DA score plots based on the metabolic profiles in serum samples from control, pHTN, and
HTN group in ES+ and ES−. n= 30 for control, n= 31 for pHTN, and n= 63 for HTN. b Score scatter plots of OPLS-DA comparing the metabolic differences

identify the separation between pHTN and control, HTN and control, respectively. c Metabolites significantly changed in pHTN or HTN as compared to
control at VIP >1.5 and P value (t test) <0.05 are identified. Venn diagrams demonstrate the number of altered metabolites shared between pHTN (green)

and HTN (red) by the overlap. d The relative amount of 26 endogenous compounds concurrently varied in both pHTN and HTN groups is transformed into
Z scores in the heat map. There are six metabolites failed to be identified. e The relationship between 26 endogenous metabolites and the 44 top altered
genera (Fig. 2a) in pHTN and HTN is estimated by Spearman’s correlation analysis. And those with low correlated (|r| <0.4) are not shown. Genera and

metabolites are distinguished as abundant in control (green) or HTN (pink)
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High BP is transferrable by fecal transplant

Previous studies have revealed that antibiotics and pro-

biotics are potential treatment modalities for BP in both

animal models and clinical trials [19, 21, 22, 47]. We

speculated that the alterations in GM under pro/anti-

biotic use may be associated with BP changes. There is

evidence that Dahl salt-sensitive rats transplanted with

salt-resistant rat microbiota have further exacerbated BP,

which indicate that the microbiota resident within the

cecum of the Dahl salt-sensitive rat, but not the salt-

resistant rat, are in a symbiotic relationship with the

host [20]. Thus the differences between Dahl salt-

sensitive rats and the salt-resistant rats are highlighted.

Investigators have also proved that transplantation of

cecal contents from hypertensive obstructive sleep apnea

rats on high-fat diet into the same obstructive sleep

apnea recipient rats on normal chow diet lead to higher

BP similar to the donors [23]. In this study, it seems that

a major contributor to the gut dysbiosis of HTN is a

high-fat diet. Therefore, direct studies testing if

microbial transplantation can transmit changes in BP

from hypertensive donors to recipients are still lacking.

To further demonstrate whether alterations of GM are a

causal factor for the progression of HTN in vivo, fecal

bacteria from hypertensive patients were transplanted to

GF mice in the present work.

The donors for microbiota transplantation consisted of

two patients of HTN and one normotensive control

(Additional file 11: Table S17). They were strictly se-

lected, and fresh fecal samples from donors were inocu-

lated to recipient mice as soon as possible. Male GF

mice at 8–10 weeks were divided into groups and orally

inoculated with stool samples two times at 1-day interval

(Fig. 7a). The fecal samples of recipient mice post-

transplantation were investigated by 16S V4 region

amplicon sequencing (Additional file 2: Table S18). The

sequences were de novo clustered at 97% sequence

identity and annotated to genera. From HTN patients,

128 genera were successfully colonized in the intestine

of HTN mice, and 110 genera were transferred to

a

b

c

d e

Fig. 6 A classification to identify pHTN and HTN patients from controls. a, b Random forest models are constructed using explanatory variables of

CAGs + species (red curve), CAGs + metabolites (green curve), metabolites (yellow curve), CAGs (blue curve), and species (purple curve). The AUC shows
the classification of control versus HTN, or control versus pHTN as the numbers of variables increase. The CAGs + metabolites-based classification is
more efficient as indicated by a higher AUC. c ROC of the random forest classifier using CAGs + metabolites based on the 1000 most important

variables by ranking the variables by importance. AUC = 0.91 for control versus pHTN (n = 12, red curve), AUC = 0.89 for control versus HTN (n = 12,
green curve), and AUC= 0.57 for pHTN versus HTN (n = 13, blue curve). d The top 50 different CAGs distinguish HTN from control based on the random

forest model using explanatory variables of CAGs + metabolites. e The top 50 CAGs discriminate between pHTN and control using explanatory vari-
ables of CAGs + metabolites. The lengths of bar in the histogram represent mean decrease accuracy, which indicates the importance of the CAG for
classification. The color denote the enrichment of CAG in control (blue), in HTN or pHTN (red) according to OR score
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control-mice from the control donor (Fig. 7b). Shannon

index based on the genera profile showed reduced bac-

terial diversity in HTN mice (P = 0.048; t test, Fig. 7c).

As expected, PCoA at the genus level clustered HTN pa-

tients and mice colonized with hypertensive GM into

one group, but control and control mice into a separated

group (Fig. 7d). Moreover, at the genus level, Anaero-

truncus, Coprococcus, Ruminococcus, Clostridium, Rose-

buria, Blautia, and Bifidobasterium were confirmed to

be deficient, while Coprobacillus and Prevotella were

shown to be more abundant in HTN mice, which was in

agreement with our previous observations in the meta-

genomic analyses (Additional file 2: Table S19, Fig. 7e).

At 10 weeks post-transplantation, BP of recipient mice

in HTN and control group was measured by the tail-cuff

method. Notably, the HTN mice exhibited significantly

higher SBP, DBP, and mean blood pressure (MBP) as

compared to controls (P < 0.05), as well as elevated heart

rate (P = 0.11) (Fig. 7f ). Early studies have shown that

when compared to conventional controls, GF rats pos-

sess significantly lower cardiac output, relatively dimin-

ished regional blood flow, lower level of systemic BP

response after blood loss, and hypotonic microvascula-

ture [48], which might lead to a low systolic BP in the

recipient mice. These findings provided novel and direct

evidence that GM could influence the BP of host

Fig. 7 Post-transplanted intestinal microbial profiles and BP of recipient mice. a Schematic representation of fecal microbiota transplantation. GF
mice (n = 5 for control, n = 10 for HTN) are orally inoculated with prepared fecal contents from two patients of HTN and one normotensive

control, respectively. The gut microbial profiles are analyzed at 7 days, and BP is measured at 10 weeks post-transplantation. C, control; H,
HTN. b Venn diagram comparing the shared genera number in gut microbiome of human donors (n= 1 for control, n= 2 for HTN) and recipient mice
(n= 3 for control, n= 6 for HTN). c Shannon index of recipient mice at the genus level demonstrate significantly reduced α diversity in HTN group. P=

0.048 from t test. Boxes represent the inter quartile ranges, lines inside the boxes denote medians, and circles are outliers. d PCoA plots of human donors
and recipient mice based on microbial genera separate HTN group from the controls. e Heat map comparing the abundance of altered genera between

control and HTN mice. Red, more abundant; blue, less abundant. Genera present consistent trend with the metagenomic analysis are marked with green

points, while inconsistent with gray points. f SBP, DBP, MBP, and HR of the recipient mice (n= 5 for control, n= 10 for HTN) are measured by tail-cuff
method. Data are presented as mean ± s.e.m. P= 0.018, SBP; P= 0.019, DBP; P= 0.014, MBP; P= 0.11, HR; t test
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directly. Therefore, changes in the GM might be the

mechanism underlying the effect of antibiotics and pro-

biotics on BP control. As the number of donors for

transplantation is limited, larger number of fecal trans-

plants from hypertensive, pre-hypertensive, and normo-

tensive control participants should be carried out in the

future to further establish the magnitude of BP changes.

Discussion

To date, there are limited studies indicating a direct as-

sociation between GM and HTN, especially in human

disease. Several important gaps in knowledge of gut and

BP remain unexplored, and critical issues should be ad-

dressed, such as the microbial profiles of HTN popula-

tions in clinical trials, the metabolites signature profiles,

the microbial biomarkers for early detection of HTN,

and fecal transplantation to make clear the causal rela-

tionship between gut dysbiosis and HTN. To make up

for these blanks, we applied a strategy based on metage-

nomic and metabolomic analyses, coupled with GM

transplantation. We sequenced the total bacteria DNA

of stool samples from a cohort of 196 Chinese individ-

uals and supplemented this analysis with an additional

validation cohort. All the individuals in the present study

are from a cohort study among employees of the Kailuan

Group Corporation. The Kailuan study is a prospective

cohort study focusing on the Kailuan community in

Tangshan, a large modern city in northern China. As the

subjects were from a relatively concentrated environ-

ment, the differences in the diets were relatively small.

All the subjects in the hypertension group were newly

diagnosed hypertensive patients prior to antihypertensive

treatment. Patients suffering from cancer, heart failure,

renal failure, smoking, stroke, peripheral artery disease,

and chronic inflammatory disease were all excluded.

Drugs including statins, aspirin, insulin, metformin, ni-

fedipine, and metoprolol were not used on the patients,

and other drug consumption was not compared because

the sample size was quite small. Hence, it is not likely

that the medication use directly influenced the gut meta-

genome and metabolites, as there was no significant dif-

ference in the drugs consumed by these subjects. Our

results demonstrate that decreased diversity, altered

enterotype distribution, and variation in bacteria popula-

tions were associated with both pHTN and HTN. The

bacterial metabolic functions and GM-related metabo-

lites in pre-hypertensive and hypertensive adults were

closely linked to inflammatory state. Particularly, both

pHTN and HTN individuals could be accurately distin-

guished from the controls by variables of CAGs and

metabolites. And most importantly, the direct impact of GM

composition on regulating BP was evaluated using an in vivo

model of GF mice colonized with human intestinal micro-

biota. Bacteria such as Prevotella, Klebsiella, Enterobacter, and

Fusobacterium are potential candidates for further bacteria

transfer experiments to explore the precise mechanisms

underlying the effect of GM in BP regulation. Our work

provides the first direct evidence that highlights the piv-

otal role of dysbiotic gut microbiome as an important

pathogenic factor for the high BP of the host. Thus GM

modulation should be considered during antihypertensive

treatment.

Researchers previously suggested that the intestinal

bacterium Prevotella copri thrives in a pro-inflammatory

environment of rheumatoid arthritis [3, 49]. The super-

oxide reductase and phosphoadenosine phosphosulphate

reductase encoded by Prevotella copri may favor the de-

velopment of inflammation. In their further demonstra-

tion, colonization with Prevotella copri enhances body

weight loss and exacerbates epithelial inflammation in

colitis mouse model [3]. Interestingly, as shown by our

data, the enterotype dominated by Prevotella was

enriched with pHTN and HTN populations. Moreover,

Prevotella was overrepresented in individuals with

pHTN and HTN. And stearic acid, an important metab-

olite in HTN, was positively linked to Prevotella. Fur-

thermore, CAGs and species taxonomic annotated to

Prevotella were the common microbial characteristics of

pHTN and HTN, and contributed a lot to classification

of HTN. Thus Prevotella may play an essential role in

HTN, probably by triggering the inflammatory response.

Our findings have consolidated the potential of Prevo-

tella in the pathogenesis of diseases, and call for further

exploring whether Prevotella is a causal conducer to in-

flammation and HTN.

Concomitant with the alteration of gut microbial com-

position, we observed a dysbiosis in bacterial gene func-

tions. The metagenome of HTN patients were depleted

in genes associated with biosynthesis and transport of

amino acid, such as lysine, histidine, leucine, and serine,

which are essential for human health. Functional annota-

tion also indicated a decline of modules for fatty acid

utilization and saccharide transport, suggesting an im-

paired capacity of energy production. In agreement with

previous studies showing a dearth of microbial functions

for purine metabolism in arthritis [3], a significant de-

crease in purine-metabolizing enzymes was identified to

be related to HTN. Indeed, these metabolic functions

are quite necessary for healthy populations [3–5, 39, 40].

In contrast, the enrichment of the modules for LPS bio-

synthesis and export in patients hints at a potential role

of GM in causing low-grade inflammation. Inflammation

due to immune response triggered by LPS is the cardinal

feature of the pathogenesis of gram-negative bacteria,

such as Prevotella and Klebsiella [50, 51], and has been

identified as an important contributor to the pathogen-

esis of HTN. Our findings raise the possibility that the

low-grade inflammation and increase of gram-negative
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bacteria, especially Prevotella and Klebsiella, are likely

responsible for HTN pathology. Thus, our analysis of

bacterial gene functions indicates that functional dysbio-

sis may contribute to the susceptibility to HTN, and

overproduction of LPS by gut bacteria seems to be dir-

ectly linked to HTN development, whereas amino acid

biosynthesis, fatty acid utilization, and purine metabol-

ism by bacteria might have a role in HTN prevention.

Actually, in GF mice, the tail-cuff method has been

used for assessment of BP in a recent report, suggesting

the methodology is acceptable [52]. In our study, the

tail-cuff measurement was performed as the others did

previously, and indicated a tendency for higher BP in re-

cipient mice inoculated with stool samples from hyper-

tensive donors as compared to controls. As such results

were not obtained by fecal microbiota transplantation in

conventionally raised mice, we speculate that the im-

mune inflammatory system might play a crucial role in

the pathogenesis of HTN. Further mechanism research

to make clear whether gut bacterial metabolites show a

contribution to the immune inflammatory system during

the development of HTN is being performed.

In HTN studies, most work focused on patients with a

clinical definition of HTN, who display a SBP higher

than 140 mmHg or DBP ≥90 mmHg. However, po-

pulation studies suggest that there is an intermediate

stage of BP between control and HTN defined as pHTN,

which should not be ignored. In our study, we

considered subjects with pHTN as an independent

group. Surprisingly, the bacterial diversity, enterotype,

composition, and metabolic functions, as well as classi-

fied characteristics in pHTN highly coincided with those

in HTN. As shown in Figs. 1, 2, and 3, there was a little

difference in the structure of gut microbiome between

pHTN and HTN, indicating that pHTN is not simply a

transition stage between normotensive and hypertensive

status upon BP levels but rather a state in which gut

dysbiosis has already occurred. Moreover, our findings

revealed indiscriminate metabolic profilings between

pHTN and HTN, consistent with a previous report that

the serum spectral profiles of the hosts were similar at a

stage of SBP ≥130 mmHg and at SBP ≥150 mmHg [53].

The close correlation of metabolic products and GM

further strengthened and highlighted the importance of

pHTN. Therefore, early treatment of pHTN has strong

clinical value. In agreement with our notion, high BP has

become one of the three leading risk factors for death

according to the Global Burden of Disease Study [54].

Moreover, our findings fully support the updated conclu-

sion by the Systolic Blood Pressure Intervention Trial

(SPRINT) research group, that controlling one’s SBP to

an optimal level lower than 120 mmHg rather than a

pHTN level below 140 mmHg leads to significantly de-

creased occurrence of cardiovascular events and death

[55]. Thus, more attention should be given to the previ-

ously neglected populations in pHTN, and early inter-

vention for pHTN is strongly appealed.

Conclusions

Taken together, we have described clearly the disordered

profiles of GM and microbial products in human pa-

tients with pHTN and HTN, established the relationship

between gut dysbiosis and HTN, and provided important

evidence for the novel role of GM dysbiosis as a key fac-

tor for BP changes. Our findings point towards a new

strategy aimed at preventing the development of HTN

and reducing cardiovascular risks through restoring the

homeostasis of GM, by improving diet and lifestyle or

early intervening with drugs or probiotics.

Methods

Study cohort and patient characteristics

All the individuals in the present study were from a co-

hort study among employees of the Kailuan Group Cor-

poration. The Kailuan study is a prospective cohort

study focusing on the Kailuan community in Tangshan,

a large modern city in northern China, where 11 hospi-

tals are responsible for the health care of the commu-

nity, all of which participated in conducting physical

examinations. All the subjects in the current work were

strictly enrolled and none of them was under antihyper-

tensive treatment. The participants were classified based

on the Internal Guidelines for HTN as described in

Additional file 1: Table S1. It was composed of 41

healthy controls (SBP ≤125 mmHg, or DBP ≤80 mmHg),

56 pHTNs (125 mmHg < SBP ≤ 139 mmHg, or 80 mmHg

< DBP ≤ 89 mmHg), 99 patients of HTN (140 mmHg ≤

SBP, or 90 mmHg ≤DBP). BP was measured in a sitting

position by nurses or physicians. Three readings were re-

corded at 5-min intervals with a random-zero mercury

column sphygmomanometer, and the average was taken

as the final measurement.

All clinical information was collected according to

standard procedures. Patients suffering from cancer,

heart failure, renal failure, smoking, stroke, and periph-

eral artery disease were excluded, and none of the pa-

tients was under antihypertensive treatment. Healthy

volunteers had no history of diabetes mellitus or hyper-

cholesterolemia. Individuals were also excluded if they

had received antibiotics or probiotics within the last

8 weeks. The study was approved by local ethics com-

mittees (Kailuan General Hospital, Beijing Chaoyang

Hospital, and Beijing Fuwai Hospital) and informed con-

sent was obtained from all subjects.

Stool sample collection and DNA extraction

Stool samples freshly collected from each participant

were immediately frozen at −20 °C and transported to
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the laboratory with ice pack. Bacterial DNA was ex-

tracted at Novogene Bioinformatics Technology Co., Ltd

using TIANGEN kit according to the manufacturer’s

recommendations.

Metagenomic sequencing and gene catalogue

construction

All samples were paired-end sequenced on the Illumina

platform (insert size 300 bp, read length 125 bp) at the

Novogene Bioinformatics Technology Co., Ltd. After

quality control, the reads aligned to the human genome

(alignment with SOAP2 [56], Version 2.21, parameters:

-s 135, -l 30, -v 7,-m 200,-x 400) were removed. The

remaining high-quality reads were used for further

analysis.

The assembly of reads was executed using SOAP

denovo (Version 2.04, parameters: -d 1 -M 3 -R -u -F)

[57]. For each sample, we used a series of k-mer values

(from 49 to 87) and chose the optimal one with the lon-

gest N50 value for the remaining scaffolds [4]. We

mapped the clean data against scaffolds using SOAP2

(Version 2.21, parameters: -m 200 -x 400 -s 119). Un-

used reads from each sample were assembled using the

same parameters. Genes (minimum length of 100 nucle-

otides) were predicted on scaftigs (i.e., continuous se-

quences within scaffolds) longer than 500 bp using

MetaGeneMark (prokaryotic GeneMark.hmm version

2.10). Then, a non-redundant gene catalogue was con-

structed with CD-HIT (version 4.5.8, parameters: -G 0

-aS 0.9 -g 1 -d 0 -c 0.95) [58] using a sequence identity

cut-off of 0.95, with a minimum coverage cut-off of 0.9

for the shorter sequences.

To determine the abundance of genes, reads were rea-

ligned to the gene catalogue with SOAP2 using parame-

ters: -m 200 -x 400 -s 119. Only genes with ≥2 mapped

reads were deemed to be present in a sample [59]. The

abundance of genes was calculated by counting the

number of reads and normalizing by gene length.

α diversity and rarefaction curve

To estimate the genera richness of the sample, we calcu-

lated the within-sample (α) diversity using Shannon

index based on the genera profiles. A high α diversity in-

dicates a high richness of genera within the sample.

Rarefaction analysis was performed to assess the gene

richness in the controls, pHTN, and HTN. For a given

number of samples, we performed random sampling 100

times in the cohort with replacement and estimated the

total number of genes that could be identified from

these samples by R (Version 2.15.3, vegan package).

Microbial community types (enterotypes)

The community types of each sample were analyzed by

the PAM method using relative abundance of genera.

The optimal number of clusters was estimated using the

CH index, as previously described [60]. Only genera with

an average relative abundance ≥10−4 and existed in at

least six samples were considered in the analysis. Ac-

cording to Spearman’s correlation between genera abun-

dances, the genera in enterotype 1 were clustered, and

the co-occurrence network of them was visualized by

Cytoscape (Version 3.2.1).

Taxonomic annotation and abundance profiling

To assess the taxonomic assignment, genes were aligned

to the integrated NR database using DIAMOND

(Version 0.7.9.58, default parameter except that -k 50

-sensitive -e 0.00001) [61]. As previously described [59],

for each gene, the significant matches, which were de-

fined by e-values ≤10 × e-value of the top hit, and these

retained matches were used to distinguish taxonomic

groups. The taxonomical level of each gene was deter-

mined by the lowest common ancestor-based algorithm

and implemented in MEGAN [62]. The abundance of a

taxonomic group was calculated by summing the abun-

dance of genes annotated to a feature.

Metagenomic analysis in the verification phase

All phenotype information of participants were listed in

the supplementary tables of Qin J et. al [2]. Subjects with

diabetes were excluded. Three HTN patients with SBP

≥150 mmHg or DBP ≥100 mmHg were enrolled, and

three normotensive controls with SBP ≤125 mmHg and

DBP ≤80 mmHg were included for the analysis.

Co-abundance gene groups

To identify the marker genes associated with pHTN and

HTN, the abundance of each gene across groups was

compared according to Greenblum S et al. [34]. As pre-

viously described [35], these marker genes were clus-

tered into groups based on their abundance variation

across groups. Clusters with more than 50 genes were

defined as co-abundance gene groups (CAGs), and used

for further analysis. CAG abundance profiles were calcu-

lated by the average gene depth signal and weighted by

gene length.

Taxonomic assignment of the CAGs was performed

according to the taxonomy of tracer genes, as previously

described [2]. Briefly, assignment to species requires 90%

of the genes in a CAG to align with the species’ genome

with 95% identity and 70% overlap of query. Assigning

CAG to a genus requires 80% of its genes to align to the

genome with 85% identity in both DNA and protein

sequences.

Co-occurrence network of CAGs

The enriched CAGs were identified according to

Greenblum S et al.. These CAGs were clustered
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according to Spearman’s correlation. The co-occurrence

network was visualized using Cytoscape (Version 3.2.1).

The enriched CAGs/genes were identified according to

Greenblum S et al. [34]. Briefly, for each CAG, an OR

score was calculated according to the abundance in the

set of compared samples. Then, for the comparative

analysis between control and HTN samples, the HTN-

associated CAGs were classified as HTN-enriched (OR

>2) or HTN-depleted (OR <0.5). When calculating HTN-

associated ORs, samples of pHTN were excluded from the

analysis, and when calculating pHTN-associated ORs,

samples labeled as HTN were excluded.

Association between CAGs and clinical indices

Based on the clinical indices and enriched CAG profiles,

we calculated Spearman’s correlation in all samples. The

P values were corrected for multiple testing with Holm

method by R (Version 2.15.3, psychpackage). Only 162

samples were considered in the analysis because of the

clinical data missing in 34 samples.

Functional annotation

All genes in our catalogue were aligned to the KEGG

database (Release 73.1, with animal and plant genes re-

moved) and CAZy database (http://www.cazy.org/) using

DIAMOND (Version 0.7.9.58, default parameter except

that -k 50 –sensitive -e 0.00001). Each protein was

assigned to the KEGG orthology and CAZy families by

the highest scoring annotated hits containing at least

one HSP scoring over 60 bits [63]. The abundance of

KEGG orthology/module was calculated by summing

the abundance of genes annotated to the same feature.

Metabonomics analysis based on LC/MS

One-hundred twenty-four (n = 124) individuals from our

study cohort were subjected to metabonomics analysis

based on the LC/MS method. This cohort was com-

posed of 30 healthy controls, 31 pHTNs, and 63 patients

of HTN. The whole blood samples were collected and

separated into serum by centrifugation. Each serum

samples at 100 μL were mixed with 400 μL methanol,

and the mixtures were centrifuged at 12,000 rpm for

15 min at 4 °C. For LC/MS analysis, 200 μL of the super-

natant was harvested.

The serum metabolic profiles were performed on a

Thermo Fisher Ultimate 3000 LC system. For chromato-

graphic separation, C18 (2.1 mm × 100 mm × 1.9 μm)

reversed-phase column (Thermo Scientific, USA) pre-

heated at 40 °C was used. A prepared serum sample of

4 μL was injected and maintained at 4 °C for analysis.

The gradient conditions for metabolite elution were at

5% B for 0–1 min, 5–40% B for 1–2 min of linear gradi-

ent, 40–80% B for 2–11 min of linear gradient, and 95%

B for 11–15 min. The mobile phase for positive ion

mode (ES+) and negative ion mode (ES−) was composed

of water with 0.1% formic acid as solvent A, and aceto-

nitrile with 0.1% formic acid as solvent B, and the flow

rate was at 300 μL/min.

For mass spectrometric assay, Orbitrap Elite mass spec-

trometer (Thermo Scientific, USA) equipped with ESI

source was used to analyze the metabolite ions. The spray

voltage was set to 3.8 kV in ES+ and 3.2 kV in ES−, the

flow rate of sheath gas, aux gas, and sweep gas was 45, 15,

and 1 arb, respectively. The ion source temperature was

300 °C, and the capillary temperature was 350 °C. Masses

ranging from 50 to 1000 ion mass (m/z) were acquired,

and the resolving power was set to 60,000.

The raw ESI data of LC/MS was converted into m/z

format and analyzed for non-linear retention time (RT)

alignment, peak detection, and filtration. Maximal

spectrum of continuous wavelet transform was used to

correct baseline and detect peak positions. Impurity

peaks and duplicate identifications were eliminated.

Compounds significantly different between groups were

obtained at a variable influence on projection (VIP) >1.5,

and P value of t test statistics <0.05 based on the peak

intensities. The m/z values of these compounds were

used to identify the metabolites corresponding to the

featured peak in the Metlin database.

From the metabolite profile and 44 top differential

genera abundance profile, Spearman’s correlation was

performed to eliminate multi-collinearity and only one

factor will be randomly selected from high correlated

clusters (|r| ≥ 0.9) for further analysis. A stepwise regres-

sion of linear models was used for modeling the rela-

tionship between metabolites and related genera, from

the fitting value of individual metabolites, and Spear-

man’s correlation between metabolic and associated gen-

era was calculated and scaled by coefficients of each

respective linear model.

Animal experiments

GF C57BL/6L mice were obtained from Shanghai Insti-

tutes for Biological Sciences (SLAC Inc., Shanghai,

China) and housed under a 12-h light–dark cycle in the

gnotobiotic facilities. All mice were fed with sterile food

and water ad libitum, and bacterial contamination was

monitored by periodic examination of stools. For micro-

biota transplantation, the fresh fecal samples were col-

lected from donors (Additional file 11: Table S17),

resuspended with sterile saline, and centrifuged for

supernatant. Male GF mice aged 8–10 weeks were ran-

domly distributed into two groups and orally inoculated

(200 μL for each mouse) twice at 1-day interval with

prepared fecal contents from control or patients. Recipi-

ent mice transferred with microbiota were kept in differ-

ent Trexler-type flexible film isolators, fed with sterile

food and water, and bacterial contamination was strictly
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controlled. The gut microbial profiles of recipient mice

were analyzed by 16S sequencing after 7 days. We chose

a time point of 10 weeks post-transplantation for BP

measurement. An assessment of BP was performed

within 60 min after exporting the mice out of their

gnotobiotic facilities, and we could not ensure preven-

tion from bacterial contamination after the measure-

ment; the BP at other time points during 10 weeks was

not further examined. The BP was measured by the tail-

cuff method and the BP-98A system (Softron, Tokyo,

Japan), which was noninvasive and did not require sur-

gery, since using direct invasive methods such as radio-

telemetry techniques will immediately expose the mice

to a non-sterile condition, which might impact the re-

sults. To acclimatize the mice undergoing the measure-

ment procedures and improve measurement reliability, a

heat-sterilized dark cover was transported into the

germ-free mice isolator, where it was sterilized by spray-

ing with a chlorine dioxide-based disinfectant in the iso-

lator port. Before BP measurement, we have trained the

mice by placing them in the dark cover in their sterile

flexible film isolators without exporting them out at the

same time for 14 days. To minimize contamination, the

measurement was performed with UV-sterilized instru-

ments under a sterile hood within 60 min after export-

ing the mice out of their sterile environment. All animal

care and experiments were performed in accordance

with the guidelines of Institutional Animal Care and Use

Committee of SLAC Inc.

16S ribosomal RNA sequencing

16S rRNA community profiles were characterized using

Illumina HiSeq sequencing of the V4 region (insert size

300 bp, read length 250 bp). Sequences were de novo

clustered at 97% sequence identity and chimeras were

removed using UPARSE [64]. For each representative se-

quence, the GreenGene Database was used to annotate

taxonomic information [65].

Statistical analysis

The Shannon index at the genera level was calculated

with QIIME (Version 1.7.0). PCA was analyzed using

the FactoMineR package in R software (Version 2.15.3).

PCoA was performed and displayed by ade4 package,

cluster packages, fpc packages, and clusterSim package

in R software (Version 2.15.3). PLS-DA was performed

using SIMCA-P software to cluster the sample plots

across groups.

Differential abundance of genes, genera, and KO mod-

ules was tested by Wilcoxon rank sum test, and P values

were corrected for multiple testing with the Benjamin &

Hochberg method. Only genera with an average relative

abundance ≥10−4 and existed in at least six subjects were

considered in the analyses. Correlations between enriched

CAGs and clinical indices were tested with Spearman’s

correlation and visualized by Cytoscape (Version 3.2.1).

Using the profiles of species, CAGs, and metabolites,

the samples were randomly divided into training set and

test set. A random forest classifier was trained on 80% of

the data and tested on the remaining 20% of our data

using the random forest package in R. In order to evalu-

ate the performance of the predictive model and get

more precise curves, we used a 10-fold cross-validation

within the training set. The cross-validational error

curves (average of 10 test sets each) from five trials of

the 10-fold cross-validation were averaged. Variable

importance by mean decrease in accuracy was calculated

for the random forest models using the full set of

features. The number of variables was 1000 at the lowest

cross-validational error. Thus, the predictive model was

constructed using the 1000 most important variables,

which were further applied for ROC analysis. The

performance of the smaller models were measured as

AUC when applied to the test set, and the confidence in-

tervals for ROC curves were calculated using the pROC

R package.

Additional files

Additional file 1: Table S1. Characteristics of the study cohort. A total
of 196 participants consisted of 41 healthy controls, 56 subjects of pHTN,
and 99 patients with HTN were enrolled. (DOC 42 kb)

Additional file 2: Table S2. Data production of 196 samples in control,
pHTN and HTN. Table S3. Relative abundance profile at the phylum level.
Table S4. Relative abundance profile at the genus level. Table S5. Detailed
information of differential genera. Table S6. Information of 6 samples in
the verification phase. Table S7. Relative abundance profile at the genus
level of 6 samples in the verification phase. Table S9. Reference genomes
for CAG’s taxonomy assignment. Table S10. Detailed information of
enriched CAGs in different groups. Table S11. Detailed information of
1099 CAGs. Table S12. Spearman’s correlation between enriched CAGs.
Table S13. Detailed information of differential KEGG modules. Table S14.
Detailed information of differential KEGG orthologys. Table S15. Detailed
information of differential CAZy family. Table S16. Detailed information of
26 metabolites differently enriched across groups. Table S18. Data
production for donors and recipient mice in microbiota transplantation.
Table S19. Relative abundance profile at the genus level of donors and
recipient mice. (XLSX 4171 kb)

Additional file 3: Figure S1. The number of enterotypes in our cohort
is most rational at 2. Based on the PAM clustering method, a total of 196
stool samples are clustered into different numbers of community types
with CH index, which shows the performance in recovering cluster
numbers. The maximum CH index at two clusters (enterotypes) indicates
the optimal enterotype number. (PDF 183 kb)

Additional file 4: Figure S2. The interaction network of genera in
enterotype 1. (a) The main contributor in enterotype 1 is shown with
yellow circle (Prevotella), genera shown by white circles link to it directly,
and red ones indirectly. Edges between nodes in red denote Spearman’s
correlation > 0.4, and correlation ≤0.4 is in blue. The width of edges is
scaled by correlation index. (b) The twelve genera negatively correlated
with Prevotella are all decreased in enterotype 1. Box plots are shown to
compare the relative abundances of genera within the interaction
network of enterotype 1. Ten out of twelve genera are significantly
decreased in enterotype 1. Boxes represent the inter quartile ranges, lines
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inside the boxes denote medians, and circles are outliers. +, adjust P
value <0.01; ns, not significant. Wilcoxon rank sum test. (PDF 547 kb)

Additional file 5: Figure S3. The gut microbial abundances of genera
enriched in groups do not correlated with BMI, age or gender. The
relative abundances of genera overrepresented (above 4) or deficient
(below 11) in subjects for each control (n = 41), pHTN (n = 56), and HTN
(n = 99) sample are shown. The information for BMI, age and gender of
each participant are included in the heat map. (PDF 669 kb)

Additional file 6: Figure S4. The gut microbiome profile of HTN in the
additional independent metagenomic analysis. (a) Bacterial α diversity
(Shannon index) at the genus level is compared between control (n = 3)
and HTN (n = 3) group. P value is from t test. (b) The genera abundance
alteration in HTN patients is compared with the controls. Red represents
more abundant, blue indicates less abundant. The genera marked with
green points show a consistent trend in HTN compared with the results
in stage 1 metagenomic analysis, while gray points represent the genera
with inconsistent variation. (PDF 330 kb)

Additional file 7: Table S8. Detailed information for 1,120,526 gene
markers. (XLSX 28022 kb)

Additional file 8: Figure S5. Size distribution and taxonomic assignment
of CAGs. (a) The 1,120,526 genes significantly different across groups are
clustered into linked gene groups, and the distribution of gene number
within these clusters are shown in the histogram. Clusters with a gene
number higher than 50 are defined as CAG. (b) Characterization of
taxonomic assignment for CAGs based on the genes. The size of points
denotes the gene number within the CAG, and the color of points indicates
different phylum. The X-axis (coverage) represents the percentage of genes
in the CAGs annotated to known bacterial phylum, and the Y-axis is the
identity of genes to align with a genome in both DNA and protein
sequences according to BLAST. (PDF 313 kb)

Additional file 9: Figure S6. The correlation between overrepresented
CAGs and clinical indices of subjects including SBP, DBP, BMI, FBG, TC, TG
and LDL. Spearman’s correlation analysis between CAGs and clinical factors
is performed according to the relative abundance of CAGs and the data of
clinical parameter. The color are scaled with the correlation coefficients,
positive correlation is expressed in red, and negative correlation in blue.+,
adjust P value <0.01; *, adjust P value <0.05. (PDF 826 kb)

Additional file 10: Figure S7. Random forest classification of pHTN,
HTN and control using explanatory variables of CAGs + species. (a) ROC
for the testing set consisted of controls, pHTN and HTN is performed
based on the random forest model using the 1000 most important
variables by ranking the variables by importance. The AUC is 0.67 for
control versus pHTN (n = 12, red curve), AUC = 0.81 for control versus
HTN (n = 12, green curve), and AUC is 0.47 for pHTN versus HTN (n = 13,
blue curve). (b) The top 30 different CAGs or species distinguish HTN
from control based on the random forest model. The bar lengths denote
mean decrease accuracy, and the color represents CAGs or species
enriched in control (blue), HTN (red), and neither (gray). (PDF 499 kb)

Additional file 11: Table S17. Characteristics of the donors for
microbiota transplantation. The donors for microbiota transplantation
consist of two patients of HTN and one normotensive control. (DOC 32 kb)
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