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The variational approach initiated by Gutzwiller is extended to include antiferromagne
tism. A simplified assumption corresponding to that adopted by him is used in order to 
evaluate the ground state energy of the Hubbard model and to draw the phase diagram 
similar to those constructed by Penn on the basis of the Hartree-Fock approximation. ·It is 
found that the antiferromagnetic state in the phase diagram is restricted to a narrow region 
bounded by threshold values for both the coupling constant and electron density. For 
sufficiently large intraatomic repulsion paramagnetic state becomes more stable than anti
ferromagnetic state except for the case of one electron per site. The. phase transition be
tween paramagnetic and antiferromagnetic states is of first order and the coexistence of 
these two states with different density occurs. 

§I. Introduction 

Electron correlation in narrow energy bands is one of the most important 
problem in solid state physics. It is closely connected with the origin of mag
netism in solids and it also plays an essntial role m the distinction between 
metals and insulators.1l 

Single band Hubbard modeFl studied in this paper IS the simplest model to 
treat this problem. It may be an over-simplified one because of the short range 
of the interaction, non-degeneracy and the s-character of the band and neglection 
of the other freedoms. Nevertheless, it includes ideal metals as the weak coupl
ing limit and Heisenberg model of magnetism ·in insulators as the strong coupl
ing limit, and it has possibility of clarifying· the interconnection between these 
two limiting cases. It is important to search for reliable treatment of this model 
since more complicated realistic models are difficult to be treated satisfactorily 
without understanding a simple model. One of the promising methods to treat 
electron correlation arising from repulsive interaction is the variational approach 
due to Gutzwiller.3l It enables us to interpolate between the weak and strong 
coupling limits in the approximation higher than the Hartree-Fock approximation. 

The purpose of this paper is to extend Gutzwiller's method to include anti
ferromagnetism and to draw a ground state phase diagram as the functions of 
the electron number and a coupling constant within the framework of the single 

*> This work was partly done while one of the authors (T.O.) was visiting the Institute for 
Solid State Physics, University of Tokyo. 
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Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 615 

band Hubbard model in an approximation higher than the Hartree-Fock approxi

mation adopted by Penn in the same problem.4l 

Section 2 is devoted to the reformulation of the Gutzwiller approximation 

and review of the main results obtained by this method. The reformulated 

method is extended so as to include antiferromagnetism in § 3 and results of the 

numerical calculation for actual variation procedure are given in § 4. Some 

problems with relation to the present approximation and the validity of the results 

are discussed in § 5. In the Appendix, the special case of one electron per site 

is considered to elucidate the mathematical structure of the wesent approximation. 

§ 2. Reformulation of Gutzwiller approximation 

In this section, the Gutzwiller approximation for a single band Hubbard 

model is reformulated in a rather different form from the original one. We 

consider a system with the single band Hubbard Hamiltonian given by 

(2·1) 

where a;+ (b; +) and a; (b1) are respectively creation and annihilation operators 

of an electron in W annier state with up (down) spin on a crystalline lattice 

site i locating at R 1• {i} consist of a set of sites ..[ whose number of elements 

is L. e;1 is assumed to be a function of JR;-R 1 j only and hence the first term 

of (2 ·1) can be diagonalized by a set of the Bloch function with a spectrum 

ep=L-1 L:;1 e;1 exp[ip(R;-R1)]. Sometimes we call electrons with up spin a

electrons and with down spin b-electrons for convenience. 

We adopt the site state representation in which 4L bases are chosen to de

scribe the possible, configurations of the system: Each site can take four states. 

They are (1) doubly occupied, (2) only a-electron occupied, '(3) only b-electron 

occupied and (4) empty states. In order to pick up th.ese four states, four kinds 

of projection· OJYerators are introdu,ced: 

D=L: D1 , 
i 

A= I: A 1 , 
i 

E=L: E1 • 
i 

These projection operators have the following properties: 

P";PI'1 =PI'1P";, 
4 

I: P"1=1 . 
.t~l 

(,t, !f.= 1, 2, 3, 4) 

It turns out convenient to define the following operators: 

(2·2) 

(2·3) 
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616 T. Ogawa, K. Kanda and T. Matsubara 

M=L; M,, 
i 

N=L;N,, 
i 

(2·4) 

M(N) is the number operator of a(b)-electron. Now let us define the Gutzwiller 
operators for a site and the whole system by 

Gi(g) =gDi+A,+Bi+Ei=g1'', 

G (g) =II Gi (g) = gD ' 
i 

(2·5) 

(2·6) 

where g is the Gutzwiller parameter taking a non-negative value. The Gutzwiller 
operators satisfy the following relations: 

Gi (g) G, (g) = G, (g) Gi (g), 

[G(g) ]n=G(gn) • 

(2·7) 

(2·8) 

In the second quantized form, a single Slater determi:n,ant state Is generally ex
pressed as 

J(bo)= II ap +II ,8/JO), (2·9) 
pEP q£Q 

where I 0) is the vacuum state and aP + (,8q +) are creation operators defined by 
the use of some complete set of the single-particle wave function ~P (R) (r;q (R)) 
such as 

(2 ·10) 

fP(Q) is a certain set of quantum number p(q) representing the occupied states. 
In the Gutzwiller variation, a trial function is chosen as 

(2 ·11) 

and two steps of variation procedure are taken: One is related with the best 
choice of a set of the single-particle wave functions {g:p(R)}, {r;q(R)}, 9! and Q. 
The second is to minimize the energy with respect to g. It should be noted 
that Gutzwiller variation includes the Hartree-Fock approximation because the 
trial functions of the latter belong to those of the former as a special case of 
g = 1. Therefore the Gutzwiller variation does not give a ground state energy 
larger than the Hartree-Fock approximation: 

(2·12) 
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Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 617 

It is shown that this variation leads to the exact ground state for a two-site 
Hubbard model. 

In order to facilitate. the evaluation of Eu, we first summarize the relations 
useful for evaluating the expectation values which appear in Eq. (2 ·12). Let 
l(]ia) and l(]ib) be defined respectively by 

l(]ia)=IlaP+IO), l(]ib)=Il,8q+IO), 
pr>P qrQ 

and introduce the following functions: 

U (ij) = ((]ialai +a,l(]ia) =I: ~P * (Ri) ~P (R,), 
pr>P 

v(ij) =((]iblbi+b1 l(]ib)= I: 1J/(Ri)1Jq(R1). 
qrQ 

Then it IS not hard to show that 

when v (c511) = v (P), 

when v (c511) ~v (P), 

(2·13) 

(2·14) 

(2·15) 

where ,51{ is a set of sites occupied by a-electrons, and ,51{ and 3t are comple
mentary in the sense that 

v (3t) is the number of elements of the set ,51{, and v (P) is the number of 
states occupied in the configuration I (]i a). U .:M is a LX L matrix whose (ij) 
element is 

Similarly we can prove that 

when iEc511 , 

when iE3i. 

h iE.3fl, jf,5J{ , 

w en v(c511)=v(P), 

(2 ·16) 

otherwise , (2 ·17) 

where u;;.j) is a (L -1) X (L -1) matrix derived from u .:At by first exchanging 
the i-th column with the j-th column in U .:M and then by removing the j-th row 
and the j-th column to produce a (L -1) X (L -1) matrix. 

The corresponding relations hold for b-electron system if we make appro
priate change of notations: 

u (ij) ~v (ij), v(P) ~v(Q). (2 ·18) 

It should be noted that the state I (]i0) defined by (2 · 9) is a direct product of 
l(]ia) and l(]ib) and therefore the expectation values in which both electrons concern 
.can be expressed as a product of two determinants. For instance, 
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618 T. Ogawa, K. Kanda and T. Matsubara 

<mol II Mi II M, II Nk II lVzJ(llo) =det u.:M det V:n. (2·19) 
iE.5K }t:!fl. k£'YJ. l£Yi. 

The expectation values of energy with respect to the trial state (2 ·11) are 
expressed by the use of the computation rules given above. First we consider 
the normalization factor which is written as 

(2·20) 

.!]) is a set of sites which are doubly occupied and Jl, fB, e have similar 
meaning. Hereafter we abbreviate the number of elements in a set as M = v (.5Yt), 
N = v ('Jl) and so on. Then among 4L terms in (2 · 20) only 

T- L! L! 
o-M!(L-M)! N!(L-N)! 

(2. 21) 

terms have non-zero contribution for given M and N. Each non~zero contribution 
has the same form as (2 ·19), where 

.5Ji=!l)uJl, 

.5Ji=fBue, 

'Jl=!J)ufB, 

'JZ=Jlue.' 

Therefore the normalization factor can be written as 

<(/)o/G(g2) J(llo)= :E L;Dg2D det u.:M det V:n. 
D (.:M, :Jl) 

(2·22} 

(2·23) 

In this expression :Lf.3tf, :n> is the sum over all the possible configurations of (.5J1, 'Jl} 
such that .5Yt and 'Jl have common D sites. 

Now we turn to the expectatio)l value of the kinetic energy. It is enough 
to consider a-electron system, because the result for b-electron system is easily 
derived from that of a-electron by suitable change of notation. First we observe 
an identity 

Gt (g) G1 (g)at +a1Gt (g) G1 (g) =at +a, (btbt + + gb/bt) (b1b1 + + gb1 +b1). 

In virtue of this relation 

<(/)o/G (g) at +a1G (g) /.@o) 

=<(/)o/at+a,(btbt++gbt+bt) (bJbJ++gbJ+bJ) II Gk(g2) J(llo) 
k"'ei, J 

(2 ·24) 

(2·25) 

which can be expressed as a sum of products, each consisting of two factors, 
one with the form similar to (2 ·17) and the other similar to (2 ·16) . Thus we 
have 
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Gutzwiller Approximation for A.nti.{erromagnetism J.n Hubbard Model 619 

sum 

2J<'> 

2J<'> 

2J<'> 

,L;<'> 

Table I. 

i-th site 
1-

j-th site total number of terms 

empty a-electron (L-2)!/D!(A-1)! B!(E-1)! 

empty a- and b-electron (L-2) !/ D! (A-1)! (B-1)! E! 

b-electron a-electron (L-2) !/ D! (A -1)! (B-1)! E! 

b-electron a- and b-electron (L-2) !/D! (A -1)! (B-2)! (E+ 1)! 

+ :E(2) g 2D+l det U~j) det v71 + :E(a) g2D+l det u~j) det v :7Z 

5!!:1l 5!!:1l 

+ :E(4) g2D+Z det U~j) det V :n], 
5!f:IZ 

(2·26) 

, where summation over (.5!1, 'Yl) is, extended to all the possible configurations of 

L sites except for the i-th and the j-th sites such that ,.5!{ and 'J1 have common 

D sites doubly occupied. The restriction imposed on the i- and the j-th sites 

are different for each summation L:;<'l {s= 1, · --4). In Table I we summarize the 

configurations of the i- and the j-th sites and the total number of terms under 

each summation. The expectation value of the interaction energy U :Ei ai + aibi + bi 

can be obtained if we know <(/)0 IG(g)D,G(g) 1(!)0). It is not difficult to show that 

<(J)o!G(g)D;G(g) I(J)o)= :E :E(i) g2D+2 det u5!! det V:n' (2·27) 
D 5!!:1l 

where the summation over (.5!1, 'Yl) is the same as before with one exception 

that the i-th site is always kept as doubly occupied. The number of terms under_

summation is "therefore estimated as 

(L-1)!/D! (A-1)! (B-1)! (E + 1)!. 

The great difficulty in the estimation of the energy expectation values lies in the 

evaluation of the determinants det U 511 , det V :n etc. Th~se determinants generally 

depend on the structure of c~nfigurations in (.5!1, 'Yl), and this fact makes it hard 

to perform the summation over 311 and 'D?. To avoid this situation, Gutzwiller 

has introduced a simplifying assumption which is equivalent to neglecting the 

configuration dependence of all the determinants. To be more specific, consider 

det U 511 for example. If we could neglect' its dependence on 31{, det U :M should: 

be a function only of M, the number of a-electron on L sites. Thus we assume 

det u5!! =<(/)oiii M" II MMJo) 
kL.5Jt l(.!'A[ 

(2·28) 

where we have put 

(2·29) 

Similarly we assume 
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620 T. Ogawa, K. Kanda and T. Matsubara 

det v~::::::nN(1-n)L-N; 

det UJ~il::::::mM- 1 (1-m)~-M- 1 u(ij), 

det V~iJl:::::::nN- 1 (1- n)L-N-1v (ij) 

(2·30) 

with n defined by 

(2. 31) 

In this approximation, all the expressions for the expectation values of energy 
are much simplified, leading to the results 

=.I; g2D(L!jD! A! B! E!) [AE+2gAB+ g2AB(B-1) (E + 1)-1] 
D 

=.I; g2D(L!jD! A! B! E!) [BE+2gAB+ g2BA(A-1)(E+ 1)-1] 
D 

X mM (1-m) L-MnN-1 (1- nl-N-1L -l (L-1)-1 .I; C:tJ((l)olbt+btJ(l)o), 
ij 

((l)oJG(g) UDG(g) J(l)o) 

= U.L; g2D+2 (L!jD! A! B! E!)AB(E+1)-1mM(1-m/-MnN(1-n/-N. 
D . 

(2·32) 

Now we are interested only in the limit of an infinitely large system. (L~1). 
Then it is allowed to replace the sum over D by its largest term. For instance 
the normalization factor is given by one term 

where D is determined through a condition 

_1__ (g2D I D! A ! B! E !) = 0 
aD 

which, upon using the relations 

.turns out to give 

D+B=N, 

2_ D(L-M-N+D) 
g- (M-D) (N-D) 

d(1-2c+d) 

(m-d) (n-d) 

(2·34) 

(2·35) 

(2·36) 

with D / L = d and 2c = m + n. Perf~rming the similar procedure for all other 
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Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 621 

expressions, we arnve at the final result 

where 

ra= [v'(m-d)(1-2c+d) + v'(n-d)d]2/m(1-m), 

rb= [ v' (n-d) (1-2c+d) + v' (m-d)d]2/n(1-n). (2·38) 

In deriving the last expressions (2 · 37) and (2 · 38), use has been made of the 

relation (2 · 36) and all the quantities of the order 1/ L are ignored. y a and yb 

may be called the loss factor of the hopping energy·, because they express the 

enhancement of the hopping energy which compensates the gain of the interac

tion energy due to the reduction of doubly occupied states. The expression 

(2 · 37) is essentially the same as that obtained by Gutzwiller in his original 

paper. 

By making the expression (2·37) minimum, Gutzwiller derived a condition 

in which the energy of the saturated ferromagnetic state is lower than that of 

the paramagnetic state. Brinkman and Rice calculated the susceptibility for the 

case of one electron per atom (c = 1/2) and regarded the disappearance of the 

doubly occupied states as a metal-insulator transition."> Some discussion has 

been given for the case with band degeneracy.6> In spite of the general believ

ing that the ground state of this model is antiferromagnetic at least for suffici

ently large U, the extention of the Gutzwiller method to the antiferromagnetic 

case has not been performed so far until recently.7> In the following sections 

we extend the Gutzwiller approximation so as to include antiferromagnetism. 

§ 3. Extension of the Gutzwiller approximation for antiferromagnetism 

Hereafter we consider only the lattice which can be divided into two equiva

lent sublattices I and II in such a way that the nearest neighbours of a site on 

I always belong to II and vice versa. We shall not consider the case of ferri

magnetism explicitly for the sake of simplicity. 

In the antiferromagnetic phase, the single-particle wave function can be 

chosen as 

[ { e } 112 { e } 112] 
~p (R1) = (2L)-1f2 1- v' P + exp (iKR 1) 1 + v' P exp (ipR,), . ~+' ~+' 

[ { e } 112 { e } 112] 1Jp(R1) = (2L )-1!2 1- v' / 2 - exp (iKRi) 1 + v' / 2 exp (ipRi), 
ep + J . ep + J 

where K is a reciprocal lattice vector having property 

exp (iKRi) = lf 
1 

-1 

for id, 

for idi. 

(3·1) 

(3·2) 
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622 T. Oga-rca, K. Kanda and T. Matsubara 

The sets of single-particle wave functions {g:P (R)} and {1Jp (R)} are specified 
by one parameter J, and in the Hartree-Fock approximation J is det~rmined by 
an equation,8l 

(u :E. sign(ep) + 1)J = 0 
L pd' Vf/+'£12 , 

(3·3) 

which is derived from the variation with respect to J as will be seen later. 
The functions u(ij) (v (ij)) defined in (2 ·14) now become 

u(ij) _ 
(v(ij))-

If we call 

_!_ :E(1- sign
2
(ep) ~)exp[ip(R,-R 1 )]. 

L P•fl'. .Jep + J 

- L1 :E .j ;p £1 2 exp[ip(R, -R1)] 
p•fl' ep + 

_!_ :E (1 + sign (eP) ~) exp [ip (R,- R 1)] 
L P•fl' .Jep2+ £12 

for id, jd 
(idi, jdi), 

for id, jdi 

for 

or idi jd, 

idi, jdi 

(id, jd}. (3·4) 

(3·5) 

then r(w) may be interpreted as the site probability of the right (wrong) parti
cle which is either a(b)-electron on I(II) sublattice or b(a)-electron on I(II) 
.sublattice. 

The variation problem can be formulated through almost the. same argument 
as in § 2 even in the present case except that there is an additional freedom 
concerning the allotment of particles_ into two sublattices. The normalization 
factor for instance can be evaluated in the following way. We adopt the same 
approximation as stated in § 2. The configurations of the sublattice I are speci

fied by the number of sites in each four states, i,e., (D1A 1B 1E 1) and those of II 
by (D2A 2B 2E2). Since we are considering the antiferromagnetic case, we can 
assume a symmetry between a- and b-electrons so that 

D1 +A1=M1=D2+B2=N2, 

D2+A2=M2=D1+B1=N1. (3·6) 

It IS convenient to introduce th~ number of right (wrong) particle X(Y) by 

X= M1 + N2 , Y = M2 + N 1 • (3 · 7) 

By the symmetry mentioned above 

M1=N2=Xj2, 

and 

(3 ·8) 
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Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 623 

Then it is straightforward to find that 

(@oiG(g2) i@o) 

= ~~ g2D[ (L/2)!/(D/2)!{ (X-D)/2}!{ (Y -D)/2}!{ (L+D-2C)/2}q 
D X 

(3·9) 

Now we make the approximation to replace the sum over D and X with the 

largest term. The maximum term condition with respect to D gives a relation 

g2= d(1-2c+d) 

(x-d) (y.-d) 

and with respect to X gives 

(y-d)/(x-d) =w(1-r)/r(1-w), 

(3 ·10) 

(3 ·11) 

where x=X/L, y= YjL, c=C/L. From the definitions (3·5), (3·7) and (3·8), 

it follows that 

x+y=r+w=2c. (3 ·12) 
-

The evaluation of the expectation valt,1es of energy in the antiferromagnetic 

case goes almost parallel with the argument given in § 2. We can easily show 

that 

(@olG(g)at+aiG(g) i@o) 

= gw[ (L/2) !/ (D/2) !{(X -D) /2}!{ (Y -D) /2}!{ (L+,D-2C) /2}!]2 

xu(ij) [(1-2c+d) (y-d) +g(y-d) (x+y-2d) 

+ 92 (y-dY(x-d) / (1-2c+ d)] when id , jdl . 

Upon dividing this expression by the normalization factor and eliminating g with 

(3 ·10), we have 

(@olG(g)ai+aiG(g) i@o) 

(@oiG(g2) i@o) 

_ (c-d) [JC1-w) (1-2c+d) +J-:;i~d] 
- (c-rw) (1-r) , r 

[ /(1-r)(1-2c+d) jrd] c··) 
X ,Y (1- W) + W U Zj 

(3 ·13) 

when id and jdi. Quite similarly the same result is obtained for idl and jd. 

All other quantities are similarly derived. For instance, 

(3 ·14) 

It Is an easy task to sum up these results to find out the final result 
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624 T. Ogawa, K. Kanda and T. Matsubara 

(3·15) 

where 

= ( c-d )[J(l-w) (1-2c+d). jw a] r c-rw (1-r) + r 

[j (1-r) (1-2c+d) jra] 
X (1 ) + . -w w (3·16) 

Since d is a function of (J, we may take d as the variation parameter instead of 
(J. Then the variation function eg has to be minimized as the function of d and 
4. When we fix (J = 1, the variation problem should reduce to the Hartree-F ock 
theory of antiferromagnetism, and if ·we put 4 = 0, it should go back to the 
Gutzwiller approximation in the paramagnetic case, i.e., the case m = n = c 
in § 2. To check these points, first we assume (J = 1 in (3 ·10). Then it im
mediately follows from (3·10) and (3·11) that d=rw. Hence we obtain r=1 
from (3 ·16) and the variation function is reduced to 

_ 2 ~ sign.(ep)e/+ rr. eA-- ""-l 1 .vrw. 
L P•SP 'V ep2 + 42 (3 ·17) 

It is not hard to show that fJeA/f) 4 = 0 leads to Eq. (3 · 3). In the next place 
we assume 4=0. For this case from (3·5) 

r=w=c 

and (3·11) gives us x=y. Thus the loss factor (3~16) now becomes 

r= [(c-d)/c(1-c)] [ ../1-2c+_d+ ../d]2 (3·18) 

which is precisely the same as (2·38) when m=n=c. 

§ 4. Numerical calculation 

In the preceeding section, we have derived a prescription for the energy to 
be used as the variation function. This section is devoted to the numerical 
calculation for actual variation procedure. 

For simplicity, we assume that the state density function is of the form 

if lei<W, 
(4·1) 

otherwise. 

2W is the full band width and the center of gravity of the state density is 
chosen at e = 0 in accord with the present model Hamiltonian (2 ·1). (Note 
that L -l :EP ep = eu = 0.) Since p (e) is normalized to unity, the Fermi energy eF 
is related to the number of electron per site c by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/3

/6
1
4
/1

8
2
7
7
6
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 625 

S'F 

-w p(s)ds= (W +sF)I2W =c. (4·2) 

In what follows, it is convenient til use W as a unit of energy so that all the 

quantities may become dimensionless. Then ( 4 · 2) reads 

(4·2') 

With ( 4 ·1), the expectation value of energy (3 ·15) is, after short manipulation, 

given as 

su= Crl2) [l2c-11 v' (2c-1Y+A2 - .J1 + A2 

+ A2 log[ {1 + v'1+ A2 } I {12c -11 + v' (2c-W+ A2 } ]] + Ud. (4·3) 

In this expression r is still a function of A through the definition (3 ·16) in 

which r and w are given by r + w = 2c and 

r-w= A log[ (1 + v'1 + A2 ) I {l2c -11 + v' (2c-1Y+ A2 }]. (4·4) 

The problem is now to find out the minimum of Su as a function of g (or 

d) and A for given values of c and U. It is not easy, however, to carry out 

this variation analytically for general value of c except for a special case c 

= 112. Therefore, inserting vario.us values of g and A into Eq. ( 4 · 3), we calcu

late Su numerically for given c and U, and look for the values of g and A for 

which Su becomes minimum. (As a check, in the Appendix we discuss the case 

of c = 112 somewhat in detail by an analytical method.) As an example, in 

Figs. 1 (a)'"'-/ (c) the contour maps of Su for various values of the parameters are 

shown. It turns out (more or less unexpectedly) that, for any values of c and 

U, Su never takes the minimum value so long as A>O and O<g<l. From a 

reason we shall give in § 5, the value of g may be restricted to g<l. Thus 

the minimum of Su can occur only on the boundaries of the variable range of 

g and A, i.e., g = 1 or A= 0. This means that it is enough to compare the 

energy of the antiferromagnetic state in the Hartree-Fock approximation (g = 1, 

A~O) and that of the paramagnetic state in' the Gutwiller approximation (g~1, 

A=O). 

First we examine the case g = 1. Using ( 4 ·1) we can easily set up the 

gap equation (3 · 3) which is in the present model put in a form 

A{1- (UI2) log[ (1 + v'1 + A2 ) I (l2c -11 + v' (2c-1Y+ A2 ) ]} =0, (4 ·5) 

the relevant solution of which is given by 

A= [ {12c-11-exp (2IU) }{l2c-11-exp ( -2IU)} ]lf2 
( 4 · 6) 

sinh(2IU) 

The minimized energy in this case denoted by SA is written as 

SA =HI2c -11 v' (2c-1i+ A2 - v'1 + A2 ] + Uc2 

=- {1 + 2c (c-1) }coth(2IU) + l1-2cllsinh(2IU) + Uc2• (4·7) 
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0.6 

1.00 0.5 

9 U=4.0 

1 C=0.48 

0.5 

(a) 

(c) 

U=1.0 

C=0.48 

(b) 

· Fig. 1. The energy maps obtained from 
Eq. (4·3) for c=0.48 and various 
values of U: (a) U=l.O, (b) U=2.0, 
(c) U=4.0. 

If we put J = 0 in this expression, we have the energy of the paramagnetic state 
in the Hartree-Fock approximation 

(4·8) 
For the case that J = 0 and g~1 (Gutzwiller case), the energy which is denoted 
by C:G becomes, upon using (3 ·18) and ( 4 · 3) with J = 0, 

(4·9) 

The condition to minimize eG yields an equation-

U=2[ v'1-2c+d+ v'd]B[(c-d) {d(1-2c+d)}-1f2-1]. (4·10) 

It is hard to express the minimum value of eG in terms of 
In Fig. 2 the minimum energy per electron eA/c, ep/c 

as a function of U for the case c = 0.45, 0.48 and: 0.5. 
we can draw important conclusions: 

U in a simple form. 

and ee;/ c are plotted 

From these figures 

(1) There exists a threshold value of c, say c,, only above which the antiferro
magnetic phase can appear. In other words, the system is always paramagnetic 
if c<c, regardless of the magnitude of U. 
(2) When c,<c<1/2, where we confine ourselves to the case c<l/2 for a 
moment, three cases can be discriminated according to the magnitude of U: 
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0.5 

Ep/C 

c 0.0 
4.0 8.0-U 

_g 
u 

/' .. 
iii 

" /. &;/C 
>o EA/C E' .. 

t5 -0.5 

(a) C=0.45 
-1.0 

O.Sr---------,----------------------. 

Ep/C 

(b) C=0.48 
-1.0 

0.5 .---------r------------------, 

I 
1:.4/C 

-1.0 

(a) For U<U1 (c), the 

energy of the antiferro

magnetic phase is higher 

than that of the para

magnetic phase in the 

Gutzwiller approximation . 

(b) For U1(c)< U< U2(c), 

the paramagnetic state is 

stable, but the antiferro

magnetic state is more 

stable than the Gutzwiller 

paramagnetic state. (See 

also Fig. 1 (c).) 

(c) For U>U2 (c), the 

energy of the paramag

netic state becomes again 

lower than that of the 

antiferromagnetic state. 

As obvious from the above 

results, the antiferro-paramag

netic transition is of first 

order. 

Figure 3 shows the phase 

diagram calculated in the 

U-c plane. Due to the par

ticle-hole symmetry inherent 

to the model Hamiltonian 

(2 ·1), the phase diagram it

self becomes symmetric with 

respect to the line c = 1/2. 

The solid line shows the 

phase boundary SA= SG and 

the dotted line that of A= 0 

Fig. 2. The. dependence of energy 

per electron EA/c, E0 /c and Ep/c 

on the coupling constant U for 

various values of c: (a) c=0.45 

e0<eA for all U, (b) c=0.48 

Ea<EA for O<U<U, and u.<U, 

Ea>EA for U,<U<U., (c) c=0.5 

Ea<EA for O<U<U,:=U,(l/2), 

Ea>EA for U>U,. 
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ur-----rr~~~~~-----. 

I 
10.0 

8.0 

6.0 

4.0 

Urn 

0.0 L----L---L-....l.---L--...l.----l 

0.4 Cs 0.5 C1 0.6 
---c 

Fig. 3. The phase boundaries determined by 
EA=EG and .d=O in Eq. (4·4). The thick 
solid line indicates EA = EG and the dotted 
line indicates the critical line calculated by 
Penn's method at which the second order 
phase transition occurs. The hatched area 
shows the region where the antiferromag
netic phase with c=l/2 and the paramag
netic phase (c=l=l/2) coexist. 

1.0 

-0.5 

1.5 

u =4.0 

/ ' '·,, 
. .. 

"common tangent 

2.0 2.5 3.0 

--~ V(=C"T) 

Fig. 4. The dependence of EA/c and EG/c on 
the volume v=l/c. 

in Eq. ( 4 · 6). As seen from this figure, it exhibits a striking contrast to Penn's 
diagram which was calculated on the basis of the Hartree-Fock approximation. 
Main differences between both diagrams are: In the present model 
(i) as the coupling constant U becomes large, the region of c in which the anti
ferromagnetic phase appears becomes narrower. 
(ii) In order that the antiferromagnetic phase may exist, a finite value of U or c 
is required. The critical values are: c=l/2, U1 (1/2) =1.41: c,=0.467, c1 =1-c, 
= 0.533, Um = 3.34. The reason for this behaviour will be discussed in the fol
lowing section. 

So far we have assumed implicitly that the system is in a homogeneous 
state. However, in view of the fact that the antiferro-paramagnetic transition is 
of first order, it is necessary to consider a possibility that the system is in an 
inhomogenous state in which two phases with different magnetic order and c 
coexist.9> For this purpose we plot the energy of each phase as a function of 
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Gutzwiller Approximationfor Antiferromagnetism in Hubbard Model 629 

volume v = 1/ c in Fig. 4. The curve for the antiferromagnetic phase has a cusp 

point at v = 2 because of the existence of the energy gap. In the present model, 

therefore, a common tangent line in the proper sense cannot be drawn between 

the antiferro- and paramagnetic phases. Nevertheless, by examining a condition 

where two phases have equal chemical potential, we find that a tangent line 

which touches the curve for the paramagnetic phase and passes through the cusp 

point gives the coexistence line. In Fig. 3 the coexistence region thus deter

mined is also shown in the U-c diagram. 

§ 5. Summary and discussion 

We have extended the Gutzwiller variation method so as to include anti

ferromagnetism, and using a simplifying assumption corresponding to that adopted 

by Gutzwiller to discuss paramagnetic and ferromagnetic phases, we have tried 

to find out an antiferromagnetic ground state including electron correlation. 

Against our expectation, the final results are that the stable ground state is either 

the Gutzwiller paramagnetic state or the antiferromagnetic state in the Hartree

Fock approximation and we could not find out any antiferromagnetic state in

cluding electron correlation with lower energy than the above mentioned states. 

Inspecting the contour maps shown in Fig. 1, we observe that the Gutzwiller 

solution is locally stable against the variation of £1. On the other hand the anti

ferromagnetic solution in the Hartree-Fock approximation is not stable against 

the variation of g, and for sufficiently large U, the larger is g than unity, the 

lower the energy is. At first sight this seems curious, because we are considering 

the effect of correlation due to repulsive force and hence the region where g> 1 

should corresponds to the states energetically unfavourable. A careful calculation, 

however, reveals that when g>1 the occupation number 

(5·1) 

becomes negative for certain region of momentum p within the present approxi

mation. Thus the states with g> 1 should be rejected as unphysical. 

Some of the situation mentioned above would have its origin in the too 

simplified approximation. The formation of the the antiferromagnetic super

lattices with a long range order characterized by a finite £1 can reduce the 

repulsive interaction energy between electrons having o~pposite spin and at the 

same time keep the increase of hopping energy minimum. On the other hand 

in the Gutzwiller state under the simplified approximation, the increase of kinetic 

energy is not 'properly suppressed because of the neglection of configurational 

:fluctuation, although .the repulsive interaction energy is reduced by avoiding 

double occupation of sites. This is probably the reason why the Hartree-Fock 

antiferromagnetic state has lower energy than the Gutzwiller state for certain 

range of U. It is hoped to improve approximation in order to clarify these 
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630 T. Ogawa, K. Kanda and T. Matsubara 

points. 

In spite of the involved problems arising from the .nature of the adopted 
approximation, many of the results extracted from the present numerical calcu
lation seems to remain valid. Let us discuss some of them .. 

A conspicuous result much different from Penn's calculation is that, with 
increasing U, the region of c where the antiferromagnetic state has lower energy 
than the paramagnetic state becomes narrower. We can easily show that in the 
limit U--H>O the energies CG and CA have. asymptotic forms when c<I/2: 

cG'"'-'-2c(1-2c) -4c2 (1-2c)/U, (5·2) 

(5·3) 

The first term in the right-hand side of (5 · 2) corresponds to the hopping energy 
due to the presence of (1- 2c) L empty sites and is. equal to the energy in the 
ferromagnetic state. This is in accord with the result obtained by Nagaoka10> 
that the ground state for U=oo, c=1/2-o (o<{1) should be ferromagnetic. Thus 
Eq. (5·2) gives the correct limiting behaviour. For c=1/2, Eqs. (5·2) and (5·3) 
give 

(5·4) 

It can be shown that in the present approximation cG- cA takes a maximum at 
a certain intermediate value of U and vanishes in proportion to the inverse of 
U as Eq. (5 · 4) for sufficiently large U. This limit corresponds to an insulating 
antiferromagnet with a superexchange J'"'"' W 2/U (in the original energy unit) 
and leads to a correct result. 

The next point to be dicussed is that in our calculation a finite value of U 
is needed for the appearance of antiferromagnetic phase. In a simple Hartree
'Fock approximation, the staggered susceptibility IS given by 

(5·5) 

where X0 IS defined by 

X0= -L;(np+K-np)/(cp+K-cp) = -log(1-2c). (5·6) p 

The last result of Eq. (5 · 6) is obtained when the use has been made of the 
state density ( 4 ·1). In virtue of Eq. (5 · 5) the paramagnetic state in the simple 
Hartree-Fock approximation makes a transition to the antiferromagnetic state 
when 

(5·7) 

Since X0 diverges for c = 1/2, an infinitesimally small repulsion Uis sufficient to 
realize the antiferromagnetic state. This is not the case, however, in the 
Gutzwiller state, for which the staggered susceptibility is calculated, when c = 1/2, 
as 
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Gutzwiller Approximation for Antiferromagnetism in Hubbard Model 631 

XG = Xo ( 4 + U) I ( 4- U) . (5·8) 

Although Xo diverges at c = 112, xG-l b~comes negative only when 

(5·9) 

As seen from Figs. 2(c) and 3, actually eA becomes lower than eG when U>1.41 

for c= 112. This behaviour wnl be discussed in the Appendix. 

So far we have paid little attention to the ferromagnetic state. This is 

because we have assumed a simplified model with Hamiltonian (2 ·1) and the 

state density function ( 4 ·1) and it is well known that the conditions for appear

ance of the ferromagnetic state depend heavily on state density and band degen

eracy.1> It should be stated, however, that in the present model the ferromagnetic 

state can appear only in the limit U---+oo. It should be also remarked that the 

metal-insulator transition, which is expected at U = 4 and c = 112 according to 

Brinkman and Rice,5> is eliminated in the present model, because before U exceeds 

4 the ground state becomes antiferromagnetic where d always remains finite. 
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Appendix 

Analytical Treatment o/ the Case c = 1 I 2 

In the special case c = 112, the loss factor r has a simple form 

r=d (1-2d) lrw (1-2rw). 

Then, the variation function eg can be written as 

~>u= -((J)d(1-2d) + Ud, 

where ( (J) IS a function of only A defined by 

( (J) = 2 · l_ :E s/ . 
rw(1-2rw) L P•fP ../sP2+ J 2 

For given J or ( (J), eg, as a function of d, takes a minimum 

~>u (() = - ((/8) (1- Ul()2 

at 

d(() = (114) (1-UI(). 

(A·1) 

(A·2) 

(A·3) 

(A·4) 

(A·5) 
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632 T. Ogawa, K. Kanda and T. Matsubara 

If C:.<U, we should take d=d(U) =0 
instead of d cr.·)' because d must be non
negative. Therefore we can consider as 
c;,> U. Since eu (() IS a monotone 
decreasing function of C:. in the region 
c;,> U, the maximum value of C:. as a func
tion of J corresponds to the minimum 
value of Eq. (A· 4). As stated in § 5, 
g is restricted to g<1, and this restric
tion defines a boundary line d<r(J)w(J); 
Combining this condition with (A· 5), 
we have 

C:.(J) {1-4r(J)w(J)}<U. (A·6) 

Therefore the maximum of C:. satisfies 

4.5 

4.0 

either the equality of Eq. (A· 6) or oo ~o 0.5 ..:::1 
dr./ dJ = 0. The function C:. (J) calculated Fig. 5. ((J) as a function of J. 
with the use of the state density function ( 4 ·1) is shown in Fig. 5. As seen 
from this figure J = 0 is the only local maximum of C:. (J), and hence for suffici
ently small U the minimum value of eg (() is provided by 

eu=- (((0)/8) (1- U/C:.CO)l=eG(U), (A·7) 

which is nothing but the energy of the Gutzwiller state: This energy eG (U) 
ceases to be the minimum when U exceeds a certain value U0 determined from 

C:. (Jo) {1- 4r CJo) w (Jo)} = Uo, CA.·8) 
where J 0 is such that C:. (0) = C:. (J0). (See Fig. 5) It is not excluded, however, 
that there exists a less energy state on the boundary line d = rw at a point other 
than that given by (A· 8). This is indeed the case and when U> Uc (Uc has 
a value smaller than U0) the true minimum of eg is take~ over by eA (U), which 
is the minimum value of eg~l along the line d = rw and corresponds to the anti
ferromagnetic solution of the Hartree-Fock approximation. Thus we have the 
behaviour depicted in Fig. 2 (c). 
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