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GWAS and fine-mapping of livability and
six disease traits in Holstein cattle
Ellen Freebern1†, Daniel J. A. Santos1†, Lingzhao Fang1,2, Jicai Jiang1, Kristen L. Parker Gaddis3, George E. Liu2,

Paul M. VanRaden2, Christian Maltecca4, John B. Cole2 and Li Ma1*

Abstract

Background: Health traits are of significant economic importance to the dairy industry due to their effects on milk

production and associated treatment costs. Genome-wide association studies (GWAS) provide a means to identify

associated genomic variants and thus reveal insights into the genetic architecture of complex traits and diseases.

The objective of this study is to investigate the genetic basis of seven health traits in dairy cattle and to identify

potential candidate genes associated with cattle health using GWAS, fine mapping, and analyses of multi-tissue

transcriptome data.

Results: We studied cow livability and six direct disease traits, mastitis, ketosis, hypocalcemia, displaced abomasum,

metritis, and retained placenta, using de-regressed breeding values and more than three million imputed DNA

sequence variants. After data edits and filtering on reliability, the number of bulls included in the analyses ranged

from 11,880 (hypocalcemia) to 24,699 (livability). GWAS was performed using a mixed-model association test, and a

Bayesian fine-mapping procedure was conducted to calculate a posterior probability of causality to each variant

and gene in the candidate regions. The GWAS detected a total of eight genome-wide significant associations for

three traits, cow livability, ketosis, and hypocalcemia, including the bovine Major Histocompatibility Complex (MHC)

region associated with livability. Our fine-mapping of associated regions reported 20 candidate genes with the

highest posterior probabilities of causality for cattle health. Combined with transcriptome data across multiple

tissues in cattle, we further exploited these candidate genes to identify specific expression patterns in disease-

related tissues and relevant biological explanations such as the expression of Group-specific Component (GC) in the

liver and association with mastitis as well as the Coiled-Coil Domain Containing 88C (CCDC88C) expression in CD8

cells and association with cow livability.

Conclusions: Collectively, our analyses report six significant associations and 20 candidate genes of cattle health.

With the integration of multi-tissue transcriptome data, our results provide useful information for future functional

studies and better understanding of the biological relationship between genetics and disease susceptibility in cattle.

Keywords: GWAS, Fine mapping, Health trait, Gene expression, Dairy cattle

Background
One of the fundamental goals of animal production is to

profitably produce nutritious food for humans from

healthy animals. Profitability of the dairy industry is in-

fluenced by many factors, including production,

reproduction, and animal health [1]. Cattle diseases can

cause substantial financial losses to producers as the

result of decreased productivity, including milk that

must be dumped, and increased costs for labor and

veterinary care. Indirect costs associated with reduced

fertility, reduced production after recovery, and in-

creased risk of culling also can be substantial. For

example, ketosis is a metabolic disease that occurs in

cows during early lactation and hinders the cow’s energy

intake, thus subsequently reduces milk yield and in-

creases the risk of displaced abomasum, which is very

costly [2]. Mastitis is a major endemic disease of dairy

cattle that can lead to losses to dairy farmers due to

contamination, veterinary care, and decreased milk
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production [3]. In addition, cows may develop milk

fever, a metabolic disease that is related to a low blood

calcium level known as hypocalcemia [4]. Another com-

mon disease in cattle is metritis, which is inflammation

of the uterus and commonly seen following calving

when cows have a suppressed immune system and are

vulnerable to bacterial infection [5]. Complications dur-

ing delivery can also result in a retained placenta [6].

Many of the postpartum diseases are caused by the en-

ergy imbalance due to onset of lactation, especially in

high producing cows. These complex diseases are jointly

affected by management, nutrition, and genetics. A bet-

ter understanding of the underlying genetic components

can help the management and genetic improvements of

cattle health.

Genome-wide association studies (GWAS) have been

successful at interrogating the genetic basis of complex

traits and diseases in cattle [7–10]. Because complex

traits are influenced by many genes, their interactions,

and environment and due to the high level of linkage

disequilibrium (LD) between genomic variants, pinpoint-

ing causal variants of complex traits has been challen-

ging [11]. Fine-mapping is a common post-GWAS

analysis, where posterior probabilities of causality are

assigned to candidate variants and genes. In humans,

fine-mapping of complex traits are currently on-going

along or following GWAS studies. The utility of fine-

mapping in cattle studies, however, has been limited by

data availability and the high levels of LD present in cat-

tle populations [12–14]. To circumvent this challenge, a

recent study developed a fast Bayesian Fine-MAPping

method (BFMAP), which performs fine-mapping by inte-

grating various functional annotation data [10]. Addition-

ally, this method can be exploited to identify biologically

meaningful information from candidate genes to enhance

the understanding of complex traits [15].

The U.S. dairy industry has been collecting and evalu-

ating economically important traits in dairy cattle since

the late 1800s, when the first dairy improvement pro-

grams were formed. Since then, a series of dairy traits

have been evaluated, including production, body con-

formation, reproduction, and health traits. Cow livability

was included in the national genomic evaluation system

by the Council on Dairy Cattle Breeding (CDCB) in

2016 [16]. This trait reflects a cow’s overall ability to stay

alive in a milking herd by measuring the percentage of

on-farm deaths per lactation. Cow livability is partially

attributable to health and can be selected to provide

more milk revenue and less replacement of cows. In

2018, six direct health traits were introduced into the

U.S. genomic evaluation, including ketosis, mastitis,

hypocalcemia or milk fever, metritis, retained placenta,

and displaced abomasum [17]. These phenotypic records

along with genotype data collected from the U.S. dairy

industry provide a unique opportunity to investigate the

genetic basis of cattle health. The aim of our study is,

therefore, to provide a powerful genetic investigation of

seven health traits in cattle, to pinpoint the candidate

disease genes and variants with relevant tissue-specific

expression, and to provide insights into the biological

relationship between candidate genes and the disease

risk they may present on a broad scale.

Results
Genome-wide association study of livability and six direct

health traits

We conducted genome-wide association analyses of seven

health related traits in 27,214 Holstein bulls that have

many daughter records and thus accurate phenotypes

using imputed sequence data and de-regressed breeding

values. After editing and filtering on reliability, we in-

cluded 11,880 to 24,699 Holstein bulls across the seven

traits (Table 1). Compared to the analysis using predicted

transmitting ability (PTA) as phenotype (Additional file 1),

GWAS on de-regressed PTA values produced more

consistent and reliable results [18]. While different results

between analyses of raw and de-regressed PTAs were

obtained for the six health traits, little difference was

observed for cow livability, which have more records and

higher reliabilities (Table 1 and Additional file 2). There-

fore, we only considered association results obtained with

de-regressed PTAs in all subsequent analyses.

Out of the seven health traits, we detected significantly

associated genomic regions only for three traits after

Bonferroni correction, hypocalcemia, ketosis, and livability

(Fig. 1). In total, we had one associated region on BTA 6

for hypocalcemia, one region on BTA 14 for ketosis, and

six regions for cow livability on BTA 5, 6, 14, 18, 21, and

23, respectively (Table 2). Notably, the bovine Major

Histocompatibility Complex (MHC) region on BTA 23

[20] is associated with cow livability. Additionally, associ-

ation signals on BTA 16 for ketosis (P-value = 1.9 × 10− 8)

and BTA 6 for mastitis (P-value = 4.2 × 10− 8) almost

reached the Bonferroni significance level. Other traits had

prominent signals, but their top associations were below

Table 1 Number of Holstein bulls, reliability of PTA, and

heritability (h2) for six disease traits and cow livability

Trait N h2 Average Reliability

Hypocalcemia 11,880 0.006 0.228

Displaced Abomasum 13,229 0.011 0.269

Ketosis 12,468 0.012 0.260

Mastitis 14,382 0.031 0.338

Metritis 13,653 0.014 0.281

Retained Placenta 13,541 0.001 0.266

Livability 24,699 0.040 0.397
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the Bonferroni threshold. Since sequence data have the

highest coverage of functional variants in our study, we in-

cluded all these regions to query the Cattle QTLdb for a

comparative analysis.

When compared to existing studies, many of these health

related regions have been previously associated with milk

production or disease related traits in cattle (Table 2) [19].

The top associated region for hypocalcemia is around 10,

Fig. 1 Manhattan plots for hypocalcemia (CALC), displaced abomasum (DSAB), ketosis (KETO), mastitis (MAST), metritis (METR), retained placenta

(RETP) and cow livability. The genome-wide threshold (red line) corresponds to the Bonferroni correction
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521,824 bp on BTA 6, where QTLs were reported for body/

carcass weight and reproduction traits with nearby genes

being Translocation Associated Membrane Protein 1 Like

(TRAM1L1) and N-Deacetylase And N-Sulfotransferase

(NDST4). The region around 2,762,595 bp on BTA 14 for

ketosis is involved with milk and fat metabolism and the

well-known Diacylglycerol O-Acyltransferase 1 (DGAT1)

gene. The region around 7,048,452 bp on BTA 16 for keto-

sis was also previously associated with fat metabolism. The

region around 88,868,886 bp on BTA 6 associated with

mastitis is close to the GC gene with many reported QTLs

associated with mastitis [10, 21–23]. This region was also

associated with cow livability in this study with QTLs in-

volved with the length of productive life [24]. For the six re-

gions associated with cow livability (Table 2), we found

reported QTLs related to productive life, somatic cell

count, immune response, reproduction, and body conform-

ation traits [24]. The top associated regions for displaced

abomasum on BTA 4 and BTA 8 have been previously as-

sociated with cattle reproduction and body conformation

traits [25–27]. For metritis, the top associated variant, 3,

662,486 bp on BTA4, is close to Small nucleolar RNA MBI-

161 (SNORA31), and around ±1Mb upstream and down-

stream were QTLs associated with production,

reproduction, and dystocia [28]. Genes RUN Domain Con-

taining 3B (RUNDC3B; BTA 4), Quinoid Dihydropteridine

Reductase (QDPR; BTA 6), Transmembrane Protein 182

(TMEM182; BTA 11), and Zinc Finger Protein (ZFP28;

BTA 18) are the closest genes to the retained placenta sig-

nals with previous associations related to milk production,

productive life, health and reproduction traits, including

calving ease and stillbirth [8].

Association of livability QTL with other disease traits

Cow livability is a health-related trait that measures the

overall robustness of a cow. As the GWAS of cow liv-

ability was the most powerful among the seven traits

and detected six QTL regions, we evaluated whether

these livability QTLs were also associated with other dis-

ease traits. Out of the six livability QTLs, four of them

were related to at least one disease trait at the nominal

significance level (Table 3). All these overlapped associa-

tions exhibited consistent directions of effect: alleles re-

lated to longer productive life were more resistant to

diseases. The most significant QTL of livability on BTA

18 is associated with displaced abomasum and metritis,

both of which can occur after abnormal birth. This QTL

has been associated with gestation length, calving traits,

and other gestation and birth related traits [15]. The

QTL on BTA 6 is associated with hypocalcemia, ketosis,

and mastitis. The BTA 21 QTL is associated with hypo-

calcemia and mastitis. The BTA 5 QTL is related to dis-

placed abomasum and ketosis. Interestingly, the bovine

MHC region on BTA 23 is not associated with the

Table 2 Top SNPs and candidate genes associated with hypocalcemia (CALC), displaced abomasum (DSAB), ketosis (KETO), mastitis

(MAST), metritis (METR), retained placenta (RETP) and cow livability

Trait Chr Position MAF P-value Genes Nearby Traits Previously Associatedb

CALC 6 10,521,824 0.014 8.3 × 10−10a TRAM1L1, NDST4 Subcutaneous fat

DSAB 4 97,101,981 0.021 4.4 × 10−7 PLXNA4, CHCHD3 Milk protein yield

DSAB 8 83,052,202 0.109 1.3 × 10−7 FANCC Stature

DSAB 29 35,977,236 0.073 1.3 × 10−7 NTM Milk kappa-casein percentage

KETO 14 2,762,595 0.033 1.8 × 10− 9a
LY6K Milk protein percentage

KETO 16 7,048,452 0.019 1.9 × 10−8 KCNT2 Milk fat percentage

MAST 6 88,868,886 0.460 4.2 × 10−8 GC Clinical mastitis

METR 4 3,662,486 0.011 2.7 × 10−7 RF00322 Milk protein yield

RETP 4 32,578,298 0.218 7.4 × 10−7 RUNDC3B Calving ease

RETP 6 117,620,548 0.026 7.2 × 10−7 QDPR Milk kappa-casein percentage

RETP 11 7,465,110 0.060 9.1 × 10− 8
TMEM182 Abomasum displacement

RETP 18 64,492,219 0.012 1.6 × 10−7 ZFP28 Still birth

Livability 5 88,823,164 0.472 1.5 × 10−10a ABCC9 Productive life

Livability 6 88,801,999 0.454 1.7 × 10−18a GC Clinical mastitis

Livability 14 8,536,538 0.020 5.3 × 10−10a ZFAT Productive life

Livability 18 58,194,319 0.075 1.1 × 10−20a ZNF614 Bovine respiratory disease

Livability 21 56,700,449 0.013 8.6 × 10−11a CCDC88C Type

Livability 23 26,131,593 0.017 3.8 × 10−9a BLA-DQB Antibody-mediated immune response

aGenome-wide significance after Bonferroni correction
bInformation obtained from the Animal QTLdb for cattle [19]
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immune-related disease traits, which suggests that those

genes do not explain substantial variation for the pres-

ence or absence of a disease during a lactation and we

have no enough power to detect the association.

Fine-mapping analyses and validation from tissue-specific

expression

Focusing on the candidate QTL regions in Table 2, the

fine-mapping analysis calculated posterior probabilities

of causalities (PPC) for individual variants and genes to

identify candidates (Table 4), which were largely

consistent with the GWAS results. A total of eight genes

detected in GWAS signals were also successfully fine-

mapped, including Plexin A4 (PLXNA4), FA Comple-

mentation Group C (FANCC), Neurotrimin (NTM) for

displaced abomasum, GC for mastitis and livability, ATP

Binding Cassette Subfamily C Member 9 (ABCC9) for

livability, QDPR for retained placenta, Zinc Finger And

AT-Hook Domain Containing (ZFAT) and CCDC88C

for livability. In addition, fine-mapping identified new

candidate genes, including Cordon-Bleu WH2 Repeat

Protein (COBL) on BTA 4 for metritis, LOC783947 on

Table 3 Association results of the top SNPs associated with cow livability for hypocalcemia, displaced abomasum, ketosis, mastitis,

and metritis. P-values larger than 0.05 and their Beta coefficients were excluded

Chr Position Livability Hypocalcemia Displaced Abomasum Ketosis Mastitis Metritis

P-value Beta P-value Beta P-value Beta P-value Beta P-value Beta P-value Beta

5 88,823,164 1.5 × 10−10 −0.43 – – 0.04 −0.14 0.04 −0.21 – – – –

6 88,801,999 1.7 × 10−18 −0.66 5.0 × 10−3 −0.2 – – 2.1 × 10− 3
− 0.35 4.2 × 10−7 −0.75 – –

14 8,536,538 5.3 × 10−10 − 1.1 – – – – – – – – – –

18 58,194,319 1.1 × 10−20 −1.0 – – 1.1 × 10−4 −0.47 – – – – 0.01 −0.51

21 56,700,449 8.6 × 10−11 − 1.5 0.03 −0.58 – – – – 9.1 × 10−3 − 1.43 – –

23 26,131,593 3.8 × 10−9 0.71 – – – – – – – – – –

Table 4 List of candidate genes with highest posterior probability of causality (PPC) and their minimum P-values for casualty

(M_Causality) and GWAS (M_GWAS) associated with hypocalcemia (CALC), displaced abomasum (DSAB), ketosis (KETO), mastitis

(MAST), metritis (METR), retained placenta (RETP) and cow livability and their tissue specific expression

Trait Gene Chr Start End M_GWAS
P-value

M_Casualty
P-value

PPC Type Tissue-Specific Expression

DSAB PLXNA4 4 96,574,369 97,120,718 4.5 × 10−7 6.5 × 10−7 0.49 protein_coding Aorta, Liver, Trachea

DSAB FANCC 8 83,022,522 83,228,696 1.3 × 10−7 2.1 × 10−9 0.79 protein_coding Thyroid

DSAB NTM 29 35,153,012 36,117,726 1.3 × 10−7 1.7 × 10− 7 0.99 protein_coding Central Nervous System

LOC107133096 14 2,760,093 2,762,878 2.0 × 10−9 5.9 × 10−8 0.92 IncRNA –

KETO PARP10 14 2,024,509 2,031,477 7.0 × 10−7 1.7 × 10−5 0.16 protein_coding –

DGAT1 14 1,795,425 1,804,838 1.0 × 10−6 1.7 × 10−5 0.08 protein_coding Bone Marrow

KETO LOC783947 16 7,050,445 7,055,021 1.9 × 10−8 1.3 × 10−8 1.00 lncRNA –

MAST GC 6 88,687,845 88,739,292 2.0 × 10−7 1.2 × 10−7 0.15 protein_coding Kidney, Cortex, Liver

METR COBL 4 4,494,925 4,795,904 4.3 × 10−3 7.7 × 10−4 1.00 protein_coding –

LOC100296627 4 32,573,079 32,613,237 7.6 × 10−7 4.0 × 10−13 1.00 protein_coding –

RETP MALSU1 4 32,051,590 32,077,036 7.5 × 10−4 1,1 × 10−13 0.98 protein_coding –

ABCB1 4 33,013,208 33,095,708 6.3 × 10−1 8.4 × 10−3 0.28 protein_coding –

RETP TMEM182 11 7,449,519 7,492,871 9.0 × 10−8 9.9 × 10−8 0.96 protein_coding Heart, Muscle, Tongue

RETP LOC783493 18 63,799,608 63,803,213 8.3 × 10−3 1.2 × 10−5 0.94 Pseudogene –

Livability ABCC9 5 8,867,2047 88,834,491 1.5 × 10−10 1.5 × 10−10 1.00 protein_coding Aorta, Atrium, Lung, Muscle
Uterine myometrium, Ventricle

Livability GC 6 88,687,845 88,739,292 1.9 × 10−17 1.4 × 10− 19 0.03 protein_coding Kidney, Cortex, Liver

Livability ZFAT 14 8,144,774 8,305,775 2.1 × 10−5 3.2 × 10−5 0.23 protein_coding –

Livability LOC618463 18 57,587,990 57,594,549 1.7 × 10−20 3.1 × 10−20 0.20 protein_coding –

Livability CCDC88C 21 56,645,629 56,773,438 8.6 × 10−11 8.9 × 10−11 0.95 protein_coding CD8_cell

Livability LOC101908667 23 25,904,084 25,909,461 2.1 × 10−8 7.9 × 10−9 0.31 lncRNA –

Freebern et al. BMC Genomics           (2020) 21:41 Page 5 of 11



BTA 16 for ketosis, LOC783493 on BTA 18 for retained

placenta, and LOC618463 on BTA 18 and

LOC101908667 on BTA 23 for livability. The genes

LOC107133096 on BTA 14 and LOC100296627 on BTA

4 detected respectively for ketosis and retained placenta

by fine mapping were close to two genes (DGAT1 and

ABCB1 or ATP Binding Cassette Subfamily B Member

1) that have known biological association with milk pro-

duction and other traits. In addition to the detected

genes in these two cases, we further investigated genes

with a potential biological link with disease, and genes

with the highest PPC (PARP10 or PolyADP-ribose poly-

merase 10 and MALSU1 or Mitochondrial Assembly Of

Ribosomal Large Subunit 1) that were located between

these two references (Table 4). No genes were detected

by fine-mapping in the signal on BTA 6 for hypocalce-

mia (Fig. 1), given that the nearest genes were beyond a

1Mb window boundary.

In addition, we investigated the expression levels of

fine-mapped candidate genes across cattle tissues using

existing RNA-Seq data from public databases. While

many genes are ubiquitously expressed in multiple tis-

sues, several fine-mapped genes were specifically

expressed in a few tissues relevant to cattle health

(Table 4). Interesting examples of tissue-specific expres-

sion and candidate genes included liver with mastitis

and livability (GC), and CD8 cells with livability

(CCDC88C). Although this analysis is preliminary, these

results provide additional support for these candidate

genes of cattle health and help the understanding of how

and where their expression is related with dairy disease

resistance.

Discussion
In this study, we performed powerful GWAS analyses of

seven health and related traits in Holstein bulls. The

resulting GWAS signals were further investigated by a

Bayesian fine-mapping approach to identify candidate

genes and variants. Additionally, we included tissue-

specific expression data of candidate genes to reveal a

potential biological relationship between genes, tissues

and cattle diseases. Finally, we provide a list of candidate

genes of cattle health with associated tissue-specific ex-

pression that can be readily tested in future functional

validation studies.

In our GWAS analysis, we used de-regressed PTA as

phenotype and incorporated the reliabilities of the de-

regressed PTAs of livability and six disease traits. Three

traits were found to have significant association signals,

hypocalcemia, ketosis, and livability, which demonstrated

the power of our GWAS study. For example, we also ob-

served regions associated with livability, in particular,

with the region around 58,194,319 on BTA 18 to possess

a large effect on dairy and body traits. Our finding was

corroborated by a BLAST analysis that identified a re-

lated molecule, Siglec-6, which is expressed in tissues

such as the human placenta [29]. Further analyses can

be performed to characterize the functional implications

of these association regions for the seven health and re-

lated traits in cattle.

When using PTA values as phenotype in GWAS, we

observed different regions to be associated, compared to

the GWAS with de-regressed PTA (Fig. 1 and Additional

file 2). For example, a genomic region larger than 4Mb

on BTA 12 was associated with most of the health traits

(Additional file 2). Although these generally appeared as

clear association signals, we observed only a few HD

SNP markers to be associated, which may be due to

poor imputation. Additionally, this region was reported

by VanRaden et al. as having low imputation accuracy

[30]. The lower imputation accuracy on BTA 12 was de-

termined to be caused by a gap between the 72.4 and

75.2Mb region where no SNPs were present on the HD

SNP array [30]. Additional studies are needed to address

this imputation issue in order to improve the accuracy

and power of future analysis on this region. Since differ-

ent family relationship will affect the GWAS results

when using direct versus deregressed PTAs, these differ-

ences in relatedness can lead to false positive GWAS re-

sults, especially for low-quality imputed data. In sum,

this comparison of GWAS using PTA and de-regressed

PTA supports the use of de-regressed PTA values with

reliabilities accounted for in future GWAS studies in

cattle.

Application of BFMAP for fine-mapping allowed us to

identify 20 promising candidate genes (Table 4) and a

list of candidate variants (Additional file 3) for health

traits in dairy cattle. We found that most of the genes

possess tissue-specific expression, notably the detected

gene LOC107133096 on BTA 14 for ketosis. This gene is

located close to the DGAT1 gene that affects milk fat

composition. A previous candidate gene association

study by Tetens et al. proposed DGAT1 to be an indica-

tor of ketosis [31]. In that study, the DGAT1 gene was

determined to be involved in cholesterol metabolism,

which is known to be an indicator of a ketogenic diet in

humans [31]. This result highlights a potential pathway

in the pathogenesis of ketosis that may be an area for fu-

ture research. Additionally, ketosis is a multifactorial dis-

ease that is likely influenced by multiple loci. Therefore,

implementation of a functional genomics approach

would allow identification of more genetic markers, and

in doing so, improve resistance to this disease. For dis-

placed abomasum, the gene PLXNA4 was observed to

have an association with the variant 97,101,981 bp on

BTA 4 (Table 4 and Additional file 3). Our analysis also

detected tissue-specific expression for PLXNA4 in the

aorta. A previous study on atherosclerosis found that
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Plexin-A4 knockout mice exhibited incomplete aortic

septation [32]. These findings provide some support for

the potential association of PLXNA4 with cattle health.

Six signals were observed as clear association peaks for

livability (Fig. 1). The associated variant at 8,144,774 – 8,

305,775 bp on BTA 14 was close to the gene ZFAT,

which is known to be expressed in the human placenta

[33]. In particular, the expression of this gene is down-

regulated in placentas from complicated pregnancies.

Additionally, a GWAS study performed in three French

dairy cattle populations found the ZFAT gene to be the

top variant associated with fertility [34]. Since calving

and other fertility issues could be risk factors to cause

animal death, these results lend support of this candidate

gene with the livability. On BTA18, the associated vari-

ant at 57,587,990 – 57,594,549 bp was near the gene

LOC618463, which has been previously identified as a

candidate gene associated with calving difficulty in three

different dairy populations [35]. For the associated vari-

ant at 56,645,629 – 56,773,438 bp on BTA21, it is lo-

cated close to the CCDC88C gene (Table 4). In addition

to our detection of tissue-specific expression with the

CD8 cell, this gene has been associated with traits such

as dairy form and days to first breeding in cattle [10].

It is notable that our GWAS signal for livability at 25,

904,084 – 25,909,461 bp on BTA 23 is located in the bo-

vine MHC region (Table 4). The gene we detected was

LOC101908667, which is one of the immune genes of

MHC. This is of considerable interest because MHC

genes have a role in immune regulation. The MHC com-

plex of cattle located on BTA 23 is called the bovine

leukocyte antigen (BoLA) region. This complex of genes

has been extensively studied, such as in research investi-

gating the polymorphism of genes in BoLA and their as-

sociation with disease resistance [36]. Therefore, our

research highlights a gene of considerable interest that

should be further explored to understand its importance

in breeding programs and its potential role in resistance

to infectious diseases.

Additionally, we identified an associated variant for liv-

ability at 88,687,845 - 88,739,292 bp on BTA6 was close

to the gene GC, which was specifically expressed in tis-

sues such as the liver (Table 4). This gene has been pre-

viously studied in an association analysis that

investigated the role of GC on milk production [21]. It

found that the gene expression of GC in cattle is pre-

dominantly expressed in the liver. Moreover, affected

animals displayed decreased levels of the vitamin D-

binding protein (DBP) encoded by GC, highlighting the

importance of GC for a cow’s production. Additionally,

liver-specific GC expression has been identified in

humans, specifically regulated through binding sites for

the liver-specific factor HNF1 [37]. Collectively, these re-

sults offer evidence for GC expression in the liver, which

may be an important factor for determining cow

livability.

Interestingly, the GC gene was also detected to have

tissue-specific expression in the liver for mastitis

(Table 4). This is corroborated by a study on cattle in-

fected with mastitis to possess limited DBP concentra-

tion [21]. Vitamin D plays a key part in maintaining

serum levels of calcium when it is secreted into the milk

[38]. Since GC encodes DBP, it was suggested that the

GC gene has a role in regulating milk production and

the incidence of mastitis infection in dairy cattle. It is

important to note that bovine mastitis pathogens, such

as Staphylococcus aureus and Escherichia coli, also com-

monly occur as pathogens of humans. Therefore, devel-

opment of molecular methods to contain these

pathogens is of considerable interest for use in human

medicine to prevent the spread of illness and disease.

For instance, the use of enterobacterial repetitive inter-

genic consensus typing enables trace back of clinical epi-

sodes of E. coli mastitis, thus allowing for an evaluation

of antimicrobial products for the prevention of mastitis

[39]. Continued investigation using molecular methods

are needed to understand the pathogenesis of mastitis

and its comparative relevance to human medicine. Based

on the fine mapping for metritis, the new gene assigned

was COBL on BTA 6 (Table 4). However, this candidate

gene was found to have variants only passing the nom-

inal significance level for causality and for GWAS. Fur-

ther exploration of this candidate gene is needed to

contribute to our understanding of its function and po-

tential tissue-specific expression.

For retained placenta, the gene TMEM182 was ob-

served to have an association with a variant between 7,

449,519 – 7,492,871 bp on BTA11 (Table 4). Our tissue-

specific analysis identified TMEM182 to have an associ-

ation in muscle tissues. A study performed in Canchim

beef cattle investigated genes for male and female repro-

ductive traits and identified TMEM182 on BTA 11 as a

candidate gene that could act on fertility [40]. Addition-

ally, the gene TMEM182 has been found to be up-

regulated in brown adipose tissue in mice during adipo-

genesis, which suggests a role in the development of

muscle tissue [41]. One important factor that causes re-

tention of fetal membranes in cattle is the impaired

muscular tone of organs such as the uterus and abdo-

men [42]. This suggests the importance of the

TMEM182 gene and the need for future studies to better

understand its role in the cattle breeding program.

Conclusions
In this study, we reported eight significant associations

for seven health and related traits in dairy cattle. In total,

we identified 20 candidate genes of cattle health with the

highest posterior probability, which are readily testable
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in future functional studies. Several candidate genes ex-

hibited tissue-specific expression related to immune

function, muscle growth and development, and neuro-

logical pathways. The identification of a novel associ-

ation for cow livability in the bovine MHC region also

represented an insight into the biology of disease resist-

ance. Overall, our study offers a promising resource of

candidate genes associated with complex diseases in cat-

tle that can be applied to breeding programs and future

studies of disease genes for clinical utility.

Methods
Ethics statement

This study didn’t require the approval of the ethics com-

mittee, as no biological materials were collected.

Genotype data

Using 444 ancestor Holstein bulls from the 1000 Bull

Genomes Project as reference, we previously imputed se-

quence variants for 27,214 progeny-tested Holstein bulls

that have highly reliable phenotypes via FindHap version

3 [43]. We applied stringent quality-control procedures

before and after imputation to ensure the data quality.

The original 777,962 HD SNPs were reduced to 312,614

by removing highly correlated SNP markers with a |r|

value higher than 0.95 and by prior editing. Variants

with a minor allelic frequency (MAF) lower than 0.01,

incorrect map locations (UMD3.1 bovine reference as-

sembly), an excess of heterozygotes, or low correlations

(|r| < 0.95) between sequence and HD genotypes for the

same variant were removed. The final imputed data was

composed of 3,148,506 sequence variants for 27,214

Holstein bulls. Details about the genomic data and im-

putation procedure are described by VanRaden et al.

[30]. After imputation, we only retained autosomal vari-

ants with MAF ≥0.01 and P-value of Hardy-Weinberg

equilibrium test > 10− 6.

Phenotype data

The data used were part of the 2018 U.S. genomic evalu-

ations from the Council on Dairy Cattle Breeding

(CDCB), consisting of 1,922,996 Holstein cattle from the

national dairy cattle database. Genomic predicted trans-

mitting ability (PTA) values were routinely calculated for

these animals and were included in this study. De-

regressed PTA values according to Garrick et al. [18]

were analyzed in GWAS for livability, hypocalcemia,

displaced abomasum, ketosis, mastitis, metritis, and

retained placenta. We restricted the de-regression pro-

cedure to those bulls with PTA reliability greater than

parent average reliability, thus reducing the total number

of animals from 27,214 to 11,880, 13,229, 12,468, 14,382,

13,653, 13,541, and 24,699 for the seven traits, respect-

ively (Table 1).

Genome-wide association study (GWAS)

A mixed-model GWAS was performed using MMAP, a

comprehensive mixed model program for analysis of

pedigree and population data [44]. The additive effect

was divided into a random polygenic effect and a fixed

effect of the candidate SNP. The variance components

for the polygenic effect and random residuals were esti-

mated using the restricted maximum likelihood (REML)

approach. MMAP has been widely used in human and

cattle GWAS studies [45–47]. The model can be gener-

ally presented as:

y ¼ μþmbþ aþ e

where y is a vector with de-regressed PTAs; μ is the glo-

bal mean; m is the candidate SNP genotype (allelic dos-

age coded as 0, 1 or 2) for each animal; b is the solution

effect of the candidate SNP; a is a solution vector of

polygenic effect accounting for the population structure

assuming a � Nð0;Gσ
2
aÞ , where G is a relationship

matrix; and e is a vector of residuals assuming e � Nð0;

Rσ2eÞ , where R is a diagonal matrix with diagonal ele-

ments weighted by the individual de-regressed reliability

(Rii ¼ 1=r2i −1). For each candidate variant, a Wald test

was applied to evaluate the alternative hypothesis, H1:

b ≠ 0, against the null hypothesis H0: b = 0. Bonferroni

correction for multiple comparisons was applied to con-

trol the type-I error rate. Gene coordinates in the UMD

v3.1 assembly [48] were obtained from the Ensembl

Genes 90 database using the BioMart tool. The cattle

QTLdb database [19] was examined to check if any asso-

ciated genomic region was previously reported as a cattle

quantitative trait locus (QTL).

Fine-mapping association study

In order to identify potential candidate genes and their

causal variants, GWAS signals were investigated through

a fine-mapping procedure using a Bayesian approach

with the software BFMAP v.1 (https://github.com/jiang1

8/bfmap) [10]. BFMAP is a software tool for genomic

analysis of quantitative traits, with a focus on fine-

mapping, SNP-set association, and functional enrich-

ment. It can handle samples with population structure

and relatedness and calculate posterior probability of

causality (PPC) to each variant and its causality p-value

for independent association signals within candidate

QTL regions. The minimal region covered by each lead

variant was determined as ±1Mb upstream and down-

stream (candidate region ≥2Mb). This extension allowed

the region to cover most variants that have an LD r2 of

> 0.3 with the lead variants. The employed fine-mapping

approach included three steps: forward selection to add

independent signals in the additive Bayesian model, re-

positioning signals, and generating credible variant sets
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for each signal. Details about the BFMAP algorithm and

its procedure are described by Jiang et al. [10].

Tissue-specific expression of candidate genes

From public available resources including the NCBI

GEO database, we have assembled RNA-seq data of 723

samples that involves 91 tissues and cell types in Hol-

stein cattle. We processed all the 732 RNA-seq data uni-

formly using a rigorous bioinformatics pipeline with

stringent quality control procedures. After data cleaning

and processing, we fitted all data into one model to esti-

mate the tissue specificity of gene expression. We then

calculated the t-statistics for differential expression for

each gene in a tissue using a previous method [49].

Specifically, the log2-transformed expression (i.e.,

log2FPKM) of genes was standardized with mean of 0

and variance of 1 within each tissue or cell type,

yi ¼ μi þ xis þ xiage þ xisex þ xistudy þ ei

where yi is the standardized log2-transformed expression

level (i.e., log2FPKM) of ith gene; μi is the overall mean

of the ith gene; xis is the tissue effect, where samples of

the tested tissue were denoted as ‘1’, while other samples

as ‘-1’; xiage, xisex, xistudy were age, sex, and study effects

for the ith gene, respectively; ei is residual effect. We

fitted this model for each gene in each tissue using the

ordinary least-square approach and then obtained the t-

statistics for the tissue effect to measure the expression

specificity of this gene in the corresponding tissue. Using

this approach, we evaluated the expression levels for

each of the candidate genes that were fine-mapped in

this study across the 91 tissues and cell types and identi-

fied the most relevant tissue or cell type for a disease

trait of interest.
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