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Gut mucosal microbiome across stages
of colorectal carcinogenesis
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Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we

catalogue the microbial communities in human gut mucosae at different stages of colorectal

tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma

and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent

mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles

reveals that a metacommunity predominated by members of the oral microbiome is

primarily associated with CRC. Analysis of paired samples shows differences in community

configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa

indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently

more common in cancer. We validate these alterations in CRC-associated microbiome by

comparison with two previously published data sets. Our results suggest that a taxonomically

defined microbial consortium is implicated in the development of CRC.
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T
he human intestinal mucosa is a dynamic interface
between host cells and a network of microbial ecosystems1.
Sustained gut microbial dysbiosis is a potential risk factor

for exacerbating colorectal lesions towards carcinogenesis2.
Progression of colorectal neoplasia has been linked to
alterations of tumour microenvironment and mucosal barrier
function, which facilitate the interaction of microbial products
with host pathways3. A variety of gut commensals and their
metabolites, such as butyrate and hydrogen sulphide4,5, are
known for triggering inflammatory cascades and oncogenic
signalling, thereby promoting genetic and epigenetic alterations
in the development of colorectal cancer (CRC)3. Given our lack of
understanding on how microbiome profiles change during the
transition from normal mucosae, adenomatous to malignant
lesions, assigning certain members or a consortium of the gut
microbes with potential causative roles in CRC remains a grand
challenge. Although the enrichment of Fusobacterium species
and their regulation of tumour microenvironment have been
described6–11, increasing evidence suggests that colorectal lesions
are home to various other members of the gut microbiota12–14.
Thus, variations in the taxonomic footprints of microbial
communities across major stages of CRC development need to
be clarified.

Here we perform 16S ribosomal RNA (rRNA) gene sequencing
on mucosal microbiome of normal colorectal mucosae,
adenomatous polyps and adenocarcinomas. Our approach
focuses on the identification of distinct taxonomic configurations,
or metacommunities. To determine associations of meta-
communities with disease status, we adopt an approach similar
to that published by Ding and Schloss15. By further analyses of
paired samples and microbial relationships, we demonstrate that
mucosal microbial communities show distinct alterations across
stages of colorectal carcinogenesis.

Results
Metacommunities associated with colorectal tumour statuses.
To determine associations of microbiome profiles with mucosal
phenotypes, we performed 16S rRNA gene sequencing on
mucosal biopsy samples collected from subjects with normal
colons (n¼ 61), subjects with histology-proven adenoma
(n¼ 47), and subjects with invasive adenocarcinoma (n¼ 52) at
the Prince of Wales Hospital of the Chinese University of
Hong Kong and the First Affiliated Hospital of the Sun Yat-Sen
University (see Supplementary Table 1 for overview of patient
demographics). We implemented the sequence curation pipeline
optimized for analyses of amplicon libraries as described in
mothur software package16. This approach for quality control has
been shown to result in a low sequencing error rate (0.06% or
less)17. Using the reference Greengenes taxonomies (version
13.8), post-quality control reads were assigned to bacterial
phylotypes. Phylotypes with the deepest taxonomic annotations
were fitted to Dirichlet multinomial mixture (DMM) models to
partition microbial community profiles into a finite number of
clusters, using the Laplace approximation as previously described
(see Supplementary Fig. 1 for comparison of ordination results
from DMM and partitioning around medoid (PAM)-based
clustering)15,18. We identified five metacommunities designated
in Fig. 1 as ‘A–E’ and observed strong associations with
phenotypes of colorectal mucosae (Fisher’s exact test with
Monte Carlo simulation; q¼ 7.0� 10� 5; see also Supplementary
Data 1 for associations of metacommunities with clinical features).
Subsequently, we screened for taxa that distinguished the
metacommunities using the LEfSe algorithms (Fig. 1; see
Supplementary Data 2 for the summary of linear discriminant
analysis scores), and performed receiver operating characteristic

analyses to confirm that these markers confidently differentiated
normal mucosae from lesions (Supplementary Fig. 2). The
performance of metacommunity markers was comparable to
that of the markers identified by Random Forests (see
Supplementary Data 3 for the list of markers selected by
tenfold cross-validations of the Random Forests algorithm)19.
Furthermore, using metacommunity markers, we designed a
two-way index, termed Microbial Community Polarization index
(MCPI), to quantify the degree of mucosal dysbiosis associated
with colorectal lesions (Fig. 1; see Supplementary Fig. 2a for the
performance of the index).

Metacommunity A was represented by phylotypes of
major bacterial phyla, including Bacteroidetes, Firmicutes,
Proteobacteria and Fusobacteria. The representative members
included Bacteroides, Bacteroides fragilis, Fusobacterium,
Escherichia coli, Faecalibacterium prausnitzii and Blautia
(Fig. 1). Metacommunity B was predominated by E. coli and
had the least diverse community profile (Mann–Whitney U-test;
mean q¼ 1.5� 10� 4; Supplementary Fig. 1). Metacommunity C
differed by high intra-cluster variability due to inconsistent
appearances of taxa (Supplementary Fig. 1). Metacommunity D
was overrepresented by members of the Firmicutes with
Bacteroides being equally abundant. Of all the metacommunity
compositions examined, metacommunity E was particularly
interesting in that Fusobacterium as well as some other Firmicutes
associated with periodontal diseases were enriched. Indeed,
metacommunity E had significantly higher levels of oral and/or
potentially pathogenic taxa sharing nearly identical sequences
with the reference 16S rRNA genes from the Human Oral
Microbiome (Mann–Whitney U-test; mean q¼ 1.1� 10� 3;
Supplementary Data 4) and the PATRIC bacterial pathogen
databases (Mann–Whitney U-test; mean q¼ 8.4� 10� 3;
Supplementary Data 4). Metacommunities C and E were strongly
associated with adenomas and carcinomas (Fisher’s exact test;
qo1.0� 10� 5), respectively. In total, 40% of adenomas were
classified as metacommunity C whereas 48% of carcinomas were
classified as metacommunity E. Metacommunities A and D
together represented 59% of the normal controls.

To validate the consistent enrichments of metacommunities in
independent cohorts, we analysed the publicly available data sets
of similar experimental design7,20. By training logistic regression
models with LASSO penalization21 on relative abundance profiles
in our discovery cohort that was previously subjected to DMM
partitioning, we classified these independent samples into
the metacommunities ‘A–E’. Fisher’s exact tests showed
that the enrichment of metacommunity E and depletion of
metacommunity D in carcinomas are significant and consistent in
both studies (Fisher’s exact test; qo0.005 for both data sets;
Supplementary Data 5). For metacommunity markers, we fitted
multiple linear regression models to their fold changes in
carcinoma relative to corresponding carcinoma-adjacent
mucosa and demonstrated statistically significant agreements
between our discovery cohort and the two studies (Fig. 2a,b).
Furthermore, we performed real-time PCR amplification of
the most abundant 16S rRNA marker gene sequences of
representative bacterial phylotypes in an independent Chinese
cohort comprising 116 individuals (normal colon, n¼ 25;
adenoma-affected, n¼ 41; carcinoma-affected, n¼ 50; see
Supplementary Table 2 for overview of patient demographics)
and confirmed the consistent enrichments of these markers
(Fig. 2c).

Paired analysis of mucosal metacommunities. The availability
of paired samples allowed us to investigate how the microbiome
changed at colorectal lesions when compared with adjacent
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mucosae at different stages. Although the proportion of
discordant metacommunities between tumour and tumour-
adjacent mucosae were similar in adenoma (36%) and carcinoma
(39%) samples, we observed significant patterns of change in
community configurations specifically among cancerous mucosae
(Fig. 3a; Supplementary Data 6). Remarkably, the sampling of
metacommunity E at lesion-adjacent mucosae was almost always
accompanied by sampling of the same metacommunity at lesions
(92%). The discordances in metacommunity D were mainly
explained by the sampling of metacommunity E at lesions relative
to lesion-adjacent tissues (69%) (Fig. 3b; see Supplementary Fig. 3
for metacommunity pairs across individuals). Using paired Wil-
coxon’s signed-rank test, we found no statistical differences in
inverse Simpson’s diversity index (ISDI) between lesion-adjacent
mucosae and lesions (P¼ 0.804 in adenoma group; P¼ 0.158 in
carcinoma group). Nevertheless, there was a significant increase
in diversity within carcinomas as compared with adenomas
(false discovery rate (FDR)¼ 0.0386).

Using all microbiome parameters described in Fig. 1, we tested
whether there were any differences among the subset of
individuals with concordant community types between lesions
and lesion-adjacent mucosae. Among the matched samples with
concordant metacommunity D, the relative abundance of taxa
that were classified to Human Oral Microbiome database was
moderately higher in lesions than lesion-adjacent tissues
(P¼ 0.0361; FDR¼ 0.239). This difference was also reflected as

an increase in ISDI for lesions (P¼ 0.0289; FDR¼ 0.239). By
contrast, among samples with matched metacommunity E, there
was a moderate decrease in diversity as well as increase in
dysbiosis indexes for lesions as compared with lesion-adjacent
tissues (ISDI: P¼ 0.0479, FDR¼ 0.239; MCPI: P¼ 0.0105,
FDR¼ 0.210). As for other metacommunities, no difference was
found between lesion and lesion-adjacent tissues.

To examine changes in bacterial markers across disease
stages, we calculated the fold change of each metacommunity
marker relative to lesion-adjacent mucosae. In early-stage CRC,
Fusobacterium, Parvimonas, Gemella and Leptotrichia were most
significantly enriched (Fig. 3c), which was accompanied by
significant losses of Bacteroides and Blautia, F. prausnitzii,
Sutterella, Collinsella aerofaciens and Alistipes putredinis. Neither
of these changes was significant in pathological stages of adenoma
as well as late-stage CRC (Fig. 3c).

Interactions of microbial taxa in disease states. We next
inferred all pairwise taxonomic correlations within and/or
between normal control, lesion and lesion-adjacent mucosae,
using the SparCC algorithm22. After iteratively correcting for
spurious correlation coefficients and controlling for false
discovery rates, we demonstrated that the distribution of
taxonomic correlations were significantly different across
disease stages (Fig. 4; Supplementary Fig. 4). Among taxa
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Figure 1 | Characterization of 16S rRNA gene catalogue for mucosal microbial communities in colorectal carcinogenesis. Fitting microbiome data to

DMMmodels defined five metacommunities. Reads that are considered as being potentially originated from oral strains or known pathogenic strains in the

human gut were classified against the 16S rRNA gene collections from the Human Oral Microbiome (HOM; version 13) database and PATRIC bacterial
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colonizing the normal control mucosae, we found the highest
number of significant positive correlations with strengths of 0.5 or
above (mean qo0.01; Fig. 4a). Interestingly, trans-phylum
relationships with strengths of 0.5 or above were less common
in disease states than normal colonic mucosae (Fig. 4b,c; see
Supplementary Data 7 for the complete list of correlation
coefficients with FDRo0.05). Members of the Firmicutes were
more likely to form strong co-occurring relationships with one
another in normal colonic mucosae than lesions and lesion-
adjacent samples. These results indicate that members of the gut
microbiota can form niche-specific relationships, which may be a
response to an altered colonic mucosal microenvironment or
could be one of the reasons for the disease state.

Our network analysis identified significant interactions among
several prominent taxonomic members (Fig. 4; Supplementary
Data 7). For example, Parvimonas and Peptostreptococcus,
which are members of the oral microbiota, formed one of the
strongest positive relationships exclusively within carcinoma
and carcinoma-adjacent mucosae. Although Fusobacterium was
positively related to the oral members of the Firmicutes, the
strengths were relatively weak. Nevertheless, the occurrence of
Fusobacterium was specific to carcinomas as indicated by
relatively weak correlation between carcinoma-adjacent mucosae
and carcinomas. This was in contrast to the occurrences of
Parvimonas and Peptostreptococcus, which showed strong corre-
lations between carcinoma-adjacent mucosae and carcinomas
(Fig. 4c). We also identified several negative relationships of

Fusobacterium with other taxa, including Subdoligranulum
variabile, F. prausnitzii, Blautia, Clostridium clostridioforme,
and Sutterella within and between carcinomas and carcinoma-
adjacent mucosae. Among members of the gut commensals, the
positive relationship between F. prausnitzii and Blautia was
among the strongest of the Firmicutes in normal control and
paired cancerous mucosae. Despite a weaker positive association
within and between paired adenoma samples, F. prausnitzii
exhibited a progressively stronger positive association with
members of the Ruminococcaceae toward carcinogenesis.
Conversely, the co-occurrence of Blautia and Bacteroides was
remarkably stronger in normal mucosae but weakened with
tumour development. Though E. coli and members of the
Enterobacteriaceae were among the most abundant in paired
adenoma samples, their co-occurrence relationship was weaker in
paired carcinomas. Besides, Pseudomonas veronii correlated
positively with low-abundance taxa such as Massilia,
Pedobacter cryoconitis, and members of the Sphingomonadaceae
and Erythrobacteraceae, and negatively with Bacteroides,
F. prausnitzii and members of the Lachnospiraceae.

To validate our correlation analyses in independent cohorts, we
performed Fisher’s exact tests on the total number of significant
positive and negative taxonomic relationships that had false
discovery rates of 0.25 or less between two studies in comparison.
The directions of taxonomic correlations were significantly
concordant between our discovery cohort and the two studies
(Po1.0� 10� 35 for both Kostic et al.7 and Zeller et al.20 data
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sets). We also subjected the concordant taxonomic relationships
to multiple linear regression analysis to show that the strengths of
correlations are significantly supported by the two studies
(Supplementary Fig. 5).

Discussion
Inter-individual variations in tumour-associated mucosal micro-
biome have posed a long-standing challenge for deciphering
microbial signatures implicated in colorectal tumorigenesis. In
this study, we demonstrate that as colorectal neoplasm progresses
along the adenoma-carcinoma sequence, mucosal microbial
communities can establish micro-ecosystems of their own, giving
rise to metacommunities of specific structure with functional

features that can be predicted (Supplementary Figs 6–8).
Although a myriad of factors, such as lifestyle and dietary habits,
could contribute to CRC, our systematic analysis highlighted the
importance of microbial consortia as a potential player in
colorectal tumour development. In this regard, the rediscovery
of CRC-specific enrichment of Fusobacterium7–9 and B. fragilis23

and the identification of novel CRC-associated candidates, such
as Gemella, Peptostreptococcus and Parvimonas, expands the
current scope of bacterial involvement in CRC development.
In particular, Gemella, Peptostreptococcus and Parvimonas
along with other microbes of oral origin formed a strong
symbiotic network, which characterized the CRC-associated
metacommunity E. Future studies on their potential oncogenic
functions using murine models of CRC will delineate whether

c

a

Metacommunity: A B C D E

0

25

50

75

100

C
ha

ng
e

N
o 

ch
an

ge

Adenoma Carcinoma

C
ha

ng
e

N
o 

ch
an

ge

P
e

rc
e

n
ta

g
e

 o
f 
m

e
ta

c
o

m
m

u
n

it
ie

s

P = 2.0 × 10
–4 

P = 0.719 

ECRC

LCRC

HGDP

LGDP

Lesion
Lesion

adjacent

> 30%
> 10%
≤ 10%

Percentage of changeb

E

A

B

D

C

Colorectal polyps

(high−grade dysplasia)

Early CRC

(Stage I − II)

Late CRC

(Stage III − IV)

Colorectal polyps

(low-grade dysplasia)

G
a
in

L
o
s
s

 M
e
a
n
 o

f 
lo

g
2
 f
o
ld

 c
h
a
n
g
e

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

GainLoss

 Mean of log
2 fold change

1. Faecalibacterium prausnitzii 

2. Blautia

9. Sutterella 

13. Collinsella aerofaciens

17. Alistipes putredinis

D

2. Enterobacteriaceae B

1. Bacteroides

3. Parabacteroides distasonis

1. Pseudomonas veronii C

1. Fusobacterium

2. Parvimonas

6. Gemella

7. Leptotrichia

E

q < 0.05

q < 0.1

q < 0.25

q ≥ 0.25

A

D

B

C

E

A

7
1

6

7

2

13

1

2 2

1

1 2
3

2

1

1 2 21713 9
3

2

2
1

7

6

21713 9
3

2

2
1

11

7

6

3
13

1

1

9
13
17
2

9
13
17
2

6

7
1

6

9
13 11

2

2

7
1

6

9
13 11

2

2

Figure 3 | Community-wide alterations of microbiome profiles are important aspects of multistage colorectal tumour progression. (a) Discordance of

taxonomic configurations between lesions and lesion-adjacent tissues was significantly associated with the metacommunities identified within carcinoma.

Shown are mean P values from 1,000 iterations of Fisher’s exact tests with Monte Carlo simulation (10,000 replicates). (b) Percentages of change between

metacommunities from lesion-adjacent mucosae to lesions within each clinicopathologic stage of tumours. LGDP, colorectal polyps with low-grade

dysplasia (n¼ 39); HGDP, colorectal polyps with high-grade dysplasia (n¼ 13); ECRC, early-stage CRC (n¼ 26); LCRC, late-stage CRC (n¼ 26).

(c) Significances of fold change in metacommunity markers, as estimated by paired Mann–Whitney U-tests, were greatest at early-stage CRC.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9727 ARTICLE

NATURE COMMUNICATIONS | 6:8727 | DOI: 10.1038/ncomms9727 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


these candidates are drivers or passengers in colorectal
tumorigenesis.

A unique feature of our experimental design is the sampling of
mucosa near the site of a lesion at distinct stages of colorectal
neoplasia. With this approach in mind, we have illustrated
patterns of discordances in metacommunities between lesions
and lesion-adjacent mucosae (Fig. 3b). A novel aspect of CRC
pathogenesis that has been recently described is the association of
biofilm-forming bacterial communities and their capacity to
modulate cancer metabolism24–26. Thus, sub-networks of co-
occurring and co-excluding microbes at and around neoplastic
sites may reflect disease-specific colonic microenvironment
(Fig. 4). In particular, we have identified co-exclusive
relationships between members of Proteobacteria and
Firmicutes in adenoma-adjacent samples. Such changes
persisted in carcinoma-adjacent samples, implying that a
substantial degree of dysbiosis may have already occurred in
the greater colonic environment in tumour-bearing colons. This

has a major implication as many gut microbiome studies were
based on stool samples, which may reflect the disease state but
possibly not the tumour microenvironment.

Our study identified alterations of taxonomic relationships at
trans-phylum levels in tumours and tumour-adjacent mucosae.
These could be a response to altered host cellular processes, such
as energy metabolism and inflammation, at tumour niches. For
example, dietary carbohydrate can promote intestinal epithelial
cell proliferation4 and has been associated with incidences of
CRC27,28. Inflammation or colitis-associated niche may also
favour the growth of specific bacterial populations that could
elicit oncogenesis29–32. In adenomatous lesions, the enrichments
of E. coli and P. veronii are intriguing, raising the possibility of
bacteria-triggered mutagenesis (see Supplementary Data 8 for
detection of pks genomic islands for E. coli) as well as host-
microbiome lateral gene transfer33,34, both of which may drive
transformation of otherwise benign colonocytes by influencing
genomic stability. Similarly, predicted enrichments in functional
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Figure 4 | Microbial community ecology at mucosal interface are different across stages of colorectal carcinogenesis. (a–c) Correlation network of

taxonomic partners in: (a) normal (n¼61), (b) adenomatous polyps (n¼ 52) and (c) cancerous mucosae (n¼ 52). Correlation coefficients were estimated

and corrected for compositional effects using the SparCC algorithm. A subset of correlations with strengths of at least 0.3 was selected for visualization.

Node size represents mean taxon abundance in each mucosal phenotype; metacommunity markers are denoted by node numbers accordingly. Taxa that

are classified as members of the same bacterial phylum are encircled by dashed lines.
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potentials for xenobiotics metabolism35, utilization of
polyamines36, and degradation of polycyclic aromatic
compounds37 in metacommunities C and E (Supplementary
Fig. 6) may suggest an increased susceptibility of colonocytes
for pro-tumorigenic bacterial metabolites. Furthermore, the
association of bacterial peptidoglycan biosynthesis pathways
with metacommunity E (Supplementary Fig. 6) may modulate
local inflammation in evolving neoplasms38 by enhancing
intestinal cell permeability30, which may allow for a vicious
cycle of tumour-potentiating activities of co-occurring invasive
bacterial species. However, given the hypothetical nature and
potential database biases in metagenome imputation, it remains
to be determined whether or how such functional traits of
gut microbial communities affect host cells during colon
tumorigenesis.

An important issue that could not be directly addressed
by our study is the identification of adenoma-associated
metacommunities that are predictive of cancer progression.
On the other hand, we have identified bacterial operational
taxonomic units (OTUs) with progressively increasing abun-
dance, such as B. fragilis and Granulicatella (Supplementary
Fig. 9), in the adenoma-carcinoma sequence. B. fragilis is known
to induce signal transducer and activator of transcription 3 and
Th17-dependent pathway in colitis-associated CRC (see
Supplementary Data 8 for detection of bft genes from
enterotoxigenic B. fragilis)37 whereas the abundance of
Granulicatella adiacens in saliva is associated with chronic
pancreatitis and pancreatic cancer39. These bacterial candidates
will require functional validations to assess their prognostic values
for tumour recurrence in polypectomized adenoma patients in
future prospective studies. Another limitation of our study is that
mucosa-associated microbiota could be altered by bowel
cleansing preparation and reagents40. However, this is inevitable
given the necessary procedure for sample acquisition.

Our study marks an additional step towards defining mucosal
community configurations in colorectal tumorigenesis. Perhaps
the most practically challenging step is the temporal association
of metacommunities with pre-onset monitoring and post-
manifestation follow-up of diseases. Future genomic analyses
interrogating the cross-talk between subtypes of immune cell
populations, host cell epigenomes and microbial consortia will be
essential to define the multifaceted roles of gut microbiome in
human health and diseases.

Methods
Patient recruitment and informed consent. We enroled individuals who had
undergone standardized colonoscopic examinations at the Prince of Wales
Hospital of the Chinese University of Hong Kong and the First Affiliated Hospital
of Sun Yat-Sen University in Guangzhou between March 2011 and January 2014.
Mucosal biopsies were obtained from a total of 160 individuals with tumour-free
colon (n¼ 61), with confirmed histology of colorectal polyps (n¼ 47), or with
invasive adenocarcinomas (n¼ 52). We also recruited an independent cohort of
116 individuals of which 25 subjects had normal colons, 41 subjects had colorectal
adenomas, and 50 subjects were diagnosed with CRC, from the Beijing Military
General Hospital. Written informed consents were obtained from subjects or their
authorized representatives. Samples originating from Hong Kong were collected as
part of a screening cohort, which has been previously described41–43. Eligibility
criteria for colonoscopy included: (1) age 50–70 years; (2) absence of existing or
previous CRC symptoms, such as haematochezia, tarry stool, change in bowel habit
in the past 4 weeks, or a weight loss of 45 kg in the past 6 months and (3) not
having received any CRC screening tests in the past 5 years. Samples originating
from Chinese populations in Guangzhou and Beijing were collected through
routine colonoscopy services for conventional indications, including (1) CRC
symptoms such as haematochezia, tarry stool, change in bowel habit or weight loss;
(2) positive faecal occult blood; (3) abnormal imaging such as barium enema,
computed tomography, magnetic resonance imaging or positron emission
tomography. The exclusion criteria for colonoscopy included: (1) personal history
of CRC, inflammatory bowel disease, prosthetic heart valve or vascular graft
surgery and (2) the presence of medical disorders, which were contraindications
for colonoscopy.

Polyethylene glycol powders (Klean-Prep, Helsinn Birex Pharmaceuticals,
Ireland) were mixed with 4 l of cathartic suspension for use as standard bowel
preparation regime among all participants. Air insufflation was used for all
procedures, which were performed by experienced colonoscopists in the endoscopy
centres of each hospital in this study; we strictly aimed for caecal intubation and a
withdrawal time of more than 6min according to the current quality indicators for
colonoscopy. Multiple mucosal biopsies were taken from each colorectal tumour
with the greatest dimension of at least 0.5 cm and subsequently evaluated by H&E
staining at the pathology suite. Biopsies were snap-frozen in cryovial immediately
after polypectomy and stored at –80 �C until DNA extraction. Adjacent normal
tissues were taken at least 4 cm away from lesions. Colorectal mucosae were
obtained using cold biopsy forceps separately for lesions and lesions-adjacent
tissues to avoid cross-contamination between samples. The histopathology reports
were made according to the checklist recommended by the College of American
Pathologists (3.1.0.0). Control biopsy samples were provided by individuals who
had no lesion detected during colonoscopy. Although the biopsies originated in
various anatomical regions throughout the caecum, colon and rectum, we observed
no significant biogeographical bias in metacommunities sampled (Supplementary
Data 1). Any nucleic acid or remaining biopsy samples from participants who
withdrew consent after endoscopic examinations were destroyed. As enroled
subjects had highly stratified medical records, we tested whether the observed
inter-individual differences in mucosal microbiome profiles were due to potentially
confounding effects of subject demographics and laboratory-proven clinical
diagnoses (Supplementary Fig. 10; Supplementary Data 1,9 and 10). The study
conformed to the ethical principles outlined by the Declaration of Helsinki and was
approved by the Institutional Review Boards of the Chinese University of Hong
Kong, the Sun Yat-Sen University and the Beijing Military General Hospital.

Preparation of DNA amplicon library. For optimal isolation of bacterial DNA44,
mucosal biopsies were disrupted by bead-beating on digestion in enzymatic
cocktail of mutanolysin and lysozyme (Sigma) before extraction and purification by
QIAamp DNA Mini Kit, and quantification by Agilent 2100 Bioanalyzer. Amplicon
library for unidirectional sequencing (Lib-L) on the 454 GS FLXþ Titanium
platform was constructed using fusion primers ligated by Roche adaptor sequences,
Multiplex Identifier (MID) tags, library keys, and template-specific sequences
(27F-800R) targeted across the hypervariable regions 1–4 of 16S rRNA genes.
DNA library was subsequently purified (AMPure XP), quantified (Quant-iT
PicoGreen dsDNA Assay Kit), and subjected to quality control by cleanup of
short amplicon fragments according to manufacturer’s instructions.

Sequence curation pipeline. Quality control of sequencing read was implemented
as described in mothur software suite16. Flowgrams were pre-processed by
retaining all that had fewer than two mismatches and one or zero mismatch to the
primer and barcode, respectively, and trimmed to 1,050 flows before the removal of
pyrosequencing noise using the PyroNoise algorithm45. The de-noised reads were
demultiplexed by removing sample-specific barcodes, further processed by
removing any that had homopolymers longer than 10 nucleotide bases and/or had
an ambiguous base call, and aligned against the non-redundant SILVA database
(version 119) using the NAST algorithm46. Any sequence that failed to align with
the V1-4 region as predicted by the primer set was discarded; the remaining
sequences were trimmed to the same alignment coordinates over which they fully
overlapped, clustered with more abundant sequences by a maximum difference of
five nucleotide bases17, and detected for the presence of chimeras by de novo
UChime47. The resulting sequences were classified against the Greengenes database
(version 13.8) and annotated with deepest level taxa represented by pseudo-
bootstrap confidence scores of at least 80% averaged over 1,000 iterations of the
naive Bayesian classifier48. Any sequences that were classified as either being
originated from eukarya, archaea, mitochondria, chloroplasts or unknown
kingdoms, were removed. The annotated sequences were assigned to phylotypes
according to their consensus taxonomy with which at least 80% of the sequences
agreed (see Supplementary Fig. 11 for taxonomic breakdown at class level). The
final sequence count table contained 8,197±4,471 (mean±s.d.) reads per sample
with a minimum and maximum read length of 450 and 623 nucleotide bases, and
was rarefied at 1,000 reads per sample to reduce the effects of variable sequencing
depths on downstream analyses (Supplementary Fig. 12).

Determination of optimal microbial community clusters. Effects of binning rare
phylotypes by their total relative abundance in the rarefied data set containing 592
taxa were assessed to determine whether two general methods agreed over a certain
range of rarity thresholds in detecting optimal numbers of cluster: PAM49 and
DMM modelling18. Procrustes analysis of truncated data sets, which were
generated by applying rarity cutoffs of up to 10%, consistently demonstrated
minimal cutoff-by-cutoff variations to the results of the non-metric
multidimensional scaling: R¼ 0.994±0.005 (mean±s.d.)50. When changing rarity
definitions between 0–1% for model fitting, the total number of reads per sample
were preserved by grouping rare phylotypes. At around 0.1% rarity cutoff, we
observed that a core list of 99 taxa were sufficient to detect the most comprehensive
number of microbial community clusters as identified by both Calinski–Harabasz
index and the Laplace approximation to the model evidence. When changing rarity
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definitions above 0.1% at increments, the robustness of PAM-based approach
varied in contrast to DMM-based approach (Supplementary Fig. 1a).

Prediction of metabolic potentials. Sequences from post-quality control were
assembled into reference-free OTUs at 3% distance using the average neighbour
algorithm as implemented within mothur16 (see Supplementary Fig. 13 for number
of shared OTUs between disease states). Consensus taxonomy with a confidence
score of at least 80% was generated for each OTU and the OTU count table was
picked against the Greengenes reference OTU identifiers (version 13.5) for use in
the two-step functional inference pipeline PICRUSt (ref. 51). The PICRUSt uses
precomputed gene copy numbers for KEGG Orthologous families based on
finished bacterial genomes available in the Integrated Microbial Genome database
to predict the gene family content for all microorganisms represented by the
16S-based Greengenes phylogeny, including OTUs with unknown gene content for
which previously sequenced evolutionary relatives are available. The input OTU
table was normalized by the predicted 16S rRNA gene copy numbers to estimate
the true organismal abundances before the multiplication of the pre-calculated set
of gene family counts for each taxon by the abundance of that OTU. The resulting
metagenomic copy number table consisted of 6,909 KEGG Orthologous entries and
served as input data in the HUMAnN pipeline that outputs the relative abundances
of known microbial metabolic modules and pathways as defined by KEGG for each
sample based on the user-provided table of gene family counts52. A total of 118 and
169 KEGG functional modules and pathways, respectively, were derived from the
predicted metagenomic data. See Supplementary Figs 6–8 and Supplementary
Data 11 and 12 for results of differential abundance analyses on gene families using
the LEfSe algorithm.

Correlation network inferred by phylogenetic marker genes. The rarefied data
set containing 99 phylotypes, which were previously selected for the detection
of microbial community clusters through DMM modelling, was subjected to
compositionality data analysis using the SparCC algorithm, which is known for its
robustness to the compositional effects that are influenced by the diversity and
sparsity of correlation in human microbiome data sets22. Taxon–taxon correlation
coefficients were estimated as the average of 20 inference iterations refined by 100
exclusion iterations with the default strength threshold. A total of 10,000 simulated
data sets were generated to calculate the corresponding empirical P values. This set
of iterative procedures were applied separately to normal control, adenoma and
carcinoma data sets to infer the basis correlation values within and/or between
paired sampling sites. Correlation coefficients with magnitude of 0.3 or above were
selected for visualization in Cytoscape (version 3.1.1).

Definition of microbial community polarization index. Inspired by how one’s
microbiome profile can be summarized by the Microbial Dysbiosis index (MDI) as
an important indicator of disease53, we designed a composite index of the MDI to
describe how the level of microbial diversity is associated with colonic tumour
burden. We calculated the fold change for each representative taxon from a
community cluster by dividing the mean abundance in paired samples by that of
normal controls and required a marker taxon to have a minimum fold change of
1.5 to be selected as an elemental variable of the MDI. We intended to define the
MCPI as a measure of overall dysbiotic shifts that were more characteristic of
adenoma over carcinoma, or vice versa (Fig. 1a, top upper panel; Supplementary
Fig. 2). The MCPI of sample j was computed as follows:

MCPIj ¼ log10

P

i2C TIij
� �

P

i2C0 TIij
� �
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i2A TDij

� �
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i2A0 TDij

� �
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i2C TDij

� �
P

i2C0 TDij

� �
P
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P
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� � þ 1

� �

; ð1Þ

where TIij (or TDij) is the abundance of a marker taxon i increased (or decreased)
in either case of carcinoma, carcinoma-adjacent, adenoma or adenoma-adjacent,
which are denoted by C, C0 , A and A0 , respectively.

Details of statistical methods. Differential abundance analyses were performed
using the LEfSe algorithm to identify significant gene markers that consistently
differentiated at least one (or multiple) feature(s) in comparison with the others54.
The biomarker relevance was ranked according to bootstrapped (n¼ 30)
logarithmic linear discriminant analysis scores of at least 2. Using the R
implementation of Random Forests tenfold cross-validations with 100 iterations19,
we selected a minimum set of bacterial taxa that maximally discriminated against
each mucosal phenotype; the variable importance of a microbial taxon was
determined by 100 iterations of the algorithm with 3,000 trees and the default mtry
of p1/2, where p is the number of input phylotypes. To evaluate the performance of
markers that typify metacommunities against those that are selected by supervised
classification on mucosal phenotypes; we constructed LASSO logistic regression
models with tenfold repeated internal cross-validations to mitigate the risks of
over-fitting train-sets when predicting each test-set55,56. The data set was
partitioned in such a way that each sample was selected exactly once by test-sets for
which the prediction scores were generated for use with receiver operating
characteristic analysis (Supplementary Fig. 2). Similarly, we subjected our
discovery cohort data set to LASSO model training for five-way prediction of
metacommunities in independent cohorts (Supplementary Data 5). Furthermore,

we performed Kolmogorov–Smirnov tests to assess whether the observed
differences in taxonomic relationships are statistically significant between disease
states (Supplementary Fig. 4). For associations with categorical and continuous
clinical metadata, and confounding factor analyses of microbiome metrics and
relative abundance data of metacommunity markers, we applied Fisher’s exact
tests, Mann–Whitney U-tests, and multinomial logistic regression models, where
appropriate. Statistical significances of multiple comparisons were corrected by
Benjamini–Hochberg step-up procedure.
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