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GWAS for urinary sodium and potassium excretion
highlights pathways shared with cardiovascular
traits
Raha Pazoki1, Evangelos Evangelou 1,2, David Mosen-Ansorena1, Rui Climaco Pinto1,3, Ibrahim Karaman 1,3,

Paul Blakeley1,4, Dipender Gill 1,5, Verena Zuber1, Paul Elliott 1,3,6,7, Ioanna Tzoulaki 1,2,3 &

Abbas Dehghan1,3

Urinary sodium and potassium excretion are associated with blood pressure (BP) and car-

diovascular disease (CVD). The exact biological link between these traits is yet to be elu-

cidated. Here, we identify 50 loci for sodium and 13 for potassium excretion in a large-scale

genome-wide association study (GWAS) on urinary sodium and potassium excretion using

data from 446,237 individuals of European descent from the UK Biobank study. We exten-

sively interrogate the results using multiple analyses such as Mendelian randomization,

functional assessment, co localization, genetic risk score, and pathway analyses. We identify

a shared genetic component between urinary sodium and potassium expression and cardi-

ovascular traits. Ingenuity pathway analysis shows that urinary sodium and potassium

excretion loci are over-represented in behavioural response to stimuli. Our study highlights

pathways that are shared between urinary sodium and potassium excretion and cardiovas-

cular traits.
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C
ardiovascular disease (CVD) leads to 17.5 million annual
deaths worldwide1. Sodium consumption is a risk factor of
CVD and is estimated to have caused 1.65 million CVD

deaths in 20102. Urinary sodium and potassium excretion have
been associated with blood pressure (BP) and cardiovascular
events3–6. At the same time, epidemiological studies, animal
models, and clinical trials support a strong link between sodium
intake7, and BP;2–4,6,8–10 the leading modifiable cause of mor-
bidity and mortality from CVD worldwide. Biological mechan-
isms that link these traits together are not exactly clear. To
understand the genetic and physiological pathways underlying
these electrolytes and their link to BP and cardiovascular events,
we undertake a genome-wide association study (GWAS) on
urinary sodium and potassium excretion among 446,237 Eur-
opean individuals in UK Biobank (UKB)11–13. Here, we identify
50 sodium and 13 potassium novel loci at stringent threshold of
P < 1 × 10−8. Most of these loci had previously been found to be
associated with lipid levels, anthropometric and lifestyle traits
such as dietary intake, smoking-related behavior, and alcohol
consumption at GWAS significance level (P < 5 × 10−8). In
pathway analyses, sodium and potassium excretion loci are over-
represented in biological functions involving behavioral response
to stimuli, thermoregulation, and weight loss. A subset of loci
involved in behavioral response to stimuli support a link to BP
and coronary artery disease based on Mendelian randomization
(MR) analysis.

Results and discussion
Main findings. We performed GWAS of urinary sodium and
potassium excretion (from spot urine) using linear mixed model
(LMM) association testing implemented in BOLT-LMM (v2.3)
software (Fig. 1; Supplementary Fig. 1)14. We, included ~8.8 M
single-nucleotide polymorphisms (SNPs) imputed to the

Haplotype Reference Consortium (HRC) panel at MAF < 0.5%
from European ancestry participants in UKB (genotyping and
imputation [GRCh37] data release 2017). Characteristics of the
population are presented in Supplementary Table 1. Of the 50
novel loci identified for urinary sodium and 13 for urinary
potassium excretion, 4 overlapped between sodium and potas-
sium excretion (Supplementary Datas 1–6). Conditional analysis
revealed no secondary signal. SNP-based heritability was 6.4% for
urinary sodium and 4% for potassium excretion.

The strongest urinary sodium locus was in MLIP gene
(rs838133) (P= 1.9 × 10−25) followed by CYP1A1 (rs2472297)
(P= 6.7 × 10−23) and FTO (rs11642015) (P= 6.7 × 10−23) loci.
MLIP is a muscular lamin A/C interacting protein with protein
binding transcription factor activity. CYP1A1 encodes a cyto-
chrome P450 superfamily enzyme involved in drug metabolism
and lipid synthesis. It is also known for association with habitual
coffee intake15. FTO is associated with body mass index (BMI)
and other anthropometric traits16. We, additionally, identified
SNPs within neuronal sodium channel and potassium channel
loci SCN2A and KCD13, as well as ten microRNA and long
intergenic noncoding RNA genes. The strongest urinary potas-
sium signal was at ADRA2C (an alpha-2-adrenergic receptor)
followed by CYP1A1 and AHR loci; the latter two genes have
previously shown association with coffee intake15.

Our sensitivity analysis (n= 262,531) excluding participants
who suffered from renal diseases or participants who used
medications which may affect sodium and potassium excretion
showed that 17 sodium SNPs annotated to AHR, MLIP, CYP1A1,
ADH1B, LINC01114, LINC02424, RARB, LOC105378330,
DCDC1, PKHD1, NOVA1-AS1, MLXIPL, FTO, MIR642A, GCKR,
HTR4, and SCN2A and 3 potassium SNPs annotated to ADRA2C,
SLC4A7, CYP1A1 remained genome-wide significant despite
the large reduction in sample size (Supplementary Datas 7 and
8). Our LMM-based results showed that 33 urinary sodium
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Fig. 1 Overview of study design
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lead SNPs and 8 urinary potassium SNPs remained strongly
(P < 1 × 10−5) associated with urinary traits, the slightly larger P
value is likely due to the decrease in the sample size as the effect
estimates are quite small. Effect estimates of the lead SNPs were
correlated (r= 0.98) before and after exclusion for urinary
sodium. The correlation was 0.97 for urinary potassium SNPs.
Genome-wide correlation of effect estimates before and after
exclusion was 0.79 for urinary sodium and potassium SNPs.

Cross phenotype analysis. We examined the association of
identified loci with other traits using previously published data
included in the GWAS Catalog17 and found associations with
anthropometric traits as well as inflammation, cancers, diet,
lifestyle factors, and hematological traits at P < 5 × 10−8 (Sup-
plementary Datas 9 and 10; Fig. 2). Look up in GeneATLAS18

showed that 45 (90%) urinary sodium loci and 10 (77%) urinary
potassium loci were associated with UKB anthropometric traits
and/or dietary habits including salt added to food, coffee, fruit,
and water intake at P < 1 × 10−6 (Methods; Supplementary
Datas 11 and 12). These findings imply tight co-variation between
sodium, dietary choices and BP.

Using LD score regression19, we found that urinary sodium
and potassium had shared heritable contribution with anthropo-
metric traits, lipoproteins and triglyceride, diabetes, smoking,
education and neuroticism (Supplementary Datas 13 and 14).
Specifically, we observed a positive shared heritable contribution
for urinary sodium excretion with whole body water mass and
alcohol consumption frequency (Supplementary Datas 13 and
14). Shared heritable contribution of urinary sodium excretion
was negative with red and white wine intake and positive with
beer intake (Supplementary Data 13) whereas shared heritable
contribution of urinary potassium excretion with wine intake was
positive while it was negative with beer intake (Supplementary
Data 14). This observation shows importance of loci involved in

intake of alcohol subtypes in connection with urinary sodium and
potassium excretion.

With regard to pleiotropy with BP, we observed that eight
sodium loci were associated with systolic BP (SBP) and ten with
diastolic BP (DBP) (Supplementary Datas 15 and 16). The
strongest BP SNPs were at CYP1A1 and ADH1B loci (the latter is
known for association with alcohol consumption)20. SNPs in loci
annotated to MIR588, CYP1A1, DCDC1, DCTPP1, and MLIP
were associated both with SBP and DBP. Of the potassium loci,
only SLC4A7 and CYP1A1 loci were associated with SBP and
DBP. SLC4A7 gene is a co-transporter of sodium/bicarbonate and
is known to cause hypertension in model organisms21. We,
additionally, observed that sodium excretion genetic risk score
(GRS) comprising the collective effect of our lead urinary sodium
SNPs among the European ancestry subset of the UKB was
associated with average annual increase in SBP (beta= 0.06; 95%
CI: 0.00–0.11; P= 0.02) and DBP (beta= 0.03; 95% CI:0.00–0.06;
P= 0.03).

Metabolomics. Metabolomics analysis using plasma samples
from Airwave study22 (Methods) showed that 12 sodium and
potassium loci (Supplementary Fig. 2) were associated with var-
ious metabolites including vitamin A, amino acids, carbohydrates,
xenobiotics, and major components of lipid and lipoprotein
fractions. Two loci at CYP2A6 (known for its effect on smoking-
related behavior23,24) and GCKR showed association with
numerous metabolites. GCKR is known to be involved in diabetes
risk and metabolism of glucose and lipids25–28. It is well estab-
lished that insulin decreases excretion of sodium in the kidneys29.
Insulin-stimulated sodium transporters are found all along the
nephron, in renal proximal tubule, loop of Helen, distal con-
voluted tubule, and cortical collecting duct30.Our online meta-
bolomics look-up within metabolomics database of
Phenoscanner31, showed that GCKR was associated with

Proteins

Adiposity/T2D

rs
9
3
8
7
9
6
3

rs
7
8
4
2
5
7

rs
7
3
3
4
0
7
8

rs
7
0
7
2
7
7
6

rs
7
4
4
2
8
8
5

rs
6
4
3
4
2
8

rs
5
5
8
0
7
9
1
1

rs
11

58
47

00

rs
11

64
61

18

rs
12

58
12

20

rs
13

16
33

14

rs
15

13
48

1

rs
1562308

rs
17123039

rs17635778

rs2393831

rs2968426

rs34452566

rs4788415

rs5760425

rs7140993

rs72634682

rs816366

rs9537160

rs117287096

rs141086701

rs1516187
rs1957111

Cancers

Epigenetics

e
Q

T
L

G
l &

 D
ie

t/life
s
ty

le

rs2122127

rs2472297

rs254023

rs784257

rs
4
9
7
3
7
6
6

Others

Metabolites

Mental health

Kid
ne

y

In
fla

m
m

at
io

n
H

a
e
m

a
to

lo
g
ic

a
l

G
I 
&

 D
ie

t e
Q

T
L

Epigenetics

Cancers

Adiposity/T2D

rs4410790

rs72704791

rs
64

67
44

7rs
61

37
58

54

rs
13

14
31

89

rs
1
2
9
4
4
0
4
1

rs
1
0
8
5
4
1
6
6

H
a
e
m

a
to

lo
g
ic

a
l

H
e
a
rt

/l
u
n
gK
id

n
e
y

M
en

ta
l h

ea
lthM

eta
bolite

s

Others

rs10136360rs34783010
rs10457480
rs7619139

rs7924036

rs11642015

rs1229984

rs4442732

rs1260326

rs4410790

rs33951980

rs1437971

rs16850592

rs1996928

rs2422137
rs2

4
7
2
2
9
7

rs2
5
0
4
6
7
1

rs2
7
6
1
5
8
9

rs
8
3
8
1
3
3

rs
2
9
4
5
0
9
1

rs
4
0
4
6
5

a b

Fig. 2 Association of urinary trait loci with other traits. Plots illustrate GWAS Catalog and Phenoscanner associations of a urinary sodium excretion

genome-wide significant loci with anthropometric traits, lipid, cancers, alcohol, autoimmune diseases, diet, hematological, and neurological diseases.

b Urinary potassium excretion loci with mainly anthropometric traits, autoimmune diseases, heart and lung diseases, cancers, diet, hematological, and

neurological diseases

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11451-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3653 | https://doi.org/10.1038/s41467-019-11451-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mannose (an epimer of glucose), alanine, isoleucine, pyruvate (an
alpha-keto acid), and various lipid metabolites. We also observed
that FKBP8 potassium locus was associated with myo-inositol a
metabolite of vitamin B complex group (Supplementary Datas 17
and 18, Supplementary Table 2).

Functional assessment. Using the Genotype-Tissue Expression
(GTEx) database32–34, we sought to investigate if our lead SNPs
are known to have significant expression quantitative trait loci
(eQTL) associations. Urinary sodium variants showed eQTL
effect on gene expression levels for 20 genes and potassium
variants for four genes (Supplementary Table 3, Supplementary
Datas 19 and 20). The annotated genes for urinary sodium or
potassium loci were mainly expressed in adipose tissue, coronary
arteries, and brain (Fig. 3). A few genes showed broad expression
profiles across a range of tissues.

Co-localization analysis highlighted seven urinary sodium loci
(MLXIPL, MLLT10, BDNF, NRXN3, STK24, GCKR, and AHR)
and three urinary potassium loci (LINK01415, TMEM107, and
ADRA2C) that harbor genetic variants which demonstrate
association with both urinary traits and gene expression (Fig. 4).

Pathway analysis. Ingenuity pathway analysis (IPA)35 showed
that urinary trait loci were enriched in pathways involving
behavior (Fig. 5a), followed by congenital anomalies of kidney
and urinary tract, weight loss, and thermoregulation (Supple-
mentary Data 21). Behavior was predefined by the IPA as beha-
vioral response to stimuli. It, includes molecular mechanisms and
processes that affect, decrease or increase adult behavioral
response to stimuli including initiation of behavior or delay in
behavior.

We performed a second IPA analysis using loci from our
sensitivity analysis excluding individuals under treatment with BP
lowering medications, NSAIDS, corticosteroids, and self-reported
or hospital records of renal diseases. This exclusive IPA analysis
showed that our urinary sodium and potassium loci are involved
in thermoregulation, body temperature, energy homeostasis,
function of liver, benign lesions, and congenital anomalies of
the kidney.

Mendelian randomization. The list of lead SNPs (n= 63) from
Supplementary Table 2c and d was used as exposure loci (sodium
and potassium excretion SNPs) for MR analyses36. The aim was
to test effect of sodium and potassium excretion on BP and CVD.
We performed MR analysis using effect estimates of sodium and
potassium excretion lead SNPs in full UKB sample against effect
estimates of these SNPs for BP from the International Con-
sortium for BP (ICBP) results. There is no sample overlap
between ICBP and UKB.

In parallel and to test the same hypothesis while ensuring
independence of the samples for MR analysis, we divided UKB
sample into two independent non-overlapping subsamples, north
(n= 224,883) and south (n= 221,354) (Supplementary Table 4;
Supplementary Fig. 3). Combination of UKB north and UKB
south subsample is the full UKB sample. We performed
additional sensitivity MR analyses where we randomly divided
the full UKB sample into two equal sets. Combination of the two
random split subsamples is the UKB full sample. For the 63 SNPs
from Supplementary Table 2c and d, SNP effect estimates on
exposure (urinary traits) in one subsample was obtained and were
used against SNP effect estimates on outcome (BP) obtained from
the other subsample.
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Fig. 4 Heat map clustering of co-localization analysis results. GTex-based eQTL results from Ensemble REST API is used between nearest gene to the lead

SNPs and each SNP in 200 KB region surrounding lead SNPs. Rows show lead SNP-nearest gene combinations for which eQTL is obtained. Columns show

tissues from which eQTL is obtained. If achieved, posterior probabilities >0.75 is colored for H0 (yellow; on association with either trait), H1 (gray;

association with urinary trait, not with gene expression), H2 (gray; association with gene expression, not with urinary trait), H3 (pink; association with

urinary trait and gene expression, two independent SNPs), and H4 (red; association with urinary trait and gene expression, one shared SNP). Black cells

show missing eQTL information. a Heat map clustering based on co-localization for urinary sodium loci. b Heat map clustering based on co-localization for

urinary potassium
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For MR analysis of urinary electrolytes on CHD, we used
CARDIOGRAM data from Nikpay et al.37 and Nelson et al.38.
There is no sample overlap between CARDIOGRAM data from
Nikpay et al. and UKB.

After removal of outliers using MR-PRESSO (Supplementary
Datas 22–25, Supplementary Table 5), inverse variance weighting
effect estimates suggested a positive effect of urinary sodium on
DBP (Supplementary Data 24; based on UKB random split
subsample) and CHD (based on Nelson et al.) as well as an
inverse association for urinary potassium on SBP (Supplementary
Datas 24–25; Supplementary Table 5; Supplementary Figs. 4–6).

Sensitivity analysis using ICBP data shows that the
interpretation of the results remained generally similar
compared with UKB split subsamples. The diagnostic plot for
the MR effect estimate of urinary potassium on SBP using UKB
vs. ICBP outcomes (Supplementary Fig. 6) shows major
similarities in distribution of effect estimates. The only
difference we observed was a decreased in MR effect estimate
of urinary potassium on SBP when we used ICBP results rather
than UKB split subsamples (Supplementary Fig. 8). Given that
population differences between UKB and BP consortium is
much larger than population differences between UKB split
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subsamples, we believe the decrease in effect estimate for the
results of urinary potassium on SBP using UKB vs. ICBP
consortium could partially be due to population differences
rather than pure effect of urinary electrolytes on BP. Our results
also show a caveat for MR that small variation in distribution of
effect estimates can have large impact on MR effect estimates as
shown in the example above.

We observed large differences between MR-Egger and other
MR tests. MR-Egger estimates are less efficient than estimates
from other methods and are highly sensitive to violations of the
MR assumptions and the validity of the InSIDE assumption in
particular (Burgess et al. https://arxiv.org/abs/1606.03729).
According to our diagnostic plots, we infer that few outliers in
the MR analysis of urinary traits on BP are likely to violate
InSIDE assumptions. This leads to a large difference between
effect estimate from MR-Egger and effect estimate from other
methods. Upon removal of outliers, the remaining instruments
are more likely to meet the InSIDE assumption and hence in our
analyses, P value of MR-Egger increased to a non-significant level
in most cases.

We performed additional sensitivity analyses to address the
heterogeneity of the association of urinary sodium loci with BP
by performing MR on loci involved in biological pathways based
on IPA analysis. MR analysis using loci involved in behavior and
thermoregulatory pathways suggested a positive effect for urinary
sodium on DBP (behavior pathway loci) and on SBP, and DBP
(thermoregulatory pathway loci; Supplementary Data 26).

Replication in other ancestries. All lead SNPs (i.e., those with
lowest association P value per locus) identified in discovery stage
together with all SNPs in 1MB region surrounding the lead SNPs
if they showed association with urinary traits at P < 1 × 10−8,
were sought for replication among other ancestries in the
UKB. SNPs within DCDC1 locus were replicated (LMM-based
Preplication < 9.8 × 10−4) among the UKB African population (n=
7612) and SNPs in a region flanked by MIR-588 and CENPW
genes replicated in the UKB South Asian population (n= 10,095)
(Supplementary Data 27). DCDC1 is in close vicinity (<1MB) of a
potassium channel gene (KCNA4) and is not previously known to
impact electrolyte levels. We also observed that urinary sodium
GRS, which we calculated based on lead SNP effect estimates
obtained from the main GWAS analysis, was associated with
slight increase in urinary sodium excretion among south Asians
(beta= 0.01; P= 0.03).

We and others39,40 have previously shown that lifestyle factors
are risk factors for CHD independent of genetic susceptibil-
ity39,40. The results here take a step forward to investigate the link
between sodium, BP and CHD and highlight that behavioral
response to stimuli and thermoregulatory pathway scould
potentially be involved. The network illustrated in Fig. 5, involves
behavior, learning, cognition, thermoregulation, and weight loss
nodes. Next to this information, our phenome-wide association
analysis within UKB shows association of sodium SNPs with, e.g.,
salt added to food and dietary intake of meat, coffee, water, and
alcohol. Genetic factors involving behavioral response to stimuli
may affect dietary decisions that eventually impact urinary
sodium and potassium excretion.

It is previously observed that a decreased core temperature
increases vasoconstriction and consequently increases BP via
release of adrenaline41–46. Only few epidemiological studies have
investigated the effect of thermogenesis on SBP42,47. Our study
for the first time highlights a potential role for urinary sodium
loci involved in thermoregulatory pathways in regulation of BP.

It is possible that some of the urinary sodium and potassium
loci could simultaneously be involved in efficiency of medication

and cause changes in urinary electrolyte levels Thus, we
performed GWAS sensitivity analysis excluding individuals under
treatment with BP lowering medications, NSAIDS, corticoster-
oids, and self-reported or hospital records of renal diseases.
Despite losing half of the sample size, over one-third of sodium
loci survived this sensitivity analysis. While the decrease in the
number of genome-wide significant loci could be the result of
decrease in sample size and losing statistical power, some of the
lost sodium loci could in fact follow a more complicated biological
mechanism involving use of medications. A dedicated pharmaco-
epidemiologic study could provide insight on the interaction
between such loci and medication use. Thermoregulatory pathways
and pathways involved in congenital anomalies of the kidney
remained consistently enriched with urinary sodium and potas-
sium loci in the sensitivity analysis highlighting importance of
these biologic function in regulation of urinary sodium and
potassium excretion.

Sodium and potassium are vital for cellular function and are
typically exchanged between intra- and extra-cellular space using
ATP-dependent sodium/potassium pumps, which actively trans-
port sodium in and potassium out of the cell 48. The results of our
cross-phenotype analyses indicate that urinary trait loci are highly
inter-correlated with lipids and anthropometric traits. This is
further supported by recent functional evidence that showed
direct effect of sodium on lipid accumulation in adipocytes
suggesting that pathways involved in regulation of sodium might
be directly involved in lipid metabolism8.

Evidence from epidemiological studies, animal models and
randomized clinical trials have shown a significant, direct
association of sodium, and inverse association of potassium
intakes with BP2–4,6,8–10. Our MR analysis supports this evidence.
Our study benefits from a large sample size, access to
metabolomics data, MR analysis, complementary application of
bioinformatics methods, and extensive exploration of the
pleiotropic effects of the identified loci. Limitations of our study
include the use of spot urine samples as the only available source
to quantify sodium and potassium excretion within UKB, and the
reliance on a one stage analysis; to account for this, we used a
more stringent empirically calculated significance threshold for
genome-wide significance49 and tested our results in other
ancestries in UKB.

In summary, our study provides 63 novel loci for urinary
sodium and potassium excretion with multiple tissues such as
brain, adipose tissue and vasculature possibly involved. We
showed that genetic underpinning of urinary sodium and
potassium excretion is highly pleiotropic reflecting that many
pathways might be involved in their regulation. The association of
the identified loci with anthropometric measures, lipids, and fluid
intake indicates that variation in these urinary traits might
involve mechanisms beyond dietary intake of sodium and
potassium. The eQTL enrichments in brain and enrichment in
functions related to behavioral response to stimuli might imply
that the heritable component of urinary sodium and potassium
excretion could be driven by behavioral response rather than
mechanisms purely involving ion transport in the kidneys, in
contrast to what is known about some other urinary measure-
ments such as uric acid50.

Our study supports a genetic link between urinary traits,
adiposity, BP and CHD. Urinary traits reflect the complex
interplay between dietary intake, homeostatic mechanisms that
tightly control intra- and extra-cellular concentrations of sodium
and potassium excretion via the kidney and other pathways51,
and potential genetic mechanisms. This complexity complicates
the ability to unravel the sequence and direction of the causal
pathways involved and deconvolve the inter-dependence between
the urinary and other variables (e.g., BMI). In such circumstances,
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including extensive pleiotropy, current MR methodologies are
limited in their ability to provide causal interpretations.

Methods
Study design and participants. We used data from the UKB11–13 study which
includes approximately 500,000 individuals aged 40–69 years from European,
African, and Asian ethnicity. North West Multi-Center Research Ethics Committee
has approved the UKB study. Approval for this research was obtained from the UK
Biobank Research Ethics Committee and Human Tissue Authority, and the par-
ticipants gave informed consent. We removed from our analysis all participants
from the UKB study who withdrew consent.

Study participants were ascertained through United Kingdom National Health
Service registers across 22 centers in Great Britain between 2006 and 201013. We
included individuals of European ancestry following quality measures and
exclusions (sex discordance, high missingness/heterozygosity). Individuals with
non-European ancestry were excluded from the main analysis. Allocating
individuals to ethnicity groups was based on self-reported ethnicity matched with
PCA ancestry clustering using the kmeans clustering method. We excluded
participants who had withdrawn consent (n= 19), as well as those who were
pregnant or unsure of their pregnancy status at baseline (n= 372). After removing
participants of non-European ancestry (n= 41,786) and individuals with missing
values on urinary sodium (n= 14,224) and urinary potassium (n= 14,231),
446,237 individuals were left for GWAS of urinary sodium and 446,230 individuals
for GWAS of urinary potassium. As part of the study, we performed MR analysis
(see below) to investigate potentially causal effects of urinary traits on BP.
According to MR methodology, variance of an instrumental variable estimate will
be smaller if it is estimated from the same study52. When distinct samples are used,
bias due to weak instrumental variable shifts results toward the null. In contrast, in
a situation where the two samples perfectly overlap, the weak instrument bias shifts
the results toward the observational association between the risk factor and
outcome53. Since our study avoided sample overlap, potential weak-instrument
bias is expected to be toward the null. To avoid sample overlap in our MR analysis,
we divided the UKB sample into two subsamples of north (n= 224,883) vs. south
(n= 221,354). This was according to the geographic locations where data were
initially obtained. This division of samples was designed to ensure geographical
independence of the two samples and to minimize sharing of similar environments,
which may have not been achieved by random splitting of the sample. To ensure
the results were not biased by geographical differences in the UKB sample, we
compared our results with an additional MR analysis where we randomly split the
full UKB sample into two equal subsamples.

We performed a sensitivity analysis excluding participants who used
antihypertensive medication, corticosteroids or NSAIDs as well as those suffering
from self-reported kidney disease, or hospital records for diagnosis of renal disease.
Diagnoses codes were based on International classification of diseases (ICD 10)
codes N00.0–N39.9. The final sample for sensitivity analysis included 262,531
participants of European ancestry.

Genotyping and imputation. Genotyping and imputation in the UKB have been
described in detail elsewhere54,55. Briefly, a custom Affymetrix UKB Axiom array
(designed to optimize imputation performance) was used for genotyping of DNA
samples obtained from the UKB study participants. Imputations in UKB were
performed centrally using an algorithm implemented in the IMPUTE2 program.
Genetic principal components to account for population stratification were com-
puted centrally by UKB.

Urinary measurements and BP. Details of quality control and sample preparation
for urinary measurements have been published previously by UKB56. Sodium and
potassium concentrations in stored urine samples were measured by the ion
selective electrode method (potentiometric method) using Beckman Coulter
AU5400, UK Ltd. Analytic range for sodium and potassium was 2–200 mmol/L,
and 10–400 mmol/L, respectively.

Details of calculation of BP values used for this analysis are described in detail
elsewhere39,57. BP was measured at baseline, after a two-min rest using an appropriate
cuff and an Omron HEM-7015IT digital BP monitor. We calculated mean SBP from
all available automated or manual reading BP measurements. For individuals who
reported taking BP-lowering medication (n= 91,648 individuals), we added 15 and
10mmHg to SBP and DBP, respectively as has been done previously58.

Genome-wide association analysis. For GWAS of urinary sodium and potas-
sium, we performed LMM association testing implemented in BOLT-LMM (v2.3)
software14 that corrects for confounding from population structure and cryptic
relatedness. We assumed additive genetic model on continuous log transformed
spot urinary sodium and potassium excretion adjusted for age and sex. Additional
to the QC that was done centrally by the UKB, we applied some filters including
MAF > 5%; HWE P > 1 × 10−6; missingness < 0.015 for the initial modeling step to
estimate parameters of the LMM. We restricted the main association analysis to
SNPs imputed from the HRC panel (n= 39,235,157), of which ~8.8 million SNPs
passed MAF ≥ 0.5% and INFO > 0.1 thresholds.

We empirically assessed the correlation between nearby test statistics in order to
calculate the number of independent statistical tests49 to be used as our pre-set
significance threshold (1 × 10−8). We removed all SNPs in HLA region
(chr6:25–34MB). In order to shortlist the lead SNPs, association tests passing this
pre-set permutation-driven threshold were ranked in order of significance with
stronger associations locating at the top of the list. We then removed all SNPs in
the region of ±500 kb surrounding the best ranking SNPs. We continued this
approach until there were no SNPs that overlapped within ±500 kb region. We
consequently LD pruned the final list of SNPs using UKB individual level data with
LD threshold of r2 ≥ 0.1 using PLINK2 software59,60. To detect secondary signals,
we used the urinary sodium and potassium GWAS summary-level data and
performed conditional analysis using the Genome-wide Complex Traits Analysis
(GCTA) software61. Our criteria for selection of secondary signals included MAF ≥
0.5% and GCTA based P < 1 × 10−8. We used genome-wide conditional analysis
with stepwise model selection as well as locus specific conditional analysis for
urinary traits conditioned on the lead SNPs within each locus.

To investigate the effect of lead SNPs on urinary traits among other ancestries,
we performed association analysis on all the SNPs in 1MB region surrounding the
lead SNPs if they showed association with urinary traits at P < 1 × 10−8. We used
BOLT-LMM regression among 10,095 individuals of south Asian and 7612
individuals of African ancestry within UKB. We considered statistical significance
if the SNPs passed P value threshold of 9.8 × 10−4.

GRS analysis. We calculated weighted sodium and potassium excretion GRS based
on the effect sizes of the final sentinel variants identified in the main UKB GWAS
analysis. We then investigated association of this GRS with urinary sodium and
potassium excretion among African and South Asian populations in UKB. We also
investigated the association of GRS with average annual change in BP at first repeat
assessment visit (2012–2013) in the European subset of the UKB study compared
with baseline assessment. To obtain change in BP values, we subtracted values
obtained for BP at baseline from values obtained at first repeat assessment divided
by the time difference in years between baseline and first repeat assessments. For
this analysis individuals with missing values for repeat BP measurement and
individuals with first and second degree relationships were excluded. The final
analysis on 19,686 individuals was adjusted for age, age2 and sex.

Phenome-wide association analysis. We looked-up phenome-wide association
analysis (Phewas) results for urinary trait lead SNPs within GeneATLAS18 (2018
version) performed on the 452,264 individuals and 778 phenotypes from the UKB.
To claim significance, we used a Bonferroni corrected significance threshold of P <
1 × 10−6, Bonferroni corrected for the number of lead SNPs multiplied by 778
phenotypes.

Pleiotropy investigation. To investigate shared heritable contribution between
urinary traits with other phenotypes, we used the Broad institute LD hub62 tool to
perform LD score regression analysis using GWAS summary statistics data as well as
calculation of SNP-based heritability. To investigate trait pleiotropy and evidence of
association of urinary trait loci with other traits, we extracted from the GWAS
Catalog17 all urinary sodium and potassium associated SNPs at P < 1 × 10−8 in 1MB
region surrounding the lead SNPs.

Metabolomics. To study the metabolomics signature of our lead SNPs, we used
data from the Airwave Health Monitoring Study (Airwave)22, a cohort of UK
police forces. The Airwave study includes metabolomic data generated by Meta-
bolon platform on 1967 plasma samples, including 1048 mostly identified meta-
bolites and some unidentified species63. In addition, we analyzed serum
metabolomics data from 2022 serum samples in which 105 lipoprotein subclasses
were quantified by the Bruker IVDr LIpoprotein Subclass Analysis (B.I.-LISA;
Bruker Biospin, Rheinstetten) (https://www.bruker.com). We computed sig-
nificance thresholds using an estimated 5% family-wise error rate using a per-
mutation approach (https://doi.org/10.1021/pr1003449 and https://doi.org/
10.1021/acs.jproteome.7b00344). We performed association tests with metabo-
lomics data using Spearman partial correlation analysis adjusted for age and sex
and genetic principal components.

We additionally used PhenoScanner31, a publicly available data set of SNP-
metabolites associations to obtain more information regarding metabolomics
signatures of urinary traits loci.

Functional assessment. We used multiple genomic tools to investigate functional
impact of the lead loci. We annotated SNPs to the nearest gene within the distance
of ±500 kB using University of California Santa Cruz (UCSC) genome-browser. We
checked functional annotation of the lead SNPs using Variant Effect Predictor
(VEP) tool64. VEP provides a report of SNP characteristics (e.g., intronic and
noncoding transcript exon), and SIFT/PolyPhen based functional impact of amino
acid substitution. We evaluated all genome-wide significant SNPs for evidence of
eQTL using the GTEx database32–34(www.gtexportal.org). We additionally sear-
ched median gene expression levels in 53 tissues from the GTEX database and
standardized gene expression values to map tissue-specific expression of genes near
and/or in eQTL (eGenes) with urinary trait lead loci.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11451-y

8 NATURE COMMUNICATIONS |         (2019) 10:3653 | https://doi.org/10.1038/s41467-019-11451-y | www.nature.com/naturecommunications

https://www.bruker.com
https://doi.org/10.1021/pr1003449
https://doi.org/10.1021/acs.jproteome.7b00344
https://doi.org/10.1021/acs.jproteome.7b00344
http://www.gtexportal.org
www.nature.com/naturecommunications


Co-localization analysis. To check if the loci we identified associated with urinary
sodium and potassium are the same loci affecting gene expression, we performed a
co-localization analysis using coloc, a package running under R. To obtain eQTL
data for each SNP and gene combination per tissue, we used ensemble REST API65.
Co-localization analysis was done for each tissue and gene region combination
separately. The analysis provides posterior probabilities for H0 (no association with
either trait), H1 (association with urinary trait, not with gene expression), H2
(association with gene expression, not with urinary trait), H3 (association with
urinary trait and gene expression, two independent SNPs), and H4 (association
with urinary trait and gene expression, one shared SNP). We drew clustered
heatmaps on the results of co-localization analysis to illustrate SNPs and genes that
are similar with regard to tissue-based co-localization.

Pathway analysis. We performed gene-based variant effect analysis considering
direct and indirect relationships within IPA35 software (IPA®, QIAGEN Redwood
City) to evaluate prior knowledge on sodium and potassium loci and to identify
over-representation of sodium and potassium loci in various disease and functional
pathways. We used the list of nearest genes and genes in eQTL with sodium and
potassium loci within IPA and performed variant effects analysis. Out of the most
significantly enriched diseases and functions in IPA’s knowledge base, we selected
the most statistically significant functions that included at least three genes and
collectively covered all urinary trait loci. We then used “displayed as network”
function within IPA to illustrate networks connecting our urinary trait loci, using
IPA’s organic design.

In IPA, the P value of overlap states the statistical significance of the enrichment
of a biological attribute (e.g., Canonical Pathway, Upstream Analysis, etc.) in user's
dataset. It compares the proportion of input molecules (e.g., genes) that are
associated with a particular biological attribute to the proportion of molecules that
we expect to see if the dataset was made up of randomly selected molecules. It is
calculated using the right-tailed Fisher's exact test. The P value less than 0.05 or
(−log P value= 1.3) is considered significant by IPA. The smaller the P value, the
less likely that the association is random and the more significant the association66.

MR analysis. We tested the effect of sodium and potassium on BP and CHD using
MR analysis implemented in R package67. To avoid sample overlap for exposure
and outcome, we divided the UKB sample into two samples according to geo-
graphic locations where data were initially obtained (north vs. south). We then
performed GWAS investigations in each sample separately. We looked-up the lead
SNPs for association with exposure (urinary traits) in northern UKB sample (n=
224,883). We subsequently looked-up the lead SNPs for association with outcome
(SBP and DBP) within the southern UKB sample (n= 221,354). SNP-exposure
effects were used as instruments against SNP-outcome effects to assess potential
causal effect of urinary traits on BP. In separate MR analysis, we additionally used
SNP-BP effect esimates from ICBP. To assess potential causal effect of urinary
traits on CHD, we obtained SNP-exposure effects from the full UKB sample and
SNP-outcome effects from CARDIOGRAM 1000G CHD GWAS results (CAR-
DIOGRAMplusC4D) from Nikpay et al.37 as well as meta-analysis of UK Biobank
SOFT CAD GWAS (interim release) with CARDIoGRAMplusC4D 1000 Genomes-
based GWAS from Nelson et al.38.

For statistical analysis of MR, in the presence of heterogeneity, we used the
inverse variant weighting (IVW) method assuming random effect. As sensitivity
analysis, we used estimator from the weighted median method68 that provides a
robust estimate even when up to 50% of the SNPs are not valid for MR. An
important assumption of MR is absence of horizontal pleiotropy that occurs when
the effect of SNP on outcome is independent of exposure which can be tested using
the MR-Egger method69. If MR-Egger indicated presence of pleiotropy we repeated
the analysis after removing outliers. To detect outliers and correct for widespread
horizontal pleiotropy, we used MR Pleiotropy Residual Sum and Outlier (MR-
PRESSO) test70. In MR analysis using IVW test, we used P < 0.008 as our statistical
significance threshold taking into account multiple testing for two MR exposures
and three different outcomes analyzed.

Cherry picking has been considered as a potential limitation of heterogeneity-
based outlier removal methods. It is also noted that outlier removal improves
statistical power by reducing noise in estimation whilst a drawback is that the method
could increase type 1 error rate resulting in detecting causal effects that are not true. It
is necessary to emphasize that any causal conclusion based on our MR results should
be inferred with caution, though our MR analysis is supported by previous RCTs that
have shown that short-term reduction in sodium intake decreases BP.

URLs. For GTEx, see www.gtexportal.org. For IPA, see www.qiagen.com/ingenuity.
For PhenoScanner, see http://www.phenoscanner.medschl.cam.ac.uk (Phenoscanner
integrates results from the GWAS catalog: https://www.ebi.ac.uk/gwas/ and GRASP:
https://grasp.nhlbi.nih.gov/). For GeneATLAS, see http://geneatlas.roslin.ed.ac.uk.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Summary statistics will be made available through the NHGRI-EBI GWAS Catalog
https://www.ebi.ac.uk/gwas/downloads/summary-statistics.

Received: 18 July 2018 Accepted: 27 June 2019

References
1. Ezzati, M. et al. Contributions of risk factors and medical care to

cardiovascular mortality trends. Nat. Rev. Cardiol. 12, 508–530 (2015).
2. Mozaffarian, D. et al. Global sodium consumption and death from

cardiovascular causes. New Engl. J. Med. 371, 624–634 (2014).
3. Intersalt: an international study of electrolyte excretion and blood pressure.

Results for 24 hour urinary sodium and potassium excretion. Intersalt
Cooperative Research Group. Br. Med. J. 297, 319–328 (1988).

4. O'Donnell, M. et al. Urinary sodium and potassium excretion, mortality, and
cardiovascular events. New Engl. J. Med. 371, 612–623 (2014).

5. Dyer, A. R., Elliott, P. & Shipley, M. Urinary electrolyte excretion in 24
hours and blood pressure in the INTERSALT Study. II. Estimates of
electrolyte-blood pressure associations corrected for regression dilution
bias. The INTERSALT Cooperative Research Group. Am. J. Epidemiol. 139,
940–951 (1994).

6. Mente, A. et al. Association of urinary sodium and potassium excretion with
blood pressure. New Engl. J. Med. 371, 601–611 (2014).

7. Diamond, H. & Meisel, A. Influence of volume expansion, serum sodium,
and fractional excretion of sodium on urate excretion. Pflug. Arch. 356,
47–57 (1975).

8. Gao, S., Cui, X., Wang, X., Burg, M. B. & Dmitrieva, N. I. Cross-sectional
positive association of serum lipids and blood pressure with serum sodium
within the normal reference range of 135-145 mmol/L. Arterioscler. Thromb.
Vasc. Biol. 37, 598–606 (2017).

9. Elliott, P. et al. Intersalt revisited: further analyses of 24 hour sodium excretion
and blood pressure within and across populations. Intersalt Cooperative
Research Group. Br. Med. J. 312, 1249–1253 (1996).

10. Alderman, M. Dietary sodium and blood pressure. N. Engl. J. Med. 344,
1716–1719 (2001).

11. Elliott, P. & Peakman, T. C. The U. K. Biobank sample handling and storage
protocol for the collection, processing and archiving of human blood and
urine. Int. J. Epidemiol. 37, 234–244 (2008).

12. UK Biobank Coordinating Centre; UK Biobank: Protocol for a large-scale
prospective epidemiological resource. Protocol No: UKBB-PROT-09-06 (Main
Phase). (21 March 2007 (AMENDMENT ONE FINAL). URL: http://www.
ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf;
Accessed 15 May 2017).

13. Sudlow, C. et al. UK biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

14. Loh, P.-R. et al. Efficient Bayesian mixed model analysis increases association
power in large cohorts. Nat. Genet. 47, 284–290 (2015).

15. Zhou, A. et al. Habitual coffee consumption and cognitive function: a
Mendelian randomization meta-analysis in up to 415,530 participants. Sci.
Rep. 8, 7526 (2018).

16. Yang, J. et al. FTO genotype is associated with phenotypic variability of body
mass index. Nature 490, 267–272 (2012).

17. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-
wide association studies (GWAS Catalog). Nucleic Acids Res. 45,
D896–D901 (2017).

18. Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in
UK Biobank. Nat. Genet. 50, 1593–1599 (2018).

19. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding
from polygenicity in genome-wide association studies. Nat. Genet. 47,
291–295 (2015).

20. Clarke, T. K. et al. Genome-wide association study of alcohol consumption
and genetic overlap with other health-related traits in UK Biobank (N= 112
117). Mol. Psychiatry 22, 1376–1384 (2017).

21. Boedtkjer, E. et al. Disruption of Na+ ,HCO(3)(-) cotransporter NBCn1
(slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca(2)(+ )
sensitivity, and hypertension development in mice. Circulation 124,
1819–1829 (2011).

22. Elliott, P. et al. The Airwave Health Monitoring Study of police officers and
staff in Great Britain: rationale, design and methods. Environ. Res. 134,
280–285 (2014).

23. Perez-Rubio, G. et al. Genetic polymorphisms in CYP2A6 are associated with
a risk of cigarette smoking and predispose to smoking at younger ages. Gene
628, 205–210 (2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11451-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3653 | https://doi.org/10.1038/s41467-019-11451-y | www.nature.com/naturecommunications 9

http://www.gtexportal.org
http://www.qiagen.com/ingenuity
https://grasp.nhlbi.nih.gov/
http://geneatlas.roslin.ed.ac.uk
https://www.ebi.ac.uk/gwas/downloads/summary-statistics
www.nature.com/naturecommunications
www.nature.com/naturecommunications


24. Lopez-Flores, L. A., Perez-Rubio, G. & Falfan-Valencia, R. Distribution of
polymorphic variants of CYP2A6 and their involvement in nicotine addiction.
EXCLI J. 16, 174–196 (2017).

25. Koster, B., Fenger, M., Poulsen, P., Vaag, A. & Bentzen, J. Novel
polymorphisms in the GCKR gene and their influence on glucose and insulin
levels in a Danish twin population. Diabet. Med. 22, 1677–1682 (2005).

26. Windholz, J. et al. Effects of genetic variants in ADCY5, GIPR, GCKR and
VPS13C on early impairment of glucose and insulin metabolism in children.
PloS ONE 6, e22101 (2011).

27. Shen, Y. et al. GCKR variants increase triglycerides while protecting from
insulin resistance in Chinese children. PloS ONE 8, e55350 (2013).

28. Hu, C. et al. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose
metabolism and insulin secretion. PloS ONE 5, e11761 (2010).

29. Ferrannini, E. et al. Insulin: new roles for an ancient hormone. Eur. J. Clin.
Investig. 29, 842–852 (1999).

30. Irsik, D. L., Blazer-Yost, B. L., Staruschenko, A. & Brands, M. W. The normal
increase in insulin after a meal may be required to prevent postprandial renal
sodium and volume losses. Am. J. Physiol. 312, R965–R972 (2017).

31. Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype
associations. Bioinformatics 32, 3207–3209 (2016).

32. Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx)
Project. Biopreservation. Biobanking 13, 307–308 (2015).

33. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science 348, 648–660 (2015).

34. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project.
Nat. Genet. 45, 580–585 (2013).

35. Jiménez-Marín, Á., Collado-Romero, M., Ramirez-Boo, M., Arce, C. &
Garrido, J. J. Biological pathway analysis by ArrayUnlock and Ingenuity
Pathway Analysis. BMC Proc. 3, S6–S6 (2009).

36. Burgess, S. & Harshfield, E. Mendelian randomization to assess causal effects
of blood lipids on coronary heart disease: lessons from the past and
applications to the future. Curr. Opin. Endocrinol. Diabetes Obes. 23, 124–130
(2016).

37. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide
association meta-analysis of coronary artery disease. Nat. Genet. 47,
1121–1130 (2015).

38. Nelson, C. P. et al. Association analyses based on false discovery rate implicate
new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).

39. Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle
factors: associations with midlife blood pressure levels and cardiovascular
events. Circulation 137, 653–661 (2018).

40. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary
disease. New Engl. J. Med. 375, 2349–2358 (2016).

41. Greif, R., Laciny, S., Rajek, A., Doufas, A. G. & Sessler, D. I. Blood pressure
response to thermoregulatory vasoconstriction during isoflurane and
desflurane anesthesia. Acta Anaesthesiol. Scand. 47, 847–852 (2003).

42. Kingma, B. R., Frijns, A. J., Saris, W. H., van Steenhoven, A. A. & Lichtenbelt,
W. D. Increased systolic blood pressure after mild cold and rewarming:
relation to cold-induced thermogenesis and age. Acta Physiol. 203, 419–427
(2011).

43. Modesti, P. A. Season, temperature and blood pressure: a complex interaction.
Eur. J. Intern. Med. 24, 604–607 (2013).

44. Alperovitch, A. et al. Relationship between blood pressure and outdoor
temperature in a large sample of elderly individuals: the Three-City study.
Arch. Intern. Med. 169, 75–80 (2009).

45. Jaarin, K., Mustafa, M. R. & Leong, X. F. The effects of heated vegetable oils on
blood pressure in rats. Clinics 66, 2125–2132 (2011).

46. Millenbaugh, N. J. et al. Comparison of blood pressure and thermal responses
in rats exposed to millimeter wave energy or environmental heat. Shock 25,
625–632 (2006).

47. Shibao, C. et al. Autonomic contribution to blood pressure and metabolism in
obesity. Hypertension 49, 27 (2007).

48. Skou, J. C. The identification of the sodium-potassium pump (nobel lecture).
Angew. Chem. Int. Ed. Engl. 37, 2320–2328 (1998).

49. Zheng, H. F. et al. Whole-genome sequencing identifies EN1 as a determinant
of bone density and fracture. Nature 526, 112–117 (2015).

50. Aringer, M. & Graessler, J. Understanding deficient elimination of uric acid.
Lancet 372, 1929–1930 (2008).

51. Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium,
Chloride, and Sulfate. (National Academies Press, Washington, DC, 2005).

52. Thomas, D. C., Lawlor, D. A. & Thompson, J. R. Re: Estimation of bias in
nongenetic observational studies using "Mendelian triangulation" by Bautista
et al. Ann. Epidemiol. 17, 511–513 (2007).

53. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap
in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608
(2016).

54. Genotype imputation and genetic association studies of UK Biobank: Interim
Data Release (May 2015. URL: http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/imputation_documentation_May2015.pdf; Accessed 17 May
2017).

55. Clare Bycroft, C. F., et al. Genome-wide genetic data on ~500,000 UK Biobank
participants. Preprint at https://doi.org/10.1101/166298 (2017).

56. Fry, D. A. R.; Gordon, M.; Moffat, S. UK Biobank Biomarker Project Details of
assays and quality control information for the urinary biomarker data. (28
October 2016. URL: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=34972 ;
Accessed 15 May 2017).

57. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new
loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

58. Tobin, M. D., Sheehan, N. A., Scurrah, K. J. & Burton, P. R. Adjusting for
treatment effects in studies of quantitative traits: antihypertensive therapy and
systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).

59. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

60. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger
and richer datasets. GigaScience 4, 7 (2015).

61. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

62. Zheng, J. et al. LD Hub: a centralized database and web interface to perform
LD score regression that maximizes the potential of summary level GWAS
data for SNP heritability and genetic correlation analysis. Bioinformatics 33,
272–279 (2017).

63. Karaman, I. et al. Workflow for integrated processing of multicohort
untargeted (1)H NMR metabolomics data in large-scale metabolic
epidemiology. J. Proteome Res. 15, 4188–4194 (2016).

64. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17,
122 (2016).

65. Yates, A. et al. The Ensembl REST API: ensembl data for any language.
Bioinformatics 31, 143–145 (2015).

66. QIAGEN Silicon Valley (Ingenuity Systems). Calculating and Interpreting the
p-values for Functions, Pathways and Lists in IPA.

67. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for
performing Mendelian randomization analyses using summarized data. Int. J.
Epidemiol. 46, 1734–1739 (2017).

68. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent
estimation in mendelian randomization with some invalid instruments using a
weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

69. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int. J. Epidemiol. 44, 512–525 (2015).

70. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal
pleiotropy in causal relationships inferred from Mendelian randomization
between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

Acknowledgements
This research has been conducted using the UKB Resource under Application numbers
10,035 and 236 granting access to the corresponding UKB genetic and phenotype data
(released 17 Nov 2016). UK Biobank genotyping was supported by the British Heart
Foundation (Grant SP/13/2/30111) for Large-scale comprehensive genotyping of UKB
for cardiometabolic traits and diseases: UK CardioMetabolic Consortium. P.E. is Director
of the Medical Research Council-Public Health England Centre for Environment and
Health and acknowledges support from the Medical Research Council and Public Health
England (MR/L01341X/1). P.E. also acknowledges support from the National Institute of
Health Research Imperial Biomedical Research Centre, and the National Institute of
Health Research Health Protection Research Unit in Health Impact of Environmental
Hazards (HPRU-2012-10141). P.E. is a UK Dementia Research Institute professor, UK
Dementia Research Institute at Imperial College London. The DRI receives its funding
from UK Dementia Research Institute Ltd funded by the UK Medical Research Council,
Alzheimer’s Society and Alzheimer’s Research UK. P.E. is associate director of Health
Data Research UK-London which is funded by a consortium led by the UK Medical
Research Council. This work used the computing resources of the UK MEDical
BIOinformatics partnership (UK MED-BIO) which is supported by the Medical Research
Council (MR/L01632X/1). R.P. holds a fellowship supported by Rutherford Fund from
Medical Research Council (MR/R0265051/1). A.D. is supported by the Wellcome Trust
Seed Award (grant number 206046/Z/17/Z).

Author contributions
R.P., P.E., I.T. and A.D. led this research. R.P., P.E., I.T. and A.D. drafted the paper with
contributions from P.E., V.Z., E.E., R.C.P., I.K. and P.B. D.M. performed additional quality
control of the UKB genetic data and provided a pipeline for GWAS BOLT LMM analysis.
R.P. performed quality control and management of the UK Biobank phenotypes for this
research and performed GWAS and secondary analyses with contributions from R.C.P.
(metabolon analysis), I.K. (B-Lisa Analysis), G.D. (provided list of medications with potential
effect on the kidney), and P.B. (GTEx gene expression look up). E.E. and V.Z. provided the
statistical advice. All authors critically reviewed and approved the final version of the paper.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11451-y

10 NATURE COMMUNICATIONS |         (2019) 10:3653 | https://doi.org/10.1038/s41467-019-11451-y | www.nature.com/naturecommunications

https://doi.org/10.1101/166298
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11451-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Nicholas Timpson and the
other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11451-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3653 | https://doi.org/10.1038/s41467-019-11451-y | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-11451-y
https://doi.org/10.1038/s41467-019-11451-y
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	GWAS for urinary sodium and potassium excretion highlights pathways shared with cardiovascular traits
	Results and discussion
	Main findings
	Cross phenotype analysis
	Metabolomics
	Functional assessment
	Pathway analysis
	Mendelian randomization
	Replication in other ancestries

	Methods
	Study design and participants
	Genotyping and imputation
	Urinary measurements and BP
	Genome-wide association analysis
	GRS analysis
	Phenome-wide association analysis
	Pleiotropy investigation
	Metabolomics
	Functional assessment
	Co-localization analysis
	Pathway analysis
	MR analysis
	URLs
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS


