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GVINS: Tightly Coupled GNSS-Visual-Inertial

Fusion for Smooth and Consistent State Estimation
Shaozu Cao, Xiuyuan Lu, and Shaojie Shen

Abstract—Visual-inertial odometry (VIO) is known to suffer
from drifting, especially over long-term runs. In this paper,
we present GVINS, a non-linear optimization based system
that tightly fuses global navigation satellite system (GNSS) raw
measurements with visual and inertial information for real-time
and drift-free state estimation. Our system aims to provide
accurate global 6-DoF estimation under complex indoor-outdoor
environments where GNSS signals may be intermittent or even
inaccessible. To establish the connection between global measure-
ments and local states, a coarse-to-fine initialization procedure
is proposed to efficiently calibrate the transformation online and
initialize GNSS states from only a short window of measurements.
The GNSS code pseudorange and Doppler shift measurements,
along with visual and inertial information, are then modelled and
used to constrain the system states in a factor graph framework.
For complex and GNSS-unfriendly areas, the degenerate cases
are discussed and carefully handled to ensure robustness. Thanks
to the tightly coupled multi-sensor approach and system design,
our system fully exploits the merits of three types of sensors and
is able to seamlessly cope with the transition between indoor and
outdoor environments, where satellites are lost and reacquired.
We extensively evaluate the proposed system by both simulation
and real-world experiments, and the results demonstrate that our
system substantially suppresses the drift of the VIO and preserves
the local accuracy in spite of noisy GNSS measurements. The
versatility and robustness of the system are verified on large-
scale data collected in challenging environments. In addition,
experiments show that our system can still benefit from the
presence of only one satellite, whereas at least four satellites
are required for its conventional GNSS counterparts.

Index Terms—state estimation, sensor fusion, SLAM, localiza-
tion

I. INTRODUCTION

LOCALIZATION is an essential functionality for many

spatially aware applications, such as autonomous driving,

unmanned aerial vehicle (UAV) navigation and augmented

reality (AR). As a state estimation problem, it has been exten-

sively studied using various sensors. Among the approaches,

sensor fusion has become increasingly popular in recent years,

because it brings about accurate and robust state estimation by

leveraging the complementary properties of each sensor.

Cameras provide rich visual information with only a low

cost and small footprint, thus attracting much attention from

both the computer vision and robotics areas. Enhanced by

an inertial measurement unit (IMU), visual-inertial naviga-

tion (VIN) systems typically give more accurate and robust
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performance than their vision-only counterparts. Nevertheless,

both the camera and IMU operate in the local frame, and it

has been proven that a VIN system has four unobservable

directions [1], with three in global translation and one in global

rotation about the gravity vector. Thus, error accumulation in

estimation, also known as drift, is inevitable. In contrast, the

global navigation satellite system (GNSS) provides a drift-free

and globally aware solution for localization tasks, and has been

extensively used in various scenarios. GNSS civil signals are

publicly available and convey the range information between

the receiver and satellites. With at least four satellites tracked

simultaneously, the receiver is able to obtain its unique coor-

dinates in the global Earth frame. However, GNSS solutions

are generally noisy, and are even unavailable in cluttered or

indoor environments.

Considering the complementary characteristics between

VIN systems and the GNSS, it seems natural that improve-

ments in smoothness, consistency and robustness can be made

by fusing information from both systems together. Despite the

many benefits, a number of challenges exist in the process.

First, a stable initialization from the noisy GNSS measure-

ment is indispensable. Among the quantities that need to be

initialized, the 4-DoF transformation between the local VIN

frame and the global GNSS frame is of utmost importance to

associate the global measurements with the local states. Unlike

the camera-IMU extrinsic calibration, this transformation can-

not be calculated preliminarily in an offline manner because

it varies every time the VIN system is launched. Additionally,

one-shot alignment using a portion of the sequence does not

work well since the drift of the fusion system makes the

alignment invalid under GNSS outages. Second, the GNSS

measurement is not at the same order of precision as the VIN

system, and various error sources exist during the GNSS signal

propagation. In practice, the code pseudorange measurement

used for global localization is only of meter-level precision,

whereas the VIN system can provide estimation results of

centimeter accuracy over a short range. Consequently, the

fusion will be susceptible to the noisy GNSS measurement

if not handled properly. Third, degenerate cases are witnessed

when the system undergoes particular patterns of motion (e.g.,

pure rotation) or the number of locked satellites is insufficient.

An example could be a transition from an indoor to an outdoor

environment, during which all satellites are lost and gradually

reacquired.

To address the above-mentioned issues, we propose a non-

linear optimization-based system to tightly fuse GNSS raw

measurements (code pseudorange and Doppler frequency shift)

with visual and inertial data for accurate and drift-free state
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Fig. 1. A snapshot of our system in a complex indoor-outdoor environment. The global estimation result is plotted on Google Maps directly and aligns well
with the ground truth RTK trajectory, as shown in part (a). Part (b) depicts the distribution of satellites, with the tangential direction representing the azimuth
and radial direction being the elevation angle. The blue arrow is a compass-like application which indicates the global yaw orientation of the camera. Subplots
(c) and (d) illustrate the altitude information and the local-ENU yaw offset respectively. The measurement noise level of each tracked satellite is shown in
part (e). Note that there is an obvious failure on the RTK trajectory when we walk on indoor stairs, while our system can still perform global estimation even
in the indoor environment.

estimation. The 4-DoF transformation between the local and

global frames is recovered via a coarse-to-fine approach in

the initialization phase and is further optimized subsequently.

To incorporate noisy GNSS raw measurements, all GNSS

constraints are formulated under a probabilistic factor graph

in which all states are jointly optimized. In addition, degen-

erate cases are discussed and carefully handled to enhance

robustness. Thanks to the tightly coupled approach and system

design, our system fully exploits the complementary properties

among the GNSS, visual and inertial measurements, and

is able to provide locally smooth and globally consistent

estimation even in complex environments, as shown in Fig. 1.

We highlight the contributions of this paper as follows:

• an online coarse-to-fine approach to initialize GNSS-

visual-inertial states.

• an optimization-based, tightly coupled approach to fuse

visual-inertial data with multi-constellation GNSS raw

measurements under the probabilistic framework.

• a real-time estimator which is able to provide drift-

free 6-DoF global estimation in complex environments

where GNSS signals may be largely intercepted or even

inaccessible.

• an extensive evaluation of the proposed system in both

simulation and real-world environments.

For the benefit of the research community, the proposed

system,1 along with well-synchronized datasets,2 have been

open-sourced.

The rest of this work is structured as follows: In Section,

II we review existing relevant works. Section III describes

the notation and coordinate system involved in our system. In

Section IV, we briefly introduce the relevant background of

the GNSS. Section V shows the structure and workflow of the

proposed system. The problem formulation and methodology

are illustrated in Section VI. In Section VII, we address the

GNSS initialization issues and discuss several degenerate cases

that degrade the performance of our system. The experiment

setup and evaluation are given in Section VIII. Finally, Section

IX concludes this paper.

II. RELATED WORK

State estimation via a multi-sensor fusion approach has

been proven to be effective and robust, and there is exten-

sive literature on this topic. Among the approaches, we are

particularly interested in the combination of small-size and

low-cost sensors such as cameras, IMUs and GNSS receivers,

to produce a real-time accurate estimation in an unknown

environment. The fusion of visual and inertial measurement

in a tightly coupled manner can be classified into either

filter-based methods or optimization-based methods. MSCKF

[2] is an excellent filter-based state estimator, which utilizes

1https://github.com/HKUST-Aerial-Robotics/GVINS
2https://github.com/HKUST-Aerial-Robotics/GVINS-Dataset
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the geometric constraints between multiple camera poses to

efficiently optimize the system states. Extending MSCKF, [3]

makes improvements to its accuracy and consistency, and [4]

aims to overcome its numerical stability issue, especially on

mobile devices. Compared with the filter-based approach, the

nonlinear batch optimization method can achieve better per-

formance by re-linearization at the expense of computational

cost. OKVIS [5] utilizes a keyframe-based sliding window

optimization approach for state estimation, while VINS-Mono

[6] also optimizes system states within the sliding window, but

is more complete, with online relocalization and pose graph

optimization. Since the camera and IMU only impose local

relative constraints among states, accumulated drift is a critical

issue in a VIN system, especially over long-term operation.

As GNSS provides absolute measurement in the global

Earth frame, incorporating GNSS information is a natural way

to reduce accumulated drift. In terms of loosely coupled man-

ner, [7] and [8] describe state estimation systems which fuse

GNSS solutions with visual and inertial data under the EKF

framework. [9] proposes a UKF algorithm that fuses visual,

inertial, LiDAR and GNSS solutions to produce a smooth and

consistent trajectory in different environments. The methods in

[10] and [11] and our previously proposed VINS-Fusion [12]

fuse the results from local visual-inertial odometry (VIO) with

GNSS solutions under the optimization framework. In [13],

the authors combine the results from precise point positioning

(PPP) [14] with stereo VIO to achieve low-drift estimation.

Both the GNSS code and phase measurements are used in

their formulation and precise satellite products are utilized

to improve the accuracy. All aforementioned works rely on

a GNSS solution to perform estimation, so system failure

will occur once the GNSS solution is highly corrupted or

unavailable in the situation where the number of tracked

satellites is below four.

In the line of literature examining tightly coupled GNSS-

visual approaches, [15] tightly fuses GNSS code pseudorange

data and visual measurements from a sky-pointing camera

in the EKF framework. The image from the upward-facing

camera is segmented as sky and non-sky areas, the latter of

which are used for feature detection and matching. In addition,

only GNSS signals coming from the sky direction are used,

so as to avoid the potential multipath effect. However, the

upward-facing camera means that the system cannot work

in an open-sky scenario and is only suitable for urban envi-

ronments. In addition, the transformation between the local

vehicle frame and the global frame is assumed known. In

[16], the authors propose a system that tightly combines the

stereo visual odometry with the GNSS code pseudorange and

Doppler shift measurements using the EKF framework. Three

driving tests with moderate distance are conducted to evaluate

their system. However, only horizontal errors are reported in

their first data sequence, and the majority of their experiments

are just qualitatively analysed.

Other works focus on tightly fusing GNSS raw measure-

ment with visual and inertial information. [17], [18] and [19]

combine camera, IMU and GNSS RTK measurements under

the EKF framework for localization. The RTK solution, which

usually has centimeter-level accuracy, requires a static GNSS

North Pole

EquatorE t

Fig. 2. An illustration of the ECEF (·)e, ENU (·)n and local world (·)w

frames. Both the z axes of the ENU and local world frames are gravity-
aligned, and there is a yaw offset ψ between the two frames.

reference station with the known position as infrastructure.

[20] and [21] investigate the performance of the fusion system

in a cluttered urban environment where less than four satellites

are tracked. However, the transformation between local and

global frames is not handled and the scale of their real-

world experiments is limited. In addition, the results of the

underlying VIN system in [21], as tested in standalone mode,

shows large drift over a short period of time. Recently, we

found a similar work [22] to ours that tightly fuses GNSS raw

measurements with visual-inertial SLAM. An RMSE error of

14.33 m is reported on the longest sequence (5.9 km) in the

evaluation, while the value is only 4.51 m for our system,

even on a more challenging urban driving sequence with a

total distance of 22.9 km. In GNSS-unfriendly areas where

the number of GNSS measurements becomes insufficient, [22]

drops all GNSS measurements which may still benefit the

estimator, as shown in our experiments. In addition, the indoor

environments within the sequence, such as tunnels, cannot be

handled by the system in [22], which again limits the potential

of the tightly coupled multi-sensor fusion approach.

Therefore, we aim to build a robust and accurate state

estimator with GNSS raw measurements and visual and iner-

tial data tightly fused. By leveraging the global measurement

from GNSS, the accumulated error from the visual-inertial

system will be eliminated, and the transformation between the

local and global frame will be estimated without any offline

calibration. The system is able to work in complex indoor

and outdoor environments and achieves local smoothness and

global consistency.

III. NOTATION AND DEFINITIONS

A. Frames

The spatial frames involved in our system consist of:

• Sensor Frame: The sensor frame is attached to the sensor

and is a local frame in which the sensor reports its

readings. In our system, sensor frames are the camera

frame (·)c and the IMU frame (·)i, and we choose the

IMU frame as our estimation target frame and denote it

as the body frame (·)b.
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• Local World Frame: We represent the conventional frame

in which the visual-inertial system operates as the local

world frame (·)w. In the VIN system, the origin of the

local world frame is arbitrarily set and the z axis is often

chosen to be gravity-aligned, as illustrated in Fig. 2.

• ECEF Frame: The Earth-centered, Earth-fixed (ECEF)

frame (·)e is a Cartesian coordinate system that is fixed

with respect to Earth. As shown in Fig. 2, the origin of

ECEF frame is attached to the center of mass of Earth.

The x-y plane coincides with Earth’s equatorial plane,

with the x axis pointing to the prime meridian. The z

axis is chosen to be perpendicular to Earth’s equatorial

plane in the direction of the geographical North Pole.

Finally the y axis is taken to make the ECEF frame a

right-handed coordinate system. In this paper, we use the

WGS84 realization of the ECEF frame.

• ENU Frame: In order to connect the local world and

global ECEF frames, a semi-global frame, ENU, is in-

troduced. The x, y and z axes of the ENU frame (·)n

point to the east, north, and upward direction respectively

(Fig. 2). Given a point in the ECEF frame, a unique ENU

frame can be determined, with its origin sitting on that

point. Note that the z axis of the ENU frame is also

gravity-aligned.

• ECI Frame: The Earth-centered inertial (ECI) frame is

an inertial coordinate system with the center of mass of

Earth as its origin. The three axes of the ECI frame (·)E

are taken to point in fixed directions with respect to the

stars, i.e., do not rotate with Earth. The GNSS signal

travels in a straight line in the ECI frame, which can

greatly simplify the formulation. In this paper the ECI

frame is formed by freezing the ECEF frame at the time

of reception of the GNSS signal.

In terms of temporal frames, GNSS data are tagged in the

GNSS time system (for example, GPS time), while visual and

inertial measurements are marked in the local time system. We

assume that these two time systems are aligned beforehand and

do not distinguish them accordingly.

B. Notation

In this paper, we use Rz
a and pz

a to denote the rotational

and translational parts of the transformation from frame a to

frame z. For the rotational part, the corresponding Hamilton

quaternion qz
a is also used, with ⊗ representing its multiplica-

tion operation. We use a subscript to refer to a moving frame

at a specific time instance. For example, Rz
at

stands for the

rotation from the moving frame a at time t to the fixed frame

z.

For constant quantities, we use gw to represent the gravity

vector in the local world frame. c is the speed of light in

vacuum and ωE stands for the angular velocity of Earth.

C. States

The system states to be estimated include:

• the position pw
b and orientation qw

b of the body frame

with respect to the local world frame,

• the velocity vw
b , accelerometer bias ba and gyroscope

bias bw,

• the inverse depth ρ for each feature,

• the yaw offset ψ between the local world frame and

ENU frame, receiver clock bias δt and receiver clock

drifting rate δṫ. Because our system supports all four

GNSS systems, namely, GPS, GLONASS, Galileo and

BeiDou, their clock biases are estimated separately. Note

that the receiver clock drifting rate for each constellation

is the same.

Our system adopts a sliding window optimization approach

and the states X inside the window can be summarized as

X = [x0, x1, · · · xn, ρ0, ρ1, · · · ρm, ψ ] (1a)

xk =
[
pw
btk

, vw
btk

, qw
btk

, ba, bw, δt, δ̇t
]
, k ∈ [0, n] (1b)

δt = [δtG, δtR, δtE , δtC ] , (1c)

where n is the window size and m is the number of feature

points in the window. The four components in δt correspond

to the receiver’s clock biases with respect to the times of GPS,

GLONASS, Galileo and BeiDou respectively.

IV. GNSS FUNDAMENTALS

Since our system requires GNSS raw measurement process-

ing, background knowledge about GNSS is necessary. In this

section, we first give an overview of GNSS. Then two types

of raw measurements, namely, code pseudorange and Doppler

shift, are introduced and modelled. Finally the principle of the

single point positioning (SPP) algorithm for global localization

is described at the end of this section.

A. GNSS Overview

The global navigation satellite system, as its name suggests,

is a satellite-based system which is capable of providing

global localization services. Currently there are four inde-

pendent and fully operational GNSS systems, namely GPS,

GLONASS, Galileo and BeiDou. The navigation satellites in

each GNSS system continuously broadcast radio signals, from

which the receiver can uniquely identify the satellites and

retrieve the navigation messages. Taking the GPS L1C signal

as an example, the final transmitted signal is composed of

three layers, as illustrated in Fig. 3. The navigation message

contains parameters of the orbit, corrections of the clock error,

coefficients of ionospheric delay and other information related

to the satellite’s status. The orbit parameters, also know as

ephemeris, contain 14 variables and are used to calculate the

satellite’s ECEF coordinates at a particular time. The satellite’s

clock error is modelled as a second-order polynomial, i.e., with

three parameters. Each satellite is assigned a unique pseudo

random noise (PRN) code that repeats every 1 millisecond.

The 50 bit/s navigation message is first exclusive-ored with

the PRN code and then used to modulate the high-frequency

carrier signal. After receiving the signal, the receiver obtains

the Doppler shift (Section. IV-C) by measuring the frequency

difference between it and the designed signal. The code

pseudorange measurement (Section. IV-B) is inferred from
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Navigation 
message

PRN code

Carrier 
signal

Transmitted 
signal

Fig. 3. The hierarchical structure of the GPS L1C signal. The navigation
message first mixes with the satellite-specific PRN code, and then the resulting
sequence is used to modulate the high-frequency carrier signal. The final signal
is transmitted by the satellite and captured by the receiver, which applies a
reverse process to obtain the measurement and retrieve the message.

the PRN code shift, which indicates the propagation time.

Finally, the navigation message is uncovered by a reverse

demodulation process.

B. Code Pseudorange Measurement

Upon the reception of the signal, the time of flight (ToF)

of the signal is measured from the PRN code shift. By

multiplying the ToF with the speed of light, the receiver

obtains the code pseudorange measurement, which is prefixed

with “pseudo” because it not only contains the geometric

distance between the satellite and the receiver, but also various

errors that appear during the signal generation, propagation

and processing.

The error source on the satellite side mainly consists of

the satellite orbit and clock error. The orbit error comes from

the influence of other celestial objects which are not precisely

modelled by the ephemeris, and the clock error is the result

of the satellite’s imperfect onboard atomic clock with respect

to the standard system time. The orbit and clock errors are

monitored and constantly corrected by the system control

segment. During the propagation from satellite to receiver, the

signal goes through the ionosphere and troposphere, where

the speed of the electromagnetic signal is no longer the same

as that under vacuum, and as a result, the signal is delayed

according to the atmospheric components and propagation

path. The phenomenon that the signal reaches the receiver

in different ways, which is known as the multipath effect,

may occur and add extra delay, especially for low elevation

satellites. When the signal arrives, the ToF is calculated by

comparing the signal transmission time, which is marked by

the satellite’s atomic clock, with the receiver’s less accurate

local clock time. Thus the range information is also offset by

the receiver clock error with respect to the GNSS system time.

The code pseudorange measurement can be modelled as

P̃ s
r =‖pE

s − pE
r ‖+ c

(
ζT
s δt−∆ts

)

+ T s
r + Isr +Ms

r + ǫsr ,
(2)

where pE
s and pE

r are the ECI coordinates of the satellite

s and receiver r, respectively; ζs is designed to be a 4 × 1

Satellite 1

(a)

Satellite 2
Satellite 1

(b)

Satellite 2

Fig. 4. A simplified 2D illustration of how satellite distribution affects the
uncertainty of an SPP solution. Here we assume the times between the receiver
and satellite are synchronized. Thus two satellites are enough for localization.
The dashed line represents the ground truth range, while the area in between
the two solid lines denotes possible noisy measurement. The uncertainties of
the SPP solutions are represented by the shadows.

indicator vector, with the corresponding satellite constellation

entity being 1 and other three entities being 0; ∆ts is the

satellite’s clock error, which can be calculated from the

broadcast navigation message; and T s
r and Isr stand for the

tropospheric and the ionospheric, delay respectively. We use

Ms
r to denote the delay caused by the multipath effect and ǫsr

for the measurement noise. Here, the delay terms T s
r , Isr and

Ms
r are expressed in the unit of length, i.e., multiplied by c.

C. Doppler Measurement

The Doppler frequency shift is measured from the difference

between the received carrier signal and the designed one,

and it reflects the receiver-satellite relative motion along the

signal propagation path. Due to the characteristics of the GNSS

signal structure, the accuracy of the Doppler measurement is

usually an order of magnitude higher than that of the code

pseudorange. The Doppler shift is modelled as

∆f̃s
r = −

1

λ

[
κs
r
T (vE

s − vE
r ) + c(δ̇t− ∆̇ts)

]
+ ηsr , (3)

where vE
r and vE

s represent the receiver’s and satellite’s

velocity expressed in the ECI frame respectively. We use λ
to denote the wavelength of the carrier signal, and κs

r for the

unit vector from receiver to satellite in the ECI frame. ∆̇ts is

the drift rate of the satellite clock error, which is reported in

the navigation message, and finally, ηsr represents the Doppler

measurement noise.

D. SPP Algorithm

The SPP algorithm utilizes code pseudorange measurements

to determine the 3-DOF global position of the GNSS receiver

via trilateration. Thus, in theory, the coordinates of the receiver

can be obtained with the aid of three different satellites.

However, as mentioned in Section IV-B, the code pseudorange

measurement is offset by the receiver clock bias. Because the

receiver’s clock bias can cause an error of hundreds of kilome-

ters, it must be estimated along with the location in order to get

a reasonable result. To this end, at least four code pseudorange
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Fig. 5. The diagram above shows the workflow of our proposed system. At first, measurements from all sensors are preprocessed before going into follow-up
procedures. In the initialization stage, visual-inertial initialization is accomplished by aligning the inertial information with the result of vision-only SfM. If
the visual and inertial trajectories are successfully aligned, a coarse-to-fine process is performed in order to initialize the GNSS states. The system monitors
and handles GNSS degeneration cases once GNSS states are involved. Finally, constraints from all measurements within the sliding window are optimized
by the non-linear optimization. Note that if GNSS states cannot be initialized, our system can still work in visual-inertial mode. A marginalization strategy
is also adopted to ensure real-time estimation.

measurements are required to fully constrain the 3-DoF global

position and receiver clock bias. Because different navigation

systems use different time references, there exists clock offset

between the different systems. Additional measurements are

needed in order to estimate the inter-system clock offset if

the satellites are from multiple constellations. To summarize,

at least (N + 3) satellites are required to be simultaneously

tracked in order to uniquely localize the receiver, where N is

the number of constellations among the tracked satellites.

After collecting enough measurements, the constraints from

Eq. 2 are stacked together to form a series of equations with

pE
r and δt unknown. Corrections are applied to the code pseu-

dorange measurement, making it only a function of pE
r and

δt. In our system, the tropospheric delay T s
r is estimated by

the Saastamoinen model [23], while the ionospheric delay Isr
is computed using the Klobuchar model [24] and parameters

in the ephemeris. By excluding the low-elevation satellites,

we ignore the delay Ms
r caused by the multipath effect. In

practice, more than (N + 3) measurements will be used, and

the solution is obtained by minimizing the sum of the squared

residuals. As is shown in [25], the noise of the SPP solution

not only depends on the measurement noise but also has a

relationship with the geometric distribution of satellites. The

simplified 2D case in Fig. 4 shows the effect of satellite

distribution on the noise characteristic of the final solution.

Thus, the performance of the SPP algorithm will be better

with evenly distributed satellites, even with the measurement

noise unchanged.

V. SYSTEM OVERVIEW

The structure of our proposed system is illustrated in Fig. 5.

The estimator takes raw GNSS, IMU and camera measure-

ments as input and applies necessary preprocessing on each

type of measurement afterwards. As in [6], the IMU measure-

ments are pre-integrated, and sparse feature points are detected

and tracked from the image sequence. For the GNSS raw

data, we first filter out low-elevation and unhealthy satellites

which are prone to errors. To reject unstable satellite signals,

only satellites which are continuously locked for a certain

number of epochs are allowed to enter the system. Because

the ephemeris data are acquired via a slow satellite-receiver

wireless link (50 bit/s on GPS L1C), a GNSS measurement is

unusable until its corresponding ephemeris is fully transmitted.

After the preprocessing phase, all measurements are ready for

the estimator. Before performing optimization, an initialization

phase is necessary to properly initialize the system states of

the non-linear estimator.

The initialization starts with a vision-only structure from

motion (SfM), from which an up-to-similarity motion and

structure are jointly estimated. Then the VI initialization is

performed by aligning the trajectory from the IMU to the

SfM result in order to recover the scale, velocity, gravity and

IMU bias. After the VI initialization is finished, a coarse-

to-fine GNSS initialization process is conducted. At first

a coarse anchor localization result is obtained by the SPP

algorithm. Then the local and global frames are associated

in the yaw alignment stage using the local velocity from the

VI initialization and GNSS Doppler measurement. Finally, the

initialization phase ends with anchor refinement, which utilizes

the accurate local trajectory and imposes clock constraints to

further refine the anchor’s global position.

After the initialization phase, the GNSS degeneration cases

are checked and carefully handled to ensure robust perfor-

mance. Then constraints from all measurements are formulated

to jointly estimate system states within the sliding window

under the non-linear optimization framework. Note that our

system is naturally degraded to VIO if GNSS is not available

or cannot be properly initialized. To ensure real-time perfor-

mance and handle visual-inertial degenerate motions, the two-

way marginalization strategy [26], which selects the frame to

remove based on a parallax test, is also applied after each

optimization.

VI. PROBABILISTIC FORMULATION

In this section, we first formulate and derive our state esti-

mation problem under a probabilistic framework. The whole
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Fig. 6. Factor graph representation of the optimization problem in our system,
where system states are denoted by large colored circles and factors are
represented by small black circles. The factors from various measurements
consist of inertial factor i, visual factor f , code pseudorange and Doppler
factor g and clock factor c. A prior factor p is used to constrain the first pose
of the local world frame.

problem is formulated as a factor graph, and measurements

from sensors form a series of factors which in turn constrain

the system states. Each type of factor in the probabilistic

graph will be discussed in detail through this section. Note

that the formulations of the visual and inertial factors are

inherited from [6], [27] and [26] and are thus not a contribution

of this work. The relevant content is included only for the

completeness of this paper.

A. MAP Estimation

We define the optimum system state as one that maxi-

mizes the posterior probability given all the measurements.

Assuming that all measurements are independent of each other

and the noise with each measurement is zero-mean Gaussian

distributed, the maximum a posteriori (MAP) estimation prob-

lem can be further transformed to minimizing the sum of a

series of costs, with each cost corresponding to one specific

measurement:

X ⋆ = argmax
X

p(X|z)

= argmax
X

p(X )p(z|X )

= argmax
X

p(X )

n∏

i=1

p(zi|X )

= argmin
X

{
‖rp −HpX‖2 +

n∑

i=1

‖r(zi, X )‖2Pi

}
,

(4)

where z stands for the aggregation of n independent sensor

measurements and {rp,Hp} encapsulates the prior informa-

tion of the system state. r(·) denotes the residual function of

each measurement and ‖ · ‖P is the Mahalanobis norm.

Note that this formulation naturally fits with the factor graph

representation [28]. Thus we decompose our optimization

problem as individual factors that relate states and measure-

ments. Fig. 6 shows the factor graph of our system. Besides

factors derived from measurements, a prior factor is used to

constrain the four unobservable directions of the initial pose

of the local world frame, and later it will become a densely

connected prior as we marginalize old frames. In the following,

we will discuss each factor in detail.

B. Inertial Factor

The measurements involved in the inertial factor consist of

the biased, noisy linear acceleration and angular velocity of the

platform. As the accelerometer operates near Earth’s surface,

the linear acceleration measurement also contains a gravity

component. The Coriolis and centrifugal forces due to Earth’s

rotation are ignored in the IMU’s formulation considering the

noisy measurement of the low-cost IMU. Thus the inertial

measurement can be modelled as

ãt = at + bat
+Rbt

wgw + na (5a)

ω̃t = ωt + bwt
+ nw , (5b)

where {ãt, ω̃t} is the output of the IMU at time t, and

{at, ωt} stands for the linear acceleration and angular velocity

of the platform in the IMU sensor frame. The additive noises

na and nw are assumed to be zero-mean Gaussian distributed,

i.e., na ∼ N (0,Σa) and nw ∼ N (0,Σw). The slowly varying

biases associated with the accelerometer and gyroscope are

modelled as a random walk, as follows:

ḃat
= nba , ḃwt

= nbw , (6)

with nba ∼ N (0,Σba) and nbw ∼ N (0,Σbw).

In practice, the frequency of the IMU is often an order

of magnitude higher than that of the camera. Thus it is

computationally intractable to estimate each state of the IMU

measurements. To overcome this problem, the IMU pre-

integration approach [27] is adopted to aggregate multiple

measurements into a single one. For inertial measurements

within the time interval [tk, tk+1], the derived measurements

are computed as

α
btk
btk+1

=

∫∫

t∈[tk,tk+1]

R
btk
bt

(ãt − bat
)dt2 (7a)

β
btk
btk+1

=

∫

t∈[tk,tk+1]

R
btk
bt

(ãt − bat
)dt (7b)

γ
btk
btk+1

=

∫

t∈[tk,tk+1]

1

2
Ω(ω̃t − bwt

)γ
btk
bt

dt , (7c)

with

Ω(ω) =

[
−⌊ω⌋× ω

−ωT 0

]
, ⌊ω⌋× =

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ .

(8)

Here, bk stands for the body frame at time tk, and {α,β,γ}
encapsulates the relative position, velocity and rotation infor-

mation between frame bk and bk+1, and can be constructed

without the initial position, velocity and rotation profiles

given the IMU biases. Finally, the residual that relates the
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system states and pre-integrated IMU measurements can be

formulated as

rB(z̃
btk
btk+1

, X ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

δα
btk
btk+1

δβ
btk
btk+1

δθ
btk
btk+1

δba

δbg

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
btk
w (pw

btk+1

− pw
btk

+ 1
2g

w∆t2k − vw
btk

∆tk)− α̂
btk
btk+1

R
btk
w (vw

btk+1

+ gw∆tk − vw
btk

)− β̂
btk
btk+1

2
[
qw−1

btk
⊗ qw

btk+1

⊗ (γ̂
btk
btk+1

)
−1

]

xyz

babtk+1
− babtk

bwbtk+1
− bwbtk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where δθ
btk
btk+1

represents the relative rotation error in 3D

Euclidean space, and the operator
[
·
]
xyz

returns the imaginary

part of a quaternion.

C. Visual Factor

The visual measurement used in our system is a group of

sparse feature points extracted from image frames. The strong

corners [29] within the image are detected as feature points and

are further tracked by the iterative Lucas-Kanade method [30].

After distortion correction [31] is applied to feature points, the

projection process can be modelled as

P̃ = πc(R
c
b(R

b
w xw + pb

w) + pc
b) + nc , (10)

where P̃ = [u, v]T is the feature coordinates in the image

plane, and xw is the corresponding 3D landmark position in

the local world frame, πc(·) represents the camera projection

function, and nc is the measurement noise. Thus, if a feature

l with inverse depth ρl in frame i is observed again in frame

j, the residual that relates two frames can be expressed as

rC(z̃l, X ) = P̃
ctj
l − πc(x̂

ctj
l ) (11a)

x̂
ctj
l = Rc

b(R
btj
w (Rw

bti
(Rb

c

1

ρl
πc

−1
(P̃

cti
l ) + pb

c)+

pw
bti

) + p
btj
w ) + pc

b ,

(11b)

where {Rb
c, t

b
c} is the transformation between the IMU and

camera.

D. Code Pseudorange Factor

Consider a GNSS receiver r which locks a navigation

satellite s. It measures the code shift to obtain the code

pseudorange information, as illustrated in Eq. (2). The satellite

clock error and atmospheric delay are compensated for using

the models described in Section IV-D. In our system, the code

pseudorange noise ǫsr is assumed to be zero-mean Gaussian

distributed, i.e., ǫsr ∼ N(0, σs
r,pr), where the variance σs

r,pr is

modelled as

σs
r,pr =

ns × npr

sin2 θel
. (12)

Here, ns is the broadcast satellite space accuracy index, and

npr is the code pseudorange measurement noise index reported

by the receiver. θel represents the satellite elevation angle

at the view of the receiver, and there are two reasons for

this denominator term. First, it can suppress the noise caused

by the GNSS multipath effect that usually occurs on low-

elevation satellites. Second, the ionospheric delay obtained by

the Klobuchar model, which is widely adopted by navigation

systems, still contains error of up to 50% [24]. As low-

elevation satellites will suffer from a significant ionospheric

delay, the denominator term can also reduce the error coming

with the ionospheric compensation.

Locations in the ECEF frame can be transformed into the

local world frame via an anchor point, at which an ENU frame

is built. Given the ECEF coordinates of the anchor point, the

rotation from the ENU frame to ECEF frame is

Re
n =

⎡
⎣
− sinλ − sinφ cosλ cosφ cosλ
cosλ − sinφ sinλ cosφ sinλ
0 cosφ sinφ

⎤
⎦ , (13)

where φ and λ are the latitude and longitude of the reference

point in the geographic coordinate system. The 1-DOF rotation

between the ENU and local world frame Rn
w is given by

the yaw offset ψ. Then the relationship between the ECEF

and local world coordinates of the receiver’s antenna can be

expressed as

pe
r = Re

nR
n
w(p

w
r − pw

anc) + pe
anc . (14)

In our implementation, we set the anchor point to the origin

of the local world frame; that is, the origin of the local

world frame coincides with the origin of the ENU frame, as

illustrated in Fig. 2. Thus, pw
anc, the anchor’s coordinates in the

local world frame, becomes a zero vector. The position of the

receiver’s antenna in the local world frame can be associated

with the system states by

pw
r = pw

b +Rw
b p

b
r , (15)

where pb
r is the offset of the antenna expressed in the body

frame.

So far, we are able to compute the ECEF coordinates of the

receiver’s antenna at any time given the corresponding system

states. Because the GNSS measurements are time tagged by

the receiver, we define the ECI frame to be coincident with

the ECEF frame at the signal reception time. In this way, we

have pE
r = pe

r when the signal arrives at the receiver. On

the other hand, the satellite’s position in the ECEF frame at

the signal transmission time, which we denote as pe′

s , can be

obtained by the broadcast ephemeris and code pseudorange

measurement. As a result of Earth’s rotation, the ECEF frame

when the signal leaves the satellite (·)e
′

is different from the

one when the signal arrives (·)e. Thus, the satellite’s position

needs to be transformed to the ECI frame (also the ECEF

frame at reception time) by

pE
s = Rz

(
− ωE tf

)
pe′

s , (16)

where Rz(θ) represents a rotation about the z axis of the ECI

frame with magnitude θ, and tf is the ToF of the GNSS signal.
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In the end, the residual of a single code pseudorange mea-

sured in tk, which connects system states {pw
btk

,qw
btk

, δtk, ψ}
and satellite sj , can be formulated as

rP(z̃
sj
rk
, X ) =‖Rz(−ωE tf ) p

e′

s − pE
rk
‖+ c(ζT

sj
δtk −∆tsj )+

T sj
rk

+ Isjrk − P̃ sj
rk

,
(17)

where rk stands for the GNSS receiver at time tk.

E. Doppler Factor

The Doppler frequency shift, as shown in Eq. (3), is a result

of the relative velocity along the line of the signal propagation

path between the receiver and satellite. Similar to the code

pseudorange noise, the Doppler measurement noise ηsr,dp is

assumed to be Gaussian distributed, and the corresponding

variance is modelled as

σs
r,dp =

ns × ndp

sin2 θel
, (18)

where ndp is the measurement noise index reported by the

receiver. The receiver’s velocity in the ECEF frame can be

obtained from the local world velocity via

ve
r = Re

nR
n
wv

w
b . (19)

By defining the ECI frame as the ECEF frame at reception

time, we have vE
r = ve

r. Then, the satellite’s velocity in the

signal-transmission ECEF frame, ve′

s , can be transformed to

the ECI frame by

vE
s = Rz

(
− ωE tf

)
ve′

s , (20)

Finally, the residual related to the Doppler measurement

in tk, which connects system states {pw
btk

,vw
btk

, δ̇tk, ψ} and

satellite sj , can be formulated as

rD(z̃
sj
rk
, X ) =

1

λ
κsj
rk

T (vE
sj

− vE
rk
)+

c

λ
(δ̇tk − ˙∆tsj ) + ∆f̃sj

rk
.

(21)

F. Receiver Clock Factors

The receiver clock biases at tk and tk+1 are connected by

the relation

δtk = δtk−1 + 14×1

∫ tk

tk−1

δ̇t dt , (22)

where 1n×m stands for an n-by-m all-ones matrix, and the

residual in the discrete case is

rT (z̃
k
k−1, X ) = δtk − δtk−1 − 14×1δ̇tk−1τ

k
k−1 , (23)

where τkk−1 is the time difference between measurement k−1
and k. The covariance matrix associated with this residual is

defined as a 4-by-4 diagonal matrix Dt,k, with its elements

describing the discretization error.

The GNSS receiver clock drift rate, on the other hand, is

determined by the frequency stability of the receiver clock.

A temperature controlled crystal oscillator (TCXO) is often

chosen as the clock source on low-cost GNSS receivers. Due
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Fig. 7. An illustration of the proposed coarse-to-fine initialization process.
The module takes the local position and velocity result from the VIO and
outputs the corresponding trajectory in the global ECEF frame.

to the noise characteristic of the TCXO, the receiver clock drift

rate is modelled as a random walk process. Thus the residual

becomes

rW(z̃kk−1, X ) = δ̇tk − δ̇tk−1 . (24)

The corresponding variance σdt,k is determined by the stability

of the clock frequency drift.

VII. GNSS INITIALIZATION AND DEGENERATION

The state estimation process described in the last section

is non-linear with respect to the system states. Thus its

performance heavily relies on the initial values. With online

initialization, the initial states can be well recovered from an

unknown situation, without any assumptions or manual inter-

vention. During the system operation, the estimator may also

encounter imperfect situations such as failures or degeneration

of some sensors. As there is already extensive literature on the

topics of initialization and degeneration with respect to the

visual-inertial system, we limit the scope of this section to the

GNSS part of our system . In the following, we first introduce

the proposed coarse-to-fine GNSS initialization approach, and

then we discuss several scenarios that degrade the performance

of our system.

A. Initialization

As previously mentioned, an anchor point with known

global and local coordinates is necessary to fuse the global

GNSS measurement with the local visual and inertial infor-

mation. As the anchor point is already set to the origin of the

local world frame, the ECEF coordinates of the local world

origin need to be calibrated beforehand. In addition, the yaw

offset ψ between the ENU and local world frame, which brings

nonlinearity into the system, also needs a reasonable initial

value in order to converge at the non-linear optimization stage.

In this paper, we propose a multi-stage GNSS-VI initialization

procedure to online calibrate the anchor point and the yaw
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offset. Before the GNSS-VI initialization, we assume that

the VIO has been successfully initialized, i.e., the gravity

vector, initial velocity, initial IMU bias and scale have obtained

initial values [32]. After that, a smooth trajectory in the local

world frame is formed and is ready to be used in the GNSS-

VI initialization phase. The GNSS-VI initialization procedure

requires at least four satellites to be tracked (if all satellites

belong to a single system, and (N +3) if N satellite systems

are involved). In addition, a minimum distance of 4 meters is

also required to obtain reliable initial quantities. As illustrated

in Fig. 7, the online GNSS-VI initialization is conducted in a

coarse-to-fine manner and consists of three steps:

1) Coarse Anchor Point Localization: First, a coarse ECEF

location is obtained by the GNSS SPP algorithm without

any prior information. The SPP algorithm takes all code

pseudorange measurements from the most recent epoch as

input.

2) Yaw Offset Calibration: In the second step, we calibrate

the yaw offset between the ENU frame and the local world

frame using the less noisy Doppler measurement. The initial

yaw offset and receiver clock drift rate are obtained through

the following optimization problem:

minimize
δ̇t,ψ

n∑

k=1

pk∑

j=1

∥∥rD(z̃sjrk , X )
∥∥2
σ
sj

rk,dp

, (25)

where n is the sliding window size and pk is the number of

satellites observed in the k-th epoch inside the window. Here,

we fix the velocity vw
b to the result from the VIO and assume

that δ̇tk is constant within the window. The coarse anchor

location obtained from the first step is used to calculate the

direction vector κs
r and rotation Re

n. Since κs
r and Re

n are

not sensitive to the receiver’s location, a coarse anchor point

location is sufficient. The parameters to be estimated only

include the yaw offset ψ and the average clock bias drift rate δ̇t
within the window. After this step, the transformation between

the ENU frame and local world frame is fully calibrated.

3) Anchor Point Refinement: Finally, we are ready to refine

the previous coarse anchor point and align the local world

trajectory with that in the ECEF frame. Different from the

first step, the position result from the VIO is used as prior

information. The following problem is optimized over the

sliding window measurements:

minimize
δt,pe

anc

( n∑

k=1

pk∑

j=1

∥∥rP(z̃sjrk , X )
∥∥2
σ
sj
rk,pr

+

n∑

k=1

∥∥rT (z̃kk−1, X )
∥∥2
Dt,k

)
.

(26)

The anchor point location and the receiver clock biases

associated with each GNSS epoch are refined through the

optimization of the above problem. After this step, the anchor

point, i.e., the origin of the ENU frame, is set to the origin of

the local world frame. Finally, the initialization phase of the

entire estimator is finished and all necessary quantities have

been assigned initial values.

B. Degenerate Cases

There is no doubt that our fusion system will perform best

in an open area where GNSS signals are stable and satellites

are well-distributed. In the following, we will discuss several

situations which may degrade the performance of our system.

1) Low-speed movement: Since the noise level of Doppler

shift measurement is an order of magnitude lower than that of

the code pseudorange, the yaw offset between the local world

frame and ENU frame can be well constrained by a short

window of Doppler shift measurements. Once the velocity of

the GNSS receiver is below the noise level of the Doppler shift,

the estimated yaw offset may be corrupted by the measurement

noise. In addition, low-speed movement also implies that the

translational distance within the window is short, and thus

the yaw estimation may be affected by the code pseudorange

as well. In an extreme case where the platform experiences

a rotation-only movement, the GNSS cannot provide any

information on the rotational directions, and, in turn, the yaw

component will drift, the same as in the VIO. Thus we fix the

yaw offset variable if the average velocity inside the window is

below the threshold vths. In our system, vths is set to 0.3 m/s,

which holds for a normal pedestrian.

2) Less than four satellites being tracked: If the number of

satellites being tracked is less than four, the SPP or loosely

coupled approaches will fail to resolve the receiver’s location.

However, with the help of the tightly coupled structure, our

system is still able to make use of available satellites and

subsequently update the state vector. Later, in Section VIII-B,

we will investigate the performance degradations under various

satellite configurations.

3) No GNSS signal: In indoor or cluttered environments

where GNSS signal is totally unavailable, the states related to

global information, namely the yaw offset ψ, receiver clock

bias δt and drift rate δ̇t, are no longer observable. However,

the constraints from Eq. (23) and (24) are still kept during

the optimization. The clock drift rate of the low-cost receivers

is quite stable, as we found in a receiver static test. Thus the

(near-)optimum clock drift rate is maintained by the constraint

from Eq. (24). Similarly, the receiver bias is propagated

by the constraint from Eq. (23), which in turn, provides a

good initial value when the GNSS signal is reacquired. This

mechanism improves the stability of our fusion system when

the GNSS signal is intermittent, and eliminates the need for

re-initialization when signal is lost and then reacquired.

VIII. EXPERIMENTAL RESULTS

We conduct both simulation and real-world experiments to

verify the performance of our proposed system. In this section,

we compare our system against VINS-Mono [6], VINS-Fusion

[12] (Monocular+IMU+GNSS) and RTKLIB [33]. Since we

are only interested in the real-time estimation results, the loop

function of VINS-Mono and VINS-Fusion, which optimizes

the pose graph based on revisited scenes, is disabled. We

use RTKLIB3 to compute the GNSS SPP solution and feed

3https://github.com/tomojitakasu/RTKLIB/tree/rtklib 2.4.3
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Fig. 8. Relative pose error of GVINS, VINS-Fusion and VINS-Mono with
respect to the evaluation distance on the simulation environment. The top two
graphs correspond to the four unobservable directions (x, y, z and yaw) of
the VIO and the bottom is the overall relative rotation error.

the obtained GNSS location to VINS-Fusion for a loosely

coupled result. The window size of our system, as well as

that of VINS-Mono and VINS-Fusion, is set to 10. Table I

lists the maximum velocity and overall RTK fixed rate in each

experiment. All experiments in this section are performed on

a desktop PC with an Intel i7-8700K at 3.7 GHz and 32 GB

memory.

TABLE I
VELOCITY AND RTK FIXED RATE PROFILES IN EACH EXPERIMENT

maximum velocity [m/s] RTK fixed rate [%]

Simulation 10.000 N/A
Sports field 1.676 100 %

Indoor-outdoor 2.108 81.3 %
Urban driving 21.424 84.7 %

A. Simulation

1) Setup: The simulation environment is a 30m × 30m ×
30m cube with randomly generated 3D landmarks. These

landmarks are projected to a 10-Hz virtual camera with a 75-

degree-horizontal field of view (FoV) and 55-degree-vertical

FoV, which in turn, generates around 100 visible features

per frame. An additional white noise term with a standard

deviation of 0.5 pixels is added to all feature points. A virtual

200-Hz IMU is rigidly connected to the camera and moves

along a pre-designed 3D path. The standard deviation associ-

ated with the white noise of the accelerometer and gyroscope

is set to 0.05m/s2 and 0.005rad/s respectively, and the

standard deviation of the accelerometer and gyroscope bias

random walk is set to 3.5× 10−4m/s2 and 3.5× 10−5rad/s
respectively. In the meantime, a 10-Hz virtual GNSS receiver

generates code pseudorange and Doppler shift measurements

TABLE II
INITIALIZATION QUALITY METRICS IN SIMULATION AND REAL-WORLD

EXPERIMENTS

Yaw offset error [degree] Anchor point error [m]

Simulation 0.183 0.635
Sports field 0.35 1.491

Indoor-outdoor 0.478 4.370
Urban driving 2.490 4.816

TABLE III
COMPARISON OF RMSE[M] STATISTICS FOR DIFFERENT APPROACHES IN

THE SIMULATION ENVIRONMENT

GVINS VINS-Fusion VINS-Mono RTKLIB

Simulation 0.202 1.162 7.471 2.076
Sports field 0.806 2.149 8.537 2.835

Indoor-outdoor 3.700 6.905 36.651 6.036
Urban driving 4.508 N/A N/A 11.106

using the past or real-time broadcast ephemeris data. The

standard deviation of the code pseudorange and Doppler white

noise shift is set to 1m and 0.5 Hz (∼ 0.1m/s equivalent)

respectively. The simulation experiment lasts for 30 minutes,

with a trajectory over 10 kilometers.

2) Result: In the simulation environment, GNSS-VI is

initialized immediately after visual-inertial alignment since the

system does not need to wait for ephemerides. The initial-

ization quality, which we measure by the error of the local-

ENU yaw offset and anchor point, is presented in Table II.

Fig. 8 shows the relative pose error (RPE) [34] with respect

to the evaluation distance. As can be seen from the figure,

the relative error of VINS-Mono increases with the evaluation

distance in both the translational and rotational directions. In

terms of the rotational directions, the error mainly comes from

its yaw component. This indicates that VINS-Mono suffers

from accumulated drift in the four unobservable directions, x,

y, z and yaw. The error of VINS-Fusion exhibits a similar

tendency when the evaluation distance is short, and remains

at a constant level when the distance increases further. This

implies that VINS-Fusion is able to bound the accumulated

drift by loosely incorporating the GNSS solution. However, the

magnitude of its relative error is much larger compared with

the results of VINS-Mono and GVINS. Thus the smoothness

of the estimator is highly affected by the noisy GNSS mea-

surement. Thanks to the tightly coupled approach we adopt,

our proposed system combines the advantages of both VINS-

Mono and VINS-Fusion. On the one hand, the relative error is

comparable to that of VINS-Mono for the short range, and thus

the smoothness is preserved. On the other hand, the error no

longer accumulates in all directions, so the global consistency

is also guaranteed.

Fig. 9 depicts the absolute trajectory error (ATE) along

with the traveled distance. The error plot of VINS-Mono

keeps increasing as a result of accumulated drift, while it

remains constant for the three other approaches. The ATE of

the RTKLIB SPP algorithm shows the noise level of the GNSS
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Fig. 9. Absolute trajectory error of GVINS, VINS-Fusion, VINS-Mono and
RTKLIB with respect to the traveled distance in the simulation environment.

code pseudorange measurement, and VINS-Fusion is able to

reduce the magnitude of the ATE by combining the result

from the VIO in a loosely coupled manner. By tightly fusing

GNSS raw measurements and visual-inertial data in a unified

framework, our algorithm effectively suppresses the noise of

the GNSS signal and keeps the ATE at a low level. The final

root mean square error (RMSE) of each approach is shown in

Table III.

TABLE IV
SENSOR SPECIFICATIONS FOR DEVICES USED IN REAL-WORLD

ENVIRONMENT

Sensor Type/Item Value Unit

Camera

Sensor Aptina MT9V034
Shutter Global shutter

Resolution 752× 480 pixel
Horizontal field of view 98 degree

Vertical field of view 73 degree
Frequency 20 Hz

IMU

Sensor ADIS16448
Frequency 200 Hz

Gyroscope noise density 7.0× 10−3 ◦/s Hz−0.5

Accelerometer noise density 6.6× 10−4 ms−2 Hz−0.5

GNSS

Receiver u-blox ZED-F9P
Antenna Tallysman TW3882

Raw measurement frequency 10 Hz
RTK solution frequency 10 Hz

B. Real-world Experiments

As illustrated in Fig. 10, the device used in our real-

world experiments is a helmet with a VI-Sensor [35] and

a u-blox ZED-F9P GNSS receiver 4 attached. The detailed

specifications of each sensor are shown in Table IV. Although

the VI-Sensor provides two cameras as a stereo pair, we only

use the left one for all experiments. The u-blox ZED-F9P is a

low-cost multi-band receiver with multi-constellation support.

4https://www.u-blox.com/en/product/zed-f9p-module

Fig. 10. The equipment used in our real-world experiments is a helmet
with a VI-Sensor and a u-blox ZED-F9P attached. The camera and IMU
measurements are well synchronized by the VI-Sensor itself. The PPS signal
from the GNSS receiver is used to trigger the VI-Sensor to align the global
time with the local time.

In addition, the ZED-F9P has an internal RTK engine, which

is capable of providing the receiver’s location at an accuracy

of 1 cm in an open area. The real-time RTCM stream from a

nearby base station is fed to to the ZED-F9P receiver for the

ground truth RTK solution. In terms of time synchronization,

the camera and IMU are synchronized by the VI-Sensor, and

the local time is aligned with the global GNSS time via the

pulse per second (PPS) signal of the ZED-F9P and hardware

trigger of the VI-Sensor.

1) Sports Field Experiment: This experiment is conducted

on a campus sports field where we move along an athletics

track for five laps. The sports field is a typical outdoor

environment, with an open area on one side and buildings

on the other. During the experiment most of the satellites are

well locked and the status of RTK remains fixed throughout

the whole path. In this experiment the global consistency of

our estimator is examined against the repeated trajectory, and

the unstable signal near buildings also poses challenges for

the local smoothness of the results.

In this experiment, GNSS-VI is initialized in 4.1 s after the

visual-inertial alignment is finished. The positioning error of

this experiment is plotted against the ENU axes, as depicted

in Fig. 11. A reference point, which is used to transform

the ECEF result into an ENU frame, is arbitrarily selected

on the sports field. Since VINS-Fusion, RTKLIB and our

system can directly output estimation results in the ECEF

frame, we do not apply any alignment for their trajectories.

For VINS-Mono which only gives results in the local frame,

we perform a 4-DOF alignment between its trajectory and the

ENU path of RTK using the first 2000 poses. Note that the

global positioning results from VINS-Fusion, RTKLIB and our

system suffer from a certain bias due to satellites’ orbit error,

inaccurate atmospheric delay modeling and multipath effect,

while those of VINS-Mono do not have this issue because of

the pre-alignment we performed.

From Fig. 11, we see that VINS-Mono suffers from drifting
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Fig. 11. Positioning error of GVINS, VINS-Fusion, VINS-Mono and
RTKLIB in the sports field experiment. The three graphs correspond to the
three directions of the ENU frame. The results from GVINS, VINS-Fusion
and RTKLIB are compared directly against the RTK ground truth without any
alignment, while the results from VINS-Mono are aligned to the ground truth
trajectory beforehand.

in all three directions. In addition, the periodic fluctuations on

horizontal directions (east and north) imply an obvious drift in

the yaw estimation. On the other hand, the SPP solution from

RTKLIB does not drift at all, but is highly affected by the noisy

GNSS measurement. The error of VINS-Fusion is bounded

as a result of combining the global information from the SPP

result. However, the local accuracy oscillates significantly, and

the local smoothness is ruined in the meantime. As a compar-

ison, the positioning error of our proposed system does not

grow with the traveled distance and is always maintained at a

low level. Meanwhile, the error varies slowly and continuously,

which also indicates that our system effectively suppresses the

noise from unstable GNSS signals.

Table III lists the RMSE of each method, and Fig. 12 shows

the final trajectories on Google Maps. The resulting five laps of

our system overlap with each other and align well with those

of the RTK. Through this experiment, we show that our system

is able to achieve global consistency by suppressing drifts of

the VIO and also preserves the local smoothness under noisy

GNSS conditions.

2) Insufficient Satellites Experiment: Based on the data

sequence of the sports field experiment, we further investigate

the degenerate case where the number of tracked satellites is

less than four. Normally, about 20 satellites are locked in this

sequence, so we intentionally remove most of the satellites in

the non-linear optimization phase in order to test the system

behavior. Starting from the zero-satellite setting, we sequen-

tially add satellites G2, G13 and G5, which are well tracked

during the experiment, to the system to simulate the one-, two-

, and three-satellite situations. In this experiment, we only

use satellites from a single constellation (GPS) because the

general case where M satellites come from N constellations

Fig. 12. The trajectory of RTK, GVINS, VINS-Fusion, VINS-Mono and
RTKLIB in the sports field experiment. The resulting trajectory of our
proposed system is smooth and aligns well with that of the RTK.

Fig. 13. Positioning error of our proposed system in situations where the
number of locked satellites is insufficient. In the “All” setting, the system
utilizes all available (around 20) satellites to perform estimation. The digits
“3”, “2” and “1” correspond to cases where only that number of satellites are
used in the system. When the number becomes “0”, our system does not use
any satellite and degrades to VIO.

is equivalent to the (M − N + 1) single-constellation case

due to unknown clock offsets between different systems. It is

worth mentioning that our system naturally degrades to VIO

when no satellites are available.

The positioning error with five different settings is illus-

trated in Fig. 13. Obviously, our system performs best in

the normal setting where all available satellites are used for

estimation. In the upward direction, the errors of the other four

configurations accumulate in a similar manner. This indicates

that the drift in the upward direction can no longer be elimi-

nated with three satellites or fewer. In terms of the horizontal

directions, no accumulated error and only a small bias occur

for the three-satellite setting, which means our system is
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Fig. 14. The trajectories of our proposed system with different satellite
configurations. GVINS performs best by utilizing all available satellites
(“All”), and degrades to VIO with the zero satellite configuration (“0”). A
small bias occurs when only three satellites are used (“3”), and translational
drift emerges when the satellite number is further reduced to two (“2”). If
there is only one satellite available (“1”), the yaw estimation starts to drift as
well, but with a smaller magnitude than for the VIO (0 satellites).

still able to suppress drift in the easterly, northerly and yaw

directions. If the number of satellites is further reduced to

two, the horizontal positioning error starts growing with the

traveled distance, and we observe small periodic fluctuations

in the northerly direction, which coincides with the case of

the VIO. This implies that the drift in the horizontal plane

occurs and yaw error also emerges, although the magnitude

is very small. Finally, with the one-satellite configuration,

accumulated errors occur on all four unobservable directions

of the VIO. However, the error of the yaw component is still

smaller than that of the VIO, which can be inferred from the

amplitude of the sine-wave-like error curve.

The final trajectories with different satellite settings are

shown in Fig. 14. Through this experiment, we claim that

our system gradually degrades to different extents when the

number of locked satellites varies from three to zero. However,

the proposed system outperforms pure VIO in all settings,

which indicates that our tight-fusion approach can still gain

information from limited satellites.

3) Indoor-outdoor Experiment: This experiment, through

which we aim to test the robustness of our system, is per-

formed in a complex indoor-outdoor environment. The path

of this experiment goes through many challenging scenarios

which may bring failure to a single-sensor-based system. For

example, no features are detected and tracked in dim or bright

areas, and the GNSS signal is highly corrupted or totally

unavailable in cluttered or indoor environments. In addition,

the path is similar to one in a typical exploration task where

no large loops exist. Thus drifting is inevitable for any visual-

inertial SLAM system. The overall distance of the resulting

trajectory is over 3 kilometers, and the altitude change is

around 130 meters.

Fig. 15. Positioning error of GVINS, VINS-Mono and RTKLIB in the
complex indoor-outdoor experiment. We only make a comparison with the
RTK fixed solutions, so the gaps in the figure correspond to situations where
ground truth is unavailable. The result for VINS-Fusion is not shown because
of huge errors and oscillations.

The GNSS-VI initialization takes 9.0 s in this experiment,

with the majority of the time spent waiting for GNSS nav-

igation messages. Fig. 15 shows the ENU positioning error

on the indoor-outdoor sequence. During this experiment, the

RTK ground truth is no longer always available because of

the GNSS-unfriendly environment. Thus, we only make a

comparison with segments where RTK is in a fixed state.

The gaps around 300s correspond to times when we were

under a bridge and passing through woods, which blocked

the sky, and those around 1200s and 1800s correspond to a

situation where we were going up a set of indoor stairs. The

results of VINS-Fusion are not shown in the figure because

of huge errors and oscillations. It can be observed from the

figure that VINS-Mono still experiences large accumulated

errors on the horizontal and yaw directions, while the error

in the upward direction is smaller than that in the previous

experiment because of the altitude excitation on this sequence.

The results of RTKLIB, although it does not drift, vary

significantly around the ground truth value. These oscillations

indicate the condition of the GNSS signal and severely af-

fect the performance of VINS-Fusion. Our proposed system

outperforms the other three approaches in terms of positioning

error, and overcomes the harsh conditions brought by the noisy

GNSS measurement. The results of our system still show a

bias in the upward direction because of the imperfect GNSS

modelling and various error sources, while the upward error

of VINS-Mono starts from zero because of the pre-alignment.

The final trajectories of RTK, aligned VINS-Mono, and our

system are shown in Fig. 16. The figure shows that both

VINS-Mono and our proposed system work well across the

whole sequence, although obvious drift occurs in the results

of VINS-Mono. The discontinuities on the trajectory of RTK
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Fig. 16. Final trajectories in the complex indoor-outdoor experiment. The
results of RTKLIB and VINS-Fusion are not plotted because of large noise
and jitter. The discontinuities on the RTK path are the result of poor GNSS
signal and fixed-loss events.

Fig. 17. Positioning results of RTK and GVINS in the complex indoor-
outdoor experiment.

are the result of the cluttered and indoor environment. The

trajectory of our system follows the RTK result well, and can

be effectively estimated even in GNSS-unfriendly areas.

Although the duration for which RTK fails is short relative

to the whole sequence, the impact can be significant. As

shown in Fig. 17, the positioning result from RTK is smooth

and aligns well with that of GVINS when GNSS is reliable.

However, the solution achieved by RTK results in an error of

up to 80 meters during GNSS outages, and such behavior can

be catastrophic for any location-based tasks. The final RMSE

of all four approaches is shown in Table III.

4) GNSS Factor Experiment: Based on the previous indoor-

outdoor sequence, we further investigate the role of each

Fig. 18. Positioning error of normal GVINS, GVINS w/o Doppler factor
and GVINS w/o code pseudorange factor.

GNSS measurement(i.e., code pseudorange and Doppler shift)

on the performance of our proposed system. By removing

the corresponding graph factor after the initialization phase,

we obtain the positioning error on the code pseudorange-

only and Doppler-only configurations, as depicted in Fig. 18.

In the situation where we only employ the Doppler shift

measurement, an obvious drift occurs, as the system no longer

has global position constraints. In addition, the initialization

error, which is inevitable because we initialize the system from

only a short window of measurements, cannot be eliminated,

and subsequently acts like a bias. If we instead conduct the

code pseudorange-only optimization, the system behaves like

a normal GVINS; i.e., the system does not drift any more and

the initialization error can be eliminated after a short period.

However, as the code pseudorange measurement tends to be

noisy and receiver clock biases are no longer constrained by

the Doppler shift, the smoothness of the estimation result is

affected by the unstable signal, as shown in the magnified

portion of Fig. 18. Through this experiment, we show that the

code pseudorange measurement is the key to eliminating the

accumulated drift of the VIO. However, with the aid of the

Doppler shift measurement, the estimation result tends to be

smoother under unstable GNSS conditions.

5) Urban Driving Experiment: In this experiment we test

our system with a challenging urban driving scenario in one

of the most populous districts of Hong Kong. The experiment

begins at dusk and lasts over 40 minutes until complete

darkness, with a total distance of 22.9 km. The data sequence

covers heterogeneous situations, such as day and night, urban

canyons and open sky outdoors, etc. The challenging cases,

including high-rise buildings, low illumination, fast movement

and highly dynamic environments, are impracticable for a
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(a) Urban canyon (b) Dynamic and dark scene

Fig. 19. Two image samples illustrating challenging situations in the urban
driving experiment. In the left image, the GNSS receiver is surrounded by
high-rise buildings, where the multipath effect is obvious. The right image
shows a highly dynamic scenario with low illumination and a high traffic
flow on an expressway.

Fig. 20. Positioning error of GVINS, VINS-Mono and RTKLIB in the urban
driving experiment. The gaps in the figure correspond to RTK’s non-fixed
status. The results of VINS-Fusion and VINS-Mono are not shown because
of failure.

single-sensor based algorithm. Two image samples from the

data sequence are shown in Fig. 19.

During the experiment, GNSS outages occur constantly even

in the outdoor environments because of the traffic signs and

bridges above the road. In addition, a severe multipath effect

is observed on the GNSS measurements when the receiver is

surrounded by high-rise buildings in urban canyons. Thus, a

robust norm is applied on the code pseudorange and Doppler

shift factors to re-weight GNSS outliers.

On this sequence, VINS-Mono, which only relies on visual

and inertial sensors to perform estimation, fails at 1200s when

the sky becomes dark and many vehicles pass by. The failure

of VINS-Mono occurs at 54% of the total distance, with

an RMSE of 760.22 m indicating a large drift. The loosely

coupled GNSS-visual-inertial algorithm, VINS-Fusion, does

not explicitly show any failures. However, huge oscillations

are observed in its results, with the corresponding RMSE in

the order of 105 m. Thus, we also mark the results of VINS-

Fusion as a failure case.

In this experiment, GNSS-VI is successfully initialized

within 2.0 s after the visual-inertial initialization has finished.

Fig. 21. Positioning results of RTK and GVINS in the challenging urban
driving experiment.

Fig. 20 shows the positioning error of GVINS and RTKLIB on

three axes of the ENU frame respectively. The extreme errors

from the results of RTKLIB, which we define as above 100m,

are not shown, in order to limit the scale of the plot. The

large-magnitude oscillations of RTKLIB on this data sequence

clearly illustrate the terrible quality of the GNSS signal in

the harsh environment, especially around 400 s and 1350 s,

when the receiver is surrounded by high-rise buildings and

the multipath effect is severe. Our proposed system, GVINS,

survives through the whole sequence, which again proves

the robustness of our system. The slowly varying and well-

bounded positioning error of GVINS in Fig. 20 shows the local

smoothness and global consistency properties of the proposed

method.

Fig. 21 illustrates the positioning results of RTK and

GVINS. We see that the trajectory of our system aligns well

with that of RTK on the horizontal directions. Since we do not

perform any alignment on the results of GVINS, an obvious

bias, in addition to varying error, can be observed on the

vertical direction. The RMSE of GVINS and RTKLIB is also

included in Table III, and the fields of VINS-Mono and VINS-

Fusion are marked as N/A because of failures.

The final trajectories on Google Maps are depicted in

Fig. 22, where the RTK result is plotted on top of that of

GVINS. Note that GNSS outages occur constantly, even on an

open-sky expressway because of the traffic signs and viaducts.

By stacking the trajectory of RTK on top of that of GVINS, the

discontinuities on the path of RTK, corresponding to the RTK

non-fixed status over a long distance, are clearly illustrated

in the figure. Due to the large scale of the map, the frequent

short-term RTK outages cannot be observed from the figure.

In terms of the computation time, the feature detection and

tracking, which are same for VINS-Mono, VINS-Fusion and

GVINS, costs 7.28 ms per frame. The window optimization of

VINS-Mono takes 21.76ms on average. For VINS-Fusion, the

time spent on pose graph optimization grows as the travelled
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Fig. 22. The trajectories of RTK and GVINS in the urban driving experiment.
The two paths totally align with each other. The trajectory of RTK is plotted
on the top of that of GVINS so that the RTK non-fixed status can be clearly
shown by the discontinuities.

distance increases. The lower limit is 1.12ms at the beginning,

and the upper bound is 1018.46 ms in the end, with an

average value of 404.83 ms. In contrast, our proposed GVINS

only needs 21.91 ms for the window optimization thanks to

the tightly coupled and sliding-window approaches we adopt.

Considering the 20-Hz camera we use in our experiments, our

system can safely run in real-time, while obvious lags may be

observed in the case of VINS-Fusion as the travelled distance

grows.

IX. CONCLUSION

In this paper, we propose a tightly coupled state estimation

method that fuses measurements from a camera, IMU and

GNSS receiver under a non-linear optimization-based frame-

work. Our system starts with an initialization phase, during

which a coarse-to-fine procedure is employed to calibrate

online the transformation between the local and global frames.

In the optimization phase, GNSS raw measurements are

modelled and formulated using the probabilistic factor graph.

The degenerate cases are considered and carefully handled to

keep the system robust in complex environments. We conduct

experiments in both simulation and real-world environments to

evaluate the performance of our system, and the results show

that our system effectively eliminates the accumulated drift

and preserves the local accuracy of a typical VIO system.

Future work consists of a theoretical analysis for various

degenerate scenarios. We aim to build an online observability-

aware state estimator which can deal with complex environ-

ments and possible sensor failure. In addition, we are also

interested in reducing the absolute positioning error by com-

bining GNSS measurements from different frequency bands

[36] or using PPP techniques to handle distributed localization

tasks in swarm systems.
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