

Open access • Posted Content • DOI:10.1101/184853

GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence — Source link 🗹

Jeanne E. Savage, Philip R. Jansen, Philip R. Jansen, Sven Stringer ...+135 more authors

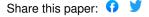
Institutions: VU University Amsterdam, Erasmus University Rotterdam, Karolinska Institutet, Charité ...+40 more institutions

Published on: 06 Sep 2017 - bioRxiv (Elsevier Limited)

Topics: Expression quantitative trait loci, Genome-wide association study, Neuron differentiation, Mendelian randomization and Genetic association

Related papers:

- · Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence
- · LD score regression distinguishes confounding from polygenicity in genome-wide association studies:
- A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence
- Genetic control of gene expression and splicing in the developing human brain
- · Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits



1

GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence

Jeanne E Savage^{1#}, Philip R Jansen^{1,2#}, Sven Stringer¹, Kyoko Watanabe¹, Julien Bryois³, Christiaan A de Leeuw¹, Mats Nagel¹, Swapnil Awasthi⁴, Peter B Barr⁵, Jonathan R I Coleman^{6,7}, Katrina L Grasby⁸, Anke R Hammerschlag¹, Jakob Kaminski^{4,9}, Robert Karlsson³, Eva Krapohl⁶, Max Lam¹⁰, Marianne Nygaard^{11,12}, Chandra A Reynolds¹³, Joey W Trampush¹⁴, Hannah Young¹⁵, Delilah Zabaneh⁶, Sara Hägg³, Narelle K Hansell¹⁶, Ida K Karlsson³, Sten Linnarsson¹⁷, Grant W Montgomery^{8,18}, Ana B Muñoz-Manchado¹⁷, Erin B Quinlan⁶, Gunter Schumann⁶, Nathan Skene¹⁷, Bradley T Webb^{19,20,21}, Tonya White², Dan E Arking²², Deborah K Attix^{23,24}, Dimitrios Avramopoulos^{22,25}, Robert M Bilder²⁶, Panos Bitsios²⁷, Katherine E Burdick^{28,29,30}, Tyrone D Cannon³¹, Ornit Chiba-Falek³², Andrea Christoforou²³, Elizabeth T Cirulli³³, Eliza Congdon²⁶, Aiden Corvin³⁴, Gail Davies^{35, 36}, Ian J Deary^{35,36}, Pamela DeRosse³⁷, Dwight Dickinson³⁸, Srdjan Djurovic^{39,40}, Gary Donohoe⁴¹, Emily Drabant Conley⁴², Johan G Eriksson^{43,44}, Thomas Espeseth^{45,46}, Nelson A Freimer²⁶, Stella Giakoumaki⁴⁷, Ina Giegling⁴⁸, Michael Gill³⁴, David C Glahn^{49,} Ahmad R Hariri⁵⁰, Alex Hatzimanolis^{51,52,53}, Matthew C Keller⁵⁴, Emma Knowles⁴⁹, Bettina Konte⁴⁸, Jari Lahti^{55,56}, Stephanie Le Hellard^{23,40}, Todd Lencz^{37,57,58}, David C Liewald³⁶ Edythe London²⁶, Astri J Lundervold⁵⁹, Anil K Malhotra^{37,57,58}, Ingrid Melle^{40,46}, Derek Morris⁴¹ Anna C Need⁶⁰, William Ollier⁶¹, Aarno Palotie^{62,63,64}, Antony Payton⁶⁵, Neil Pendleton⁶⁶, Russell A Poldrack⁶⁷, Katri Räikkönen⁶⁸, Ivar Reinvang⁴⁵, Panos Roussos^{28,29,69}, Dan Rujescu⁴⁸, Fred W Sabb⁷⁰, Matthew A Scult⁵⁰, Olav B Smeland^{40,71}, Nikolaos Smyrnis^{51,52}, John M Starr^{35,72}, Vidar M Steen^{23,40}, Nikos C Stefanis^{51,52,53}, Richard E Straub⁷³, Kjetil Sundet^{45,46}, Aristotle N Voineskos⁷⁴, Daniel R Weinberger⁷³, Elisabeth Widen⁶², Jin Yu³⁷, Goncalo Abecasis^{75,76}, Ole A Andreassen^{40,46,77}, Gerome Breen^{6,7}, Lene Christiansen^{11,12}, Birgit Debrabant¹², Danielle M Dick^{5,21,78}, Andreas Heinz⁴, Jens Hjerling-Leffler¹⁷, M Arfan Ikram⁷⁹, Kenneth S Kendler^{19,20,21} Nicholas G Martin⁸, Sarah E Medland⁸, Nancy L Pedersen³, Robert Plomin⁶, Tinca JC Polderman¹, Stephan Ripke^{4,80,81}, Sophie van der Sluis¹, Patrick F Sullivan^{3,82}, Henning Tiemeier^{2,79}, Scott I Vrieze¹⁵, Margaret J Wright^{16,83}, Danielle Posthuma^{1,84}*

Affiliations:

- 1. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, The Netherlands
- 2. Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- 3. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- 4. Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- 5. Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- 6. Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- 7. NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
- 8. QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
- 9. Berlin Institute of Health (BIH), 10178 Berlin, Germany
- 10. Institute of Mental Health, Singapore
- 11. The Danish Twin Registry and the Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
- 12. Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark

- 13. Department of Psychology, University of California Riverside, Riverside, CA, USA
- 14. BrainWorkup, LLC, Los Angeles, CA
- 15. Department of Psychology, University of Minnesota
- 16. Queensland Brain Institute, University of Queensland, Brisbane, Australia
- 17. Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- 18. Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
- 19. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA
- 20. Department of Psychiatry, Virginia Commonwealth University, Richmond, USA
- 21. Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
- 22. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- 23. Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- 24. Psychiatry and Behavioral Sciences, Division of Medical Psychology, and Department of Neurology, Duke University Medical Center, Durham, NC, USA
- 25. Department of Psychiatry, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- 26. UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- 27. Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- 28. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- 29. Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
- 30. Department of Psychiatry Brigham and Women's Hospital; Harvard Medical School; Boston MA
- 31. Department of Psychology, Yale University, New Haven, CT, USA
- 32. Department of Neurology, Bryan Alzheimer's Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
- 33. Human Longevity Inc, Durham, NC, USA
- 34. Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- 35. Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- 36. Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- 37. Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- 38. Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
- 39. Department of Medical Genetics, Oslo University Hospital, University of Bergen, Oslo, Norway.
- 40. NORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway
- 41. Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
- 42. 23andMe, Inc., Mountain View, CA, USA
- 43. Department of General Practice and Primary Health Care, University of Helsinki
- 44. Helsinki University Hospital, Helsinki, Finland
- 45. Department of Psychology, University of Oslo, Oslo, Norway
- 46. Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- 47. Department of Psychology, University of Crete, Greece
- 48. Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
- 49. Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- 50. Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
- 51. Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
- 52. University Mental Health Research Institute, Athens, Greece
- 53. Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
- 54. Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado

2

- 55. Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- 56. Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
- 57. Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York
- 58. Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset New York
- 59. Department of Biological and Medical Psychology, University of Bergen, Norway
- 60. Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- 61. Centre for Integrated Genomic Medical Research, Institute of Population Health, University of Manchester, Manchester, United Kingdom
- 62. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
- 63. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- 64. Massachusetts General Hospital, Center for Human Genetic Research, Psychiatric and Neurodevelopmental Genetics Unit, Boston, Massachusetts
- 65. Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, United Kingdom
- 66. Division of Neuroscience and Experimental Psychology/ School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, United Kingdom
- 67. Department of Psychology, Stanford University, Palo Alto, CA, USA
- 68. Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- 69. Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- 70. Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
- 71. Department of Neuroscience, University of California San Diego, La Jolla, California, USA
- 72. Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- 73. Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- 74. Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
- 75. Department of Biostatistics, University of Michigan, Ann Arbor, USA
- 76. Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
- 77. Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- 78. College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, USA
- 79. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- 80. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- 81. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
- 82. Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- 83. Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- 84. Department of Clinical Genetics, section Complex Trait Genetics, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands

These authors contributed equally

*Correspondence to: Danielle Posthuma: Department of Complex Trait Genetics, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. Phone: +31 20 598 2823, Fax: +31 20 5986926, d.posthuma@vu.nl

Word count: Introductory paragraph: 177; main text: 1510; Online methods: 2,886

Display items: 4 (Tables 1, Figures 3)

Includes Supplementary Note, Supplementary Figures 1-11, Supplementary Tables 1-24.

3

Intelligence is highly heritable and a major determinant of human health and well-being. Recent

genome-wide meta-analyses have identified 24 genomic loci linked to intelligence³⁻⁷, but much

about its genetic underpinnings remains to be discovered. Here, we present the largest genetic

association study of intelligence to date (N=279,930), identifying 206 genomic loci (191 novel)

and implicating 1,041 genes (963 novel) via positional mapping, expression quantitative trait

locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We

find enrichment of genetic effects in conserved and coding regions and identify 89

nonsynonymous exonic variants. Associated genes are strongly expressed in the brain and

specifically in striatal medium spiny neurons and cortical and hippocampal pyramidal neurons.

Gene-set analyses implicate pathways related to neurogenesis, neuron differentiation and

synaptic structure. We confirm previous strong genetic correlations with several

neuropsychiatric disorders, and Mendelian Randomization results suggest protective effects of

intelligence for Alzheimer's dementia and ADHD, and bidirectional causation with strong

pleiotropy for schizophrenia. These results are a major step forward in understanding the

neurobiology of intelligence as well as genetically associated neuropsychiatric traits.

We performed a genome wide meta-analysis of 16 independent cohorts totaling 279,930

participants of European ancestry and 9,398,186 genetic variants passing quality control (Online

Methods; Supplementary Table 1; Supplementary Figure 1). All genome-wide analyses were

corrected for cohort-specific ancestry and covariates (Supplementary Information). Various

measures of intelligence were used in each study, yet genetic correlations between cohorts (r_a ,

Online Methods), were considerable (mean=0.63), warranting meta-analysis (Supplementary

Table 2; Supplementary Results 2.1). Separate meta-analyses for children, young adults, and

adults (Online Methods) indicated high genetic correlations between age groups (r_a >0.62), and

comparable single nucleotide polymorphism (SNP)-based heritability across age (h^2_{SNP} =0.19-0.22)

5

(Supplementary Table 3; Supplementary Results 2.2). The inflation factor of the full meta-

analysis was λ_{GC} =1.95 (Supplementary Table 4; Supplementary Figure 2), with h^2_{SNP} =0.18

(SE=0.01), in line with previous findings^{4,5}, and an LD score intercept⁸ of 1.09 (SE=0.02) indicated

that most of the inflation could be explained by polygenic signal and large sample size⁶.

In the meta-analysis, 12,701 variants indexed by 531 independently significant SNPs ($r^2 < 0.6$) and

246 lead SNPs in approximate linkage equilibrium ($r^2 < 0.1$; Online Methods) reached genome-

wide significance (GWS; P<5×10⁻⁸) (Figure 1a; Supplementary Table 5; Supplementary Figure 3).

These were located in 206 distinct genomic loci, 191 of which are novel associations

(Supplementary Results 2.3). Proxy replication with the correlated phenotype of educational

attainment (EA; r_a =0.73) in an independent sample (**Online Methods**) indicated sign concordance

for 94% of GWS SNPs ($P < 1 \times 10^{-300}$) and evidence of replication for 51 loci (**Supplementary Results**

2.3.2; Supplementary Table 6). Using polygenic score prediction^{9,10} (Online Methods) we show

that the current results explain up to 5.4% of the variance in four independent samples

(Supplementary Table 7, Supplementary Results 2.3.3).

We observed strong enrichment for heritability (Online Methods; Supplementary Results 2.3.4)

of SNPs located in conserved regions of the genome ($P=1.84\times10^{-12}$), coding regions ($P=7.88\times10^{-12}$)

⁷), H3K9ac histone regions/peaks (P<6.06×10⁻⁵), and super-enhancers (P=9.61×10⁻⁵) (**Figure 1b**;

6

GWAS META-ANALYSIS OF INTELLIGENCE

Supplementary Table 8). Conserved regions have previously been implicated for intelligence¹¹

but coding regions have not. Heritability was disproportionately found among common variants

(Supplementary Figure 5) with greatest enrichment for SNPs with a minor allele frequency (MAF)

between 0.4 and 0.5 ($P=5.81\times10^{-12}$), but was distributed proportionally across chromosomes

(Supplementary Figure 6).

Functional annotation of all SNPs (n=23,552) in the associated loci was performed using FUMA¹²

(Online Methods). SNPs were mostly located in intronic (n=12,171;51.7%) and intergenic areas

(n=9,923; 42.1%) (Supplementary Table 9; Figure 1c), yet 6.3% (1,473 SNPs) were annotated to

functional genic regions, with 1.4% (318 SNPs) being exonic. Of these, 89 (41 GWS) SNPs were

exonic non-synonymous (ExNS) (Table 1, Supplementary Results 2.3.5). Convergent evidence of

strong association (Z=9.74) and the highest observed probability of a deleterious protein effect

(CADD¹³ score=34) was found for rs13107325. This missense mutation (MAF=0.065) in *SLC39A8*

was the lead SNP in locus 71 and the ancestral allele C was associated with higher intelligence

scores. The effect sizes for ExNS were individually small, with each effect allele 0.01 to 0.05

standard deviations. Table 1, Supplementary Table 9 and Supplementary Results 2.3.5 present

a detailed catalog of the functional impact of variants in the genomic risk loci. Apart from protein

consequences, the implicated SNPs also showed some evidence of indirect functional effects:

4.4% had a RegulomeDB¹⁴ score of 1a-1f (Figure 1d), suggesting a regulatory function, and the

majority of SNPs (81.6%) were in open chromatin regions^{15,16}, as indicated by a minimum

chromatin state of 1-7 (Figure 1e).

To link the associated genetic variants to genes, we applied three gene-mapping strategies as

7

implemented in FUMA¹² (**Online Methods**). *Positional* gene-mapping aligned SNPs to 514 genes

by location, eQTL (expression quantitative trait loci) gene-mapping matched cis-eQTL SNPs to 709

genes whose expression levels they influence, and chromatin interaction mapping annotated

SNPs to 226 genes based on three-dimensional DNA-DNA interactions between the SNPs'

genomic region and nearby or distant genes (Figure 2; Supplementary Figure 7-8;

Supplementary Table 10-12). Of 882 total unique genes, 438 genes were implicated by at least

two mapping strategies and 129 by all 3 (Figure 3). Of these, 15 genes are particularly notable as

they are implicated via chromatin interactions between two independent genomic risk loci

(Supplementary Table 11). VAMP4 (locus 14), shows interactions in 6 tissue types including

interactions with locus 15 in the left ventricle (Figure 2a). SATB2 (locus 44) is linked by interaction

in liver tissue to locus 43 (Figure 2b). MEF2 (locus 82) shows interactions with locus 83 in 5 tissues

(Figure 2c). FBXL17 and MAN2A1 are in two independent loci (87 and 88 respectively); they are

mapped by eQTL associations and chromatin interactions between the two loci in the left

ventricle (Figure 2c). Loci 102 and 103 show multiple interactions in one of 7 tissue types that are

mapped to 8 genes encoding zinc finger proteins or histones (Figure 2d). ELAVL2 (locus 130)

interacts with locus 129 in the left ventricle and is also mapped by intra-locus interactions in

other tissues (Figure 2e). ATF4 (locus 212) is mapped by eQTLs in 3 tissue types and chromatin

interactions in 7 tissue types, and interacts with locus 213 in the left ventricle (Figure 2f).

We performed genome-wide gene-based association analysis (GWGAS) using MAGMA¹⁷ (**Online**

Methods). This approach provides aggregate association P-values based on all SNPs in a gene,

whereas FUMA annotates individually significant SNPs to genes. GWGAS identified 524

8

associated genes (467 novel) (Figure 3a; Supplementary Table 13; Supplementary Results 2.4.1),

of which 159 were outside of the GWAS risk loci, and 365 were also mapped by FUMA (Figure

3b). In total, 92 genes were implicated by all four strategies (Supplementary Table 14).

In gene-set analysis using the GWGAS results (Online Methods), six Gene Ontology¹⁸ gene-sets

were significantly associated with intelligence: neurogenesis (Beta=0.153, SE=0.030, P=1.55×10⁻¹

⁷), neuron differentiation (Beta=0.178, SE=0.038, P=1.36×10⁻⁶), central nervous system neuron

differentiation (Beta=0.398, SE=0.089, P=3.97×10⁻⁶), regulation of nervous system development

(Beta=0.187, SE=0.040, $P=1.54\times10^{-6}$), positive regulation of nervous system development

(Beta=0.242, SE=0.052, P=1.93×10⁻⁶), and regulation of synapse structure or activity (Beta=0.153,

SE=0.030, $P=5.87\times10^{-6}$) (Supplementary Table 15). Conditional analysis indicated that there were

three independent associations, for the neurogenesis, central nervous system neuron

differentiation, and regulation of synapse structure or activity processes, which together

accounted for the associations of the other three sets (Supplementary Results 2.4.2).

Linking gene-based P-values to tissue-specific gene-sets (Online Methods), we observed strong

associations across various brain areas (Figure 3c; Supplementary Table 16; Supplementary

Results 2.4.2), most strongly with the cortex (P=5.12×10⁻⁹), and specifically frontal cortex

(P=4.94×10⁻⁹). In brain single-cell expression gene-set analyses (Online Methods), we found

significant associations of striatal medium spiny neurons (P=1.47×10⁻¹³) and pyramidal neurons

in the CA1 hippocampal ($P=4\times10^{-11}$) and cortical somatosensory regions ($P=3\times10^{-9}$), (Figure 3d;

Supplementary Table 17). Conditional analysis showed that the independent association signal

in brain cells was driven by medium spiny neurons, neuroblasts, and pyramidal CA1 neurons

(Supplementary Results 2.4.2).

Intelligence has been associated with a wide variety of human behaviors ¹⁹ and brain anatomy ²⁰.

Confirming previous reports^{5,6}, we observed negative genetic correlations (Online methods) with

ADHD ($r_a = -0.36$, $P = 1.97 \times 10^{-24}$), depressive symptoms ($r_a = -0.27$, $P = 5.77 \times 10^{-10}$), Alzheimer's

disease $(r_q=-0.26, P=5.77\times10^{-10})$, and schizophrenia $(r_q=-0.22, P=2.58\times10^{-18})$ and positive

correlations with EA (r_a =0.70, P<1×10⁻²⁰⁰) and longevity (r_a =0.43, P=4.91×10⁻⁸) (**Supplementary**

9

Table 18; Supplementary Figure 9). Comparison of our results with the contents of the NHGRI-

EBI catalog²¹ supported these correlations, showing numerous shared genetic variants

(Supplementary Information 2.5; Supplementary Table 19-20). Low enrichment (91 of 1,518

genes, hypergeometric P=0.03) was found for genes previously linked to intellectual disability or

developmental delay (see URLs; Online Methods). However, our results replicate and add to

previous genetic research on normal variation in intelligence, as catalogued in **Supplementary**

Tables 21-22.

We used Mendelian Randomization (Online Methods) to test for potential credible causal

associations between intelligence and genetically correlated traits (Supplementary Table 23;

Supplementary Figures 10-11). We observed a strong effect of intelligence on EA (bxy=0.531,

SE=0.006, $P<1\times10^{-320}$), that was bidirectional and showed a similar strong effect of EA on

intelligence (bxy=0.517, SE=0.025, $P=1.06\times10^{-96}$), with only a small proportion of SNPs showing

pleiotropic effects. Our result also suggested a protective effect of intelligence on ADHD

10

 $(OR=0.46, bxy=-0.778, SE=0.051, P=3.80\times10^{-45})$ and Alzheimer's disease (OR=0.66, bxy=-0.411, bxy=-0.411)

SE=0.058, $P=1.75\times10^{-12}$). In line with a positive genetic correlation, we observed that intelligence

was associated with higher risk of autism (OR=1.47, bxy=0.382, SE=0.099, P=1.10×10⁻⁴). There

was evidence of a bidirectional association between intelligence and schizophrenia including a

strong protective effect of intelligence on schizophrenia (OR=0.58, bxy=-0.551, SE=0.043,

 $P=3.50\times10^{-30}$), and a relatively smaller reverse effect (bxy=-0.195, SE= 0.012, $P=2.02\times10^{-57}$), with

additional evidence for pleiotropy (Supplementary Results 2.5.3).

In conclusion, we conducted a large-scale genome-wide meta-analysis of intelligence in 279,930

individuals, resulting in the identification of 191 novel loci and 963 novel genes, and replicating

previous associations with 15 loci and 78 genes. The applied combined strategies of functional

annotation and gene-mapping and the use of unique biological data resources provide extensive

information on functional consequences of relevant genetic variants and novel insight into

underlying neurobiological pathways, and point towards the involvement of specific cell types.

We also found suggestive evidence of causal associations between intelligence and

neuropsychiatric traits. These results are important not only for understanding the biological

underpinnings of individual differences in intelligence, but also contribute to our understanding

of cognitive and related psychiatric disorders.

URLs:

http://ukbiobank.ac.uk

http://www.biorxiv.org/content/early/2017/07/20/166298

http://hrsonline.isr.umich.edu

http://genesforgood.org

https://www.ncbi.nlm.nih.gov/gap

https://icar-project.com/

http://fuma.ctglab.nl

http://ctg.cncr.nl/software/magma

http://genome.sph.umich.edu/wiki/METAL_Program

https://github.com/bulik/ldsc

http://ldsc.broadinstitute.org/

https://data.broadinstitute.org/alkesgroup/LDSCORE/

http://www.genecards.org

http://www.med.unc.edu/pgc/results-and-downloads

http://software.broadinstitute.org/gsea/msigdb/collections.jsp

https://www.ebi.ac.uk/gwas/

https://github.com/ivankosmos/RegionAnnotator

http://cnsgenomics.com/software/gsmr/

Acknowledgments: This work was funded by The Netherlands Organization for Scientific Research (NWO VICI 453-14-005 and NWO VIDI 452-12-014) and the Sophia Foundation for

11

Scientific Research (grant nr: S14-27). The analyses were carried out on the Genetic Cluster

12

Computer, which is financed by the Netherlands Scientific Organization (NWO: 480-05-003), by

the VU University, Amsterdam, The Netherlands, and by the Dutch Brain Foundation, and is

hosted by the Dutch National Computing and Networking Services SurfSARA. This research has

been conducted using the UK Biobank resource under application number 16406 and the

Database of Genotypes and Phenotypes (dbGaP) under accession numbers phs000280.v3.p1 and

phs000209.v13.p3. We thank the numerous participants, researchers, and staff from many

studies who collected and contributed to the data. Additional acknowledgments can be found in

the Supplementary Information file. Summary statistics will be made available for download

upon publication from http://ctglab.vu.nl.

Author Contributions: D.P., J.E.S. and P.R.J. performed the analyses. D.P. conceived the idea of

the study and supervised analyses. S.St. performed QC on the UK Biobank data and wrote the

analysis pipeline. K.W. constructed and applied the FUMA pipeline for performing follow-up

analyses. J.B. conducted the single cell enrichment analyses. C.L, M.N., A.R.H., T.J.C.P., and

S.v.d.S. assisted with pipeline development and data analysis. S.A., P.B.B., J.R.I.C., K.L.G., J.K., R.K.,

E.K., M.L., M.N., C.A.R., J.W.T., H.Y., D.Z., S.H., N.K.H., I.K.K., S.L., G.W.M., A.B.M.-M., E.B.Q., G.S.,

N.S., B.T.W., T.W., D.E.A., D.K.A., D.A., R.M.B., P.B., K.E.B., T.D.C., O.C.-F., A.C., E.T.C., E.C., A.C.,

G.D., I.J.D., P.D., D.D., S.D., G.D., E.D.C., J.G.E., T.E., A.R.H., A.H., M.C.K., E.K., B.K., J.L., S.L., T.L.,

D.C.L., E.L., A.J.L., A.K.M., I.M., D.M., A.C.N., W.O., A.Palotie., A.Payton., N.P., R.A.P., K.R., I.R.,

P.R., D.R., F.W.S., M.A.S., O.B.S., N.S., J.M.S., V.M.S., N.C.S., R.E.S., K.S., A.N.V., D.R.W., E.W., J.Y.,

G.A., O.A.A., G.B., L.C., B.D., D.M.D., A.H., J.H.-L., M.A.I., K.S.K., N.G.M., S.E.M., N.L.P., R.P.,

T.J.C.P., S.R., P.F.S., H.T., S.I.V., and M.J.W. contributed data. D.P., J.E.S. and P.R.J. wrote the

13

paper. All authors critically reviewed the paper.

Author Information: PF Sullivan reports the following potentially competing financial interests:

Lundbeck (advisory committee), Pfizer (Scientific Advisory Board member), and Roche (grant

recipient, speaker reimbursement). G Breen reports consultancy and speaker fees from Eli Lilly

and Illumina and grant funding from Eli Lilly. All other authors declare no financial interests or

potential conflicts of interest.

Correspondence and requests for materials should be addressed to d.posthuma@vu.nl.

FIGURES

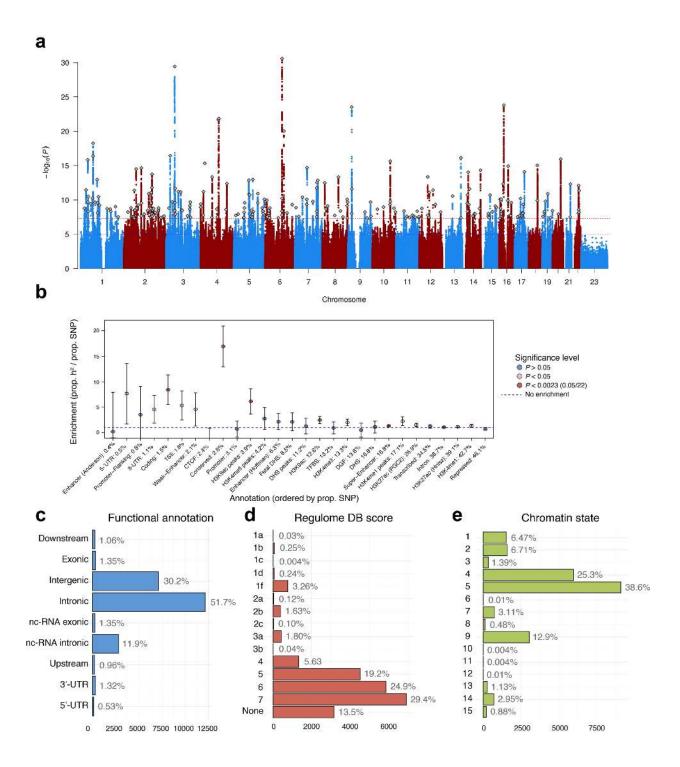
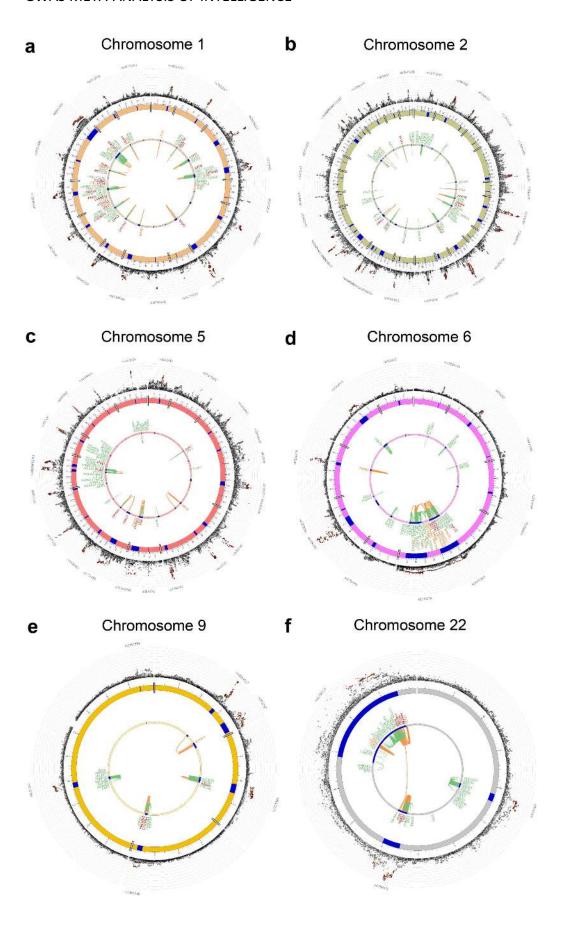


Figure 1. SNP-based associations with intelligence in the GWAS meta-analysis of N=279,930. (a) Manhattan plot showing the $-\log 10$ transformed P-value of each SNP on the y-axis and base pair positions along the chromosomes on the x-axis. The dotted red line indicates genome-wide significance (P<5×10⁻⁸), the blue line the threshold for suggestive associations (P<1×10⁻⁵).

Independent lead SNPs are indicated by a diamond. (b) Heritability enrichment of 28 functional SNP annotations calculated with stratified LD score regression TSS = Transcription Start Site; CTCF=CCCTC-binding factor; DHS=DNase Hypersensitive Site. (c) Distribution of functional consequences of SNPs in genomic risk loci in the meta-analysis. (d) Distribution of RegulomeDB score for SNPs in genomic risk loci, with a low score indicating a higher likelihood of having a regulatory function (Online methods). (e) The minimum chromatin state across 127 tissue and cell types for SNPs in genomic risk loci, with lower states indicating higher accessibility and states 1-7 referring to open chromatin states (Online Methods).

15



17

Figure 2. Genomic risk loci, expression quantitative trait locus (eQTL) associations and chromatin interactions for chromosomes containing cross-locus interactions. Circos plots showing genes on chromosomes 1 (a), 2 (b) 5 (c) 6 (d) 9 (e) and 22 (f) that were implicated as genomic risk loci (blue regions) by positional mapping, eQTL mapping (green lines connecting an eQTL SNP to its associated gene), and/or chromatin interaction (orange lines connecting two interacting regions) and showed evidence of interaction across two independent genomic risk loci. Genes implicated by both eQTL and chromatin interactions mapping are in red. The outer layer shows a Manhattan plot containing the —log10 transformed *P*-value of each SNP in the GWAS meta-analysis, with genome-wide significant SNPs in color corresponding to linkage disequilibrium patterns with the lead SNP. Circos plots for all chromosomes are provided in **Supplementary Fig. 7**.

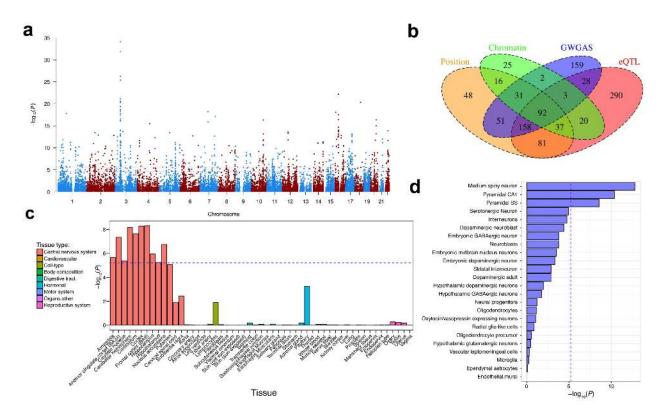


Figure 3. Mapping of genes and tissue- and cell expression profiles. (a) Manhattan plot of the genome-wide gene-based association analysis (GWGAS). The y-axis shows the –log10 transformed *P*-value of each gene, and the chromosomal position on the x-axis. The red dotted line indicates the threshold for genome-wide significance of the gene-based test (*P*<2.76×10⁻⁶; 0.05/18,128), and the blue line indicates the suggestive threshold (*P*<2.76×10⁻⁵; 0.5/18,128) **(b)** Venn diagram showing overlap of genes implicated by positional mapping, eQTL mapping, chromatin interaction mapping, and GWGAS. **(c)** Gene expression profiles of identified genes for 53 tissue types. Expression data were extracted from the Genotype-Tissue Expression (GTEx) database. Expression values (RPKM) were log2 transformed with pseudocount 1 after winsorization at 50 and averaged per tissue. **(d)** Single-cell gene-expression analysis of genes related to intelligence in 24 cell-types. The dotted blue line indicates the Bonferroni-corrected significance threshold (*P*=0.05/7,323=6.83×10⁻⁶).

19

TABLES

Table 1. Exonic non-synonymous (ExNS) variants in the genomic loci associated with intelligence and in LD ($r^2>0.6$) with one of the independent GWS SNPs.

SNP	Gene	Exon	CADD	RDB	A1	A2	MAF	Р	Z	Effect Size
rs4359027	FOXO6	2	13.18	2b	Α	G	0.47	1.2E-07	5.29	0.014
rs11264743	CREB3L4	3	24.4	4	Т	С	0.29	5.2E-07	-5.02	-0.015
rs11264875	NUP210L	32	28.6	6	Τ	С	0.28	2.5E-06	-4.71	-0.014
rs2232819	METTL13	3	22.8	5	Α	G	0.19	4.1E-07	5.06	0.017
rs2820312	LMOD1	2	2.65	5	Α	G	0.34	1.7E-08	-5.64	-0.016
rs1804020	ZNF638	5	7.18	7	Α	G	0.24	4.7E-11	-6.58	-0.021
rs11542286	ZNF638	7	22.4	-	Τ	С	0.09	2.0E-07	-5.20	-0.024
rs3813227	ALMS1	5	0.09	6	Т	С	0.24	3.7E-07	-5.08	-0.016
rs6546837	ALMS1	8	0	6	С	G	0.24	4.0E-07	-5.07	-0.016
rs6724782	ALMS1	8	0.01	7	Α	Т	0.24	5.2E-07	-5.02	-0.016
rs6546839	ALMS1	8	17.18	7	С	G	0.24	3.7E-07	-5.08	-0.016
rs2056486	ALMS1	10	0.29	5	Τ	G	0.24	2.0E-07	-5.20	-0.016
rs3828193	CHST10	2	13.45	-	Τ	G	0.49	8.8E-13	7.15	0.019
rs2116665	GPD2	3	11.61	-	Α	G	0.3	4.2E-09	5.88	0.017
rs1064213	PLCL1	2	26.1	6	Α	G	0.48	8.4E-07	-4.93	-0.013
rs9834639	TMEM89	1	13.65	1f	Т	G	0.07	2.0E-06	4.76	0.025
rs13324142	SLC26A6	2	25.6	1 f	Т	С	0.1	6.7E-08	5.40	0.024
rs34759087	LAMB2	22	23.1	5	Т	С	0.12	3.1E-08	5.53	0.023
rs13068038	CCDC36	10	4.12	7	Α	С	0.11	6.9E-13	7.18	0.031
rs13077498	C3orf62	1	1.48	4	Т	С	0.11	3.2E-13	7.29	0.031
rs34762726	BSN	5	0.66	5	Α	G	0.29	3.0E-25	10.38	0.031
rs2005557	BSN	8	11.52	2b	Α	G	0.47	2.6E-08	-5.57	-0.015
rs3197999	MST1	18	25.5	_	Α	G	0.29	1.6E-23	10.00	0.029
rs34823813	RNF123	24	18.51	7	Α	G	0.1	3.6E-12	6.95	0.031
rs73079003	CDHR4	8	5.09	3a	Α	G	0.13	3.4E-08	5.52	0.022
rs1046956	SEMA3F	13	6.01	4	Α	Т	0.34	1.7E-09	6.02	0.017
rs11177	GNL3	3	22.9	-	Α	G	0.38	5.7E-11	6.55	0.018
rs2289247	GNL3	11	12.82	-	Α	G	0.41	1.4E-10	6.42	0.017
rs1029871	NEK4	5	24.1	1 f	С	G	0.38	5.3E-10	6.21	0.019
rs3617	ITIH3	9	0.16	-	Α	С	0.45	4.6E-08	5.47	0.015
rs61739170	DHFRL1	2	0.01	6	С	G	0.26	5.8E-06	-4.54	-0.014
rs2269495	TNIP2	6	10.93	-	Α	G	0.44	7.3E-07	-4.95	-0.013
rs3795243	NCAPG	4	10.85	5	С	G	0.13	4.3E-11	-6.59	-0.026
rs34811474	ANAPC4	20	23.8	6	Α	G	0.23	4.5E-16	8.12	0.027
rs13107325	SLC39A8	8	34	5	Т	С	0.08	2.1E-22	-9.74	-0.048
rs17610219	TTC29	6	1.91	7	Α	G	0.38	4.2E-08	5.48	0.015
rs2240695	PCDHA1	1	21.9	-	Τ	G	0.47	3.5E-08	5.52	0.015
rs9686540	PCDHA2	1	2.31	5	Α	G	0.47	8.6E-08	5.35	0.014
rs7701755	PCDHA3	1	22.6	4	Т	G	0.47	1.2E-07	5.29	0.014
rs2240694	PCDHA3	1	23	-	Α	G	0.47	5.1E-08	5.45	0.015
rs3822346	PCDHA4	1	0.02	-	Т	С	0.47	4.9E-08	5.45	0.015
rs4141841	PCDHA5	1	17	-	Т	С	0.47	3.3E-08	5.53	0.015
rs10067182	PCDHA7	1	0.07	5	Α	G	0.47	5.6E-08	5.43	0.015
rs41266839	BTN3A1	5	0	4	С	G	0.11	1.9E-07	5.21	0.022
rs13195401	BTN2A1	4	24.4	5	Т	G	0.11	3.3E-07	5.11	0.022
rs13195402	BTN2A1	4	24.6	5	Т	G	0.11	1.4E-06	4.82	0.021
rs13195509	BTN2A1	4	23.6	1 f	Α	G	0.12	7.9E-08	5.37	0.022
rs3734542	BTN2A1	8	7.52	5	Α	G	0.12	1.4E-07	5.27	0.022
rs3734543	BTN2A1	8	6.66	5	С	G	0.12	5.4E-07	5.01	0.021

rs35555795	BTN1A1	7	0.03	7	т	_	0.12	1.1E-07	5.31	0.022
rs3749971	OR12D3	7 1	1.61	7 -	T A	C G	0.12	4.0E-09	5.89	0.022
rs3735478	ZMIZ2	9	22.7	- 1f	T	G	0.12	4.0E-09 4.2E-11	6.60	0.025
rs1801195	WRN	26	0.08	5		G	0.29	1.2E-07	5.30	0.020
rs79460462	TSNARE1	3	15.14	5 5	T T	C	0.46	7.4E-07	5.30 4.95	0.014
rs1063739	GPT			3 4		С	0.02			
rs4251691	RECQL4	1 18	0.01 19.04	4 -	A T	С	0.47	2.0E-09 3.3E-08	-6.00 -5.52	-0.016 -0.015
	-		19.04 25							
rs184457	IER5L	1		4	A	G	0.31	8.1E-10	6.14	0.018
rs11191274	GBF1	38	0.01	5	A	G	0.13	1.8E-06	-4.78 5.42	-0.019
rs34473884	PPP2R2D	6	24.6	5	A	G	0.25	5.5E-08	5.43	0.017
rs2030166	NDUFS3	5	3.13	6	T	C	0.35	1.3E-08	-5.68	-0.016
rs1064608	MTCH2	12	25.4	6	C	G	0.35	1.1E-08	-5.72	-0.016
rs4926	SERPING1	8	23.5	5	A	G	0.27	1.6E-07	-5.25	-0.016
rs55865069	KMT2D	4	19.8	5	T	C	0.03	1.9E-06	4.77	0.038
rs4647899	AKAP6	13	13.13	5	A	T	0.3	2.4E-07	5.17	0.015
rs17524906	DMXL2	11	12.26	7	A	G	0.24	4.6E-07	5.04	0.016
rs16973457	FAM154B	4	27.7	6	T	C	0.49	2.1E-07	5.19	0.014
rs7140	SPNS1	11	16.6	-	A	С	0.3	3.4E-09	5.91	0.017
rs12949256	ARHGAP27	5	11.97	4	T	С	0.19	2.8E-07	-5.14	-0.018
rs16940674	CRHR1	6	12.86	1f	T	С	0.23	1.2E-07	-5.29	-0.017
rs16940681	CRHR1	13	1.76	4	С	G	0.23	3.5E-07	-5.09	-0.016
rs62054815	SPPL2C	1	0	5	Α	G	0.23	3.5E-07	-5.10	-0.016
rs12185233	SPPL2C	1	25.6	1f	С	G	0.23	1.5E-07	-5.26	-0.017
rs12373139	SPPL2C	1	0.53	1f	Α	G	0.23	1.4E-07	-5.27	-0.017
rs63750417	MAPT	6	8.68	5	T	С	0.23	2.7E-07	-5.14	-0.017
rs62063786	MAPT	6	7.65	5	Α	G	0.23	2.3E-07	-5.17	-0.017
rs17651549	MAPT	6	34	1f	T	С	0.23	8.5E-08	-5.36	-0.017
rs2526374	RNF43	8	13.78	4	T	G	0.36	4.4E-08	-5.47	-0.015
rs3744108	MTMR4	6	23.1	5	С	G	0.38	7.7E-14	-7.48	-0.021
rs6503870	TEX14	20	9.53	7	Т	С	0.38	3.9E-14	7.56	0.021
rs2270951	DCC	22	16.7	6	Т	С	0.46	1.1E-13	-7.43	-0.020
rs8108738	MAST3	22	13.96	4	Α	G	0.47	5.9E-10	6.19	0.017
rs882610	ZNF446	7	7.69	-	Α	G	0.27	1.6E-07	5.24	0.016
rs3752109	MZF1	3	12.56	-	Т	С	0.28	8.4E-09	5.76	0.017
rs11553387	DDX27	6	16.86	-	Т	G	0.22	2.1E-09	5.99	0.019
rs1130146	DDX27	19	26.2	5	Α	G	0.39	1.7E-11	-6.73	-0.018
rs6512577	ZNFX1	14	0	5	Т	С	0.22	1.8E-09	6.01	0.019
rs12628603	TRIOBP	7	23.2	5	Α	G	0.38	1.9E-06	4.77	0.013
rs9610841	TRIOBP	7	22.8	5	Α	С	0.46	1.1E-07	5.32	0.014
rs8140207	TRIOBP	9	14.09	5	T	G	0.28	2.1E-07	-5.19	-0.015

Note: CADD: Combined Annotation Dependent Depletion score; RDB: Regulome DB score; MAF: minor allele frequency; Z: z-score from the GWAS meta-analysis; Effect size: magnitude of Z score association in standard deviation units.*=SNP is an independent lead SNP. Genes containing multiple ExNS are in bold.

Online methods

Study Cohorts

The meta-analysis included new and previously reported GWAS summary statistics from 16

cohorts: UK Biobank (UKB), Cognitive Genomics Consortium (COGENT), Rotterdam Study (RS),

Generation R Study (GENR), Swedish Twin Registry (STR), Spit for Science (S4S), High-IQ/Health

and Retirement Study (HiQ/HRS), Twins Early Development Study (TEDS), Danish Twin Registry

(DTR), IMAGEN, Brisbane Longitudinal Twin Study (BLTS), Netherlands Study of Cognition,

Environment and Genes (NESCOG), Genes for Good (GfG), Swedish Twin Studies of Aging (STSA),

Atherosclerosis Risk in Communities Study (ARIC), and the Multi-Ethnic Study of Atherosclerosis

(MESA). Detailed descriptions of the samples, measures, genotyping, quality control, and analysis

procedures for each cohort are provided in **Supplementary Information 1.1** and **Supplementary**

Table 1.

Meta-analysis

Stringent quality control measures were applied to the summary statistics for each GWAS cohort

before combining. All files were checked for data integrity and accuracy. SNPs were filtered from

further analysis if they met any of the following criteria: imputation quality (INFO/ R^2) score < 0.6,

22

Hardy-Weinberg equilibrium (HWE) $P < 5 \times 10^{-6}$, study-specific minor allele frequency (MAF)

corresponding to a minor allele count (MAC) < 100, and mismatch of alleles or allele frequency

difference greater than 20% from the Haplotype Reference Consortium (HRC) genome reference

panel¹⁶. Some cohorts used more stringent criteria (see **Supplementary Information 1.1**). Indels

and SNPs that were duplicated, multi-allelic, monomorphic, or ambiguous (A/T or C/G) with a

23

MAF >0.4 were also excluded. Visual inspection of the distribution of the summary statistics was

completed, and Manhattan plots and QQ plots were created for the cleaned statistics from each

cohort (Supplementary Figure 1).

The SNP association P-values from the GWAS cohorts were meta-analyzed with METAL²² (see

URLs) in two phases. First, we meta-analyzed all cohorts with quantitative phenotypes (all except

HiQ/HRS) using a sample-size weighted scheme. In the second phase, we added the HiQ/HRS

study results to the first phase results, weighting each set of summary statistics by their

respective non-centrality parameter (NCP). This method improves power when using an extreme

case sampling design such as HiQ²³. NCPs were estimated using the Genetic Power Calculator²⁴,

as described by Coleman et al.²⁵. After combining all data, meta-analysis results were further

filtered to exclude any variants with N < 50,000.

The X chromosome was treated separately in the meta-analysis because imputed genotypes

were not available for the X chromosome in the largest cohort (UKB), and there was little overlap

between the UKB called genotypes and imputed data from other cohorts (N_{SNPs} < 500). We

therefore included only the called X chromosome variants in UKB for these analyses after

performing X-specific quality control steps²⁶.

We conducted a series of meta-analyses on subsets of the full sample using the same methods

as above. Age group-specific meta-analyses were run in the cohorts of children (age < 17; GENR,

TEDS, IMAGEN, BLTS; N=9,814), young adults (age ~17-18; S4S, STR; N=6,033), and adults (age >

18, primarily middle-aged or older: UKB, RS, DTR, NESCOG, STSA, ARIC, MESA; N=214,291),

excluding studies whose samples overlapped multiple age groups (COGENT, HiQ/HRS, GfG;

N=49,792). To create independent discovery samples for use in polygenic score validation, we

24

also conducted meta-analyses with a "leave-one-out" strategy in which summary statistics from

four validation datasets were, respectively, excluded from the meta-analysis (see Polygenic

Scoring, below).

Cohort Heritability and Genetic Correlation

LD score regression⁸ was used to estimate genomic inflation and heritability of the intelligence

phenotypes in each of the 16 cohorts using their post-quality control summary statistics, and to

estimate the cross-cohort genetic correlations²⁷. Pre-calculated LD scores from the 1000

Genomes European reference population were obtained from

https://data.broadinstitute.org/alkesgroup/LDSCORE/. Genetic correlations were calculated on

HapMap3 SNPs only. LD score regression was also used on the age subgroup meta-analyses to

estimate heritability and cross-age genetic correlations.

Genomic Risk Loci Definition

Independently associated loci from the meta-analysis were defined using FUMA¹²

(http://fuma.ctglab.nl/), an online platform for functional mapping of genetic variants. We first

identified independent significant SNPs which have genome-wide significant P-value (<5×10⁻⁸)

and represented signals that are independent from each other at $r^2 < 0.6$. These SNPs were further

represented by lead SNPs, which are a subset of the independent significant SNPs that are in

approximate linkage equilibrium with each other at $r^2 < 0.1$. We then defined associated genomic

risk loci by merging any physically overlapping lead SNPs (linkage disequilibrium [LD] blocks

<250kb apart). Borders of the genomic risk loci were defined by identifying all SNPs in LD

25

 $(r^2 \ge 0.6)$ with one of the independent significant SNPs in the locus, and the region containing all

of these candidate SNPs was considered to be a single independent genomic risk locus. All LD

information was calculated from UK Biobank genotype data.

Proxy-replication with Educational Attainment (EA)

We conducted GWAS of EA, an outcome with a high genetic correlation with intelligence⁵, in a

non-overlapping European subset of the UKB sample (N=188,435) who did not complete the

intelligence measure. EA was coded as maximum years of education completed, using the same

methods as earlier analyses²⁸ and GWAS was conducted using the same quality control and

analytic procedures as described for the UKB intelligence phenotype (Supplementary

Information 1.1). To test replication of the SNPs with this proxy phenotype, we performed a sign

concordance test for all GWS SNPs from the meta-analysis using the exact binomial test. For each

independent genomic locus, we considered it to be evidence for replication if the lead SNP or

another correlated SNP in the region was sign concordant with the corresponding SNP in the

intelligence meta-analysis and had a P-value of association with EA smaller than

0.05/246=0.0002.

Polygenic Scoring

We calculated polygenic scores (PGS) based on the SNP effect sizes of the leave-one-out meta-

analyses, from which four cohorts were (separately) excluded and reserved for score validation.

These included a child (GENR), young adult (S4S), and adult sample (RS). We also included the

UKB-wb sample to test for validation in a very large (N = 53,576) cohort with the greatest

phenotypic similarity to the largest contributor to the meta-analysis statistics (UKB-ts), in order

to maximize potential predictive power. PGS were calculated on the genotype data using

LDpred¹⁰, a Bayesian PGS method that utilizes a prior on effect size distribution to remodel the

SNP effect size and account for LD, and PRSice⁹, a PLINK²⁹-based program that automates

optimization of the set of SNPs included in the PGS based on a high-resolution filtering of the

GWAS P-value threshold. LDpred PGS were applied to the called, cleaned, genotyped variants in

each of the validation cohorts with UK Biobank as the LD reference panel. PRSice PGS were

calculated on hard-called imputed genotypes using P-value thresholds from 0.0 to 0.5 in steps of

0.001. The explained variance (ΔR^2) was derived from a linear model in which the GWAS

26

intelligence phenotype was regressed on each PGS while controlling for the same covariates as

in each cohort-specific GWAS, compared to a linear model with GWAS covariates only.

Stratified Heritability

We partitioned SNP heritability using stratified LD Score regression³⁰ in three ways: 1) by

functional annotation category, 2) by minor allele frequency (MAF) in six percentile bins, and 3)

by chromosome. Annotations for 22 binary categories of functional genomic characteristics (e.g.

regulatory regions) coding were obtained from the LD score website

(https://github.com/bulik/ldsc). The Bonferroni-corrected significance threshold was .05/50

annotations=.001.

Functional Annotation of SNPs

27

Functional annotation of SNPs implicated in the meta-analysis was performed using FUMA¹² (http://fuma.ctglab.nl/). We selected all candidate SNPs in genomic risk loci having an $r^2 \ge 0.6$ with one of the independent significant SNPs (see above), a P-value (P<1e-5) and a MAF>0.0001 for annotations. Functional consequences for these SNPs were obtained by matching SNPs' chromosome, base-pair position, and reference and alternate alleles to databases containing known functional annotations, including ANNOVAR³¹ categories, Combined Annotation Dependent Depletion (CADD) scores¹³, RegulomeDB¹⁴ (RDB) scores, and chromatin states^{15,16}. ANNOVAR categories identify the SNP's genic position (e.g. intron, exon, intergenic) and associated function. CADD scores predict how deleterious the effect of a SNP is likely to be for a protein structure/function, with higher scores referring to higher deleteriousness. A CADD score above 12.37 is the threshold to be potentially pathogenic¹³. The RegulomeDB score is a categorical score based on information from expression quantitative trait loci (eQTLs) and chromatin marks, ranging from 1a to 7 with lower scores indicating an increased likelihood of having a regulatory function. Scores are as follows: 1a=eQTL + Transciption Factor (TF) binding + matched TF motif + matched DNase Footprint + DNase peak; 1b=eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c=eQTL + TF binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + any motif + DNase peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 2a=TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b=TF binding + any motif + DNase Footprint + DNase peak; 2c=TF binding + matched TF motif + DNase peak; 3a=TF binding + any motif + DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + DNase peak; 5=TF binding or DNase peak; 6=other;7=Not available. The chromatin state represents the accessibility of genomic regions (every 200bp) with 15 categorical states

predicted by a hidden Markov model based on 5 chromatin marks for 127 epigenomes in the

28

Roadmap Epigenomics Project¹⁶. A lower state indicates higher accessibility, with states 1-7

referring to open chromatin states. We annotated the minimum chromatin state across tissues

to SNPs. The 15-core chromatin states as suggested by Roadmap are as follows: 1=Active

Transcription Start Site (TSS); 2=Flanking Active TSS; 3=Transcription at gene 5' and 3'; 4=Strong

transcription; 5= Weak Transcription; 6=Genic enhancers; 7=Enhancers; 8=Zinc finger genes &

repeats; 9=Heterochromatic; 10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh;

12=Bivalent Enhancer; 13=Repressed PolyComb; 14=Weak Repressed PolyComb;

15=Quiescent/Low. Standardized SNP effect sizes were calculated for the most impactful SNPs

by transforming the sample size-weighted meta-analysis Z score, as described in Zhu et al.,

2016³².

Gene-mapping

Genome-wide significant loci obtained by GWAS were mapped to genes in FUMA¹² using three

strategies:

2.

1. Positional mapping maps SNPs to genes based on physical distance (within a 10kb

window) from known protein coding genes in the human reference assembly

(GRCh37/hg19).

eQTL mapping maps SNPs to genes with which they show a significant eQTL association

(i.e. allelic variation at the SNP is associated with the expression level of that gene). eQTL

mapping uses information from 45 tissue types in 3 data repositories (GTEx³³, Blood eQTL

browser³⁴, BIOS QTL browser³⁵), and is based on cis-eQTLs which can map SNPs to genes

up to 1Mb apart. We used a false discovery rate (FDR) of 0.05 to define significant eQTL

29

associations.

3.

Chromatin interaction mapping was performed to map SNPs to genes when there is a

three-dimensional DNA-DNA interaction between the SNP region and another gene

region. Chromatin interaction mapping can involve long-range interactions as it does not

have a distance boundary. FUMA currently contains Hi-C data of 14 tissue types from the

study of Schmitt et al³⁶. Since chromatin interactions are often defined in a certain

resolution, such as 40kb, an interacting region can span multiple genes. If a SNPs is located

in a region that interacts with a region containing multiple genes, it will be mapped to

each of those genes. To further prioritize candidate genes, we selected only interaction-

mapped genes in which one region involved in the interaction overlaps with a predicted

enhancer region in any of the 111 tissue/cell types from the Roadmap Epigenomics

Project¹⁶ and the other region is located in a gene promoter region (250bp up and 500bp

downstream of the transcription start site and also predicted by Roadmap to be a

promoter region). This method reduces the number of genes mapped but increases the

likelihood that those identified will have a plausible biological function. We used a FDR of

1×10⁻⁵ to define significant interactions, based on previous recommendations³⁶ modified

to account for the differences in cell lines used here.

Functional annotation of mapped genes

Genes implicated by mapping of significant GWAS SNPs were further investigated using the

GENE2FUNC procedure in FUMA¹², which provides hypergeometric tests of enrichment of the

30

GWAS META-ANALYSIS OF INTELLIGENCE

list of mapped genes in 53 GTEx³³ tissue-specific gene expression sets, 7,246 MSigDB gene-

sets³⁷, and 2,195 GWAS catalog gene-sets²¹. The Bonferroni-corrected significance threshold

was 0.05/9,494 gene-sets= 5.27×10^{-6} .

Gene-based analysis

SNP-based P-values from the meta-analysis were used as input for the gene-based genome-wide

association analysis (GWGAS). 18,128 protein-coding genes (each containing at least 1 GWAS

SNP) from the NCBI 37.3 gene definitions were used as basis for GWGAS in MAGMA

(http://ctg.cncr.nl/software/magma)¹⁷. The Bonferroni-corrected genome-wide significance

threshold was .05/18,128 genes=2.76×10⁻⁶.

Gene-set analysis

Results from the GWGAS analyses were used to test for association in three types of predefined

gene-sets:

1. 7,246 curated gene-sets representing known biological and metabolic pathways were

derived from 9 data resources, catalogued by and obtained from the MsigDB version 5.2²⁹

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp)

2. gene expression values from 53 tissues obtained from GTEx³³, log2 transformed with

pseudocount 1 after winsorization at 50 and averaged per tissue

3. cell-type specific expression in 24 types of brain cells, which were calculated following the

method described in Skene et al.³⁸ and Coleman et al.²⁵ Briefly, brain cell-type expression

data was drawn from single-cell RNA sequencing data from mouse brains. For each gene,

the value for each cell-type was calculated by dividing the mean Unique Molecular

31

Identifier (UMI) counts for the given cell type by the summed mean UMI counts across all

cell types. Single-cell gene-sets were derived by grouping genes into 40 equal bins by

specificity of expression.

These gene-sets were tested using MAGMA. We computed competitive P-values, which

represent the test of association for a specific gene-set compared to other gene-sets. This

method is more robust to Type I error than self-contained tests that only test for association of

a gene-set against the null hypothesis of no association³⁹. The Bonferroni-corrected significance

threshold was 0.05/7,323 gene-sets=6.83×10⁻⁶. Conditional analyses were performed as a follow-

up using MAGMA to test whether each significant association observed was independent of all

others. The association between each gene-set was tested conditional on the most strongly

associated set, and then - if any substantial (p<.05/number of gene-sets) associations remained

- by conditioning on the first and second most strongly associated set, and so on until no

associations remained. Gene-sets that retained their association after correcting for other sets

were considered to be independent signals. We note that this is not a test of association per se,

but rather a strategy to identify, among gene-sets with known significant associations whose

defining genes may overlap, which set(s) are responsible for driving the observed association.

Cross-Trait Genetic Correlation

Genetic correlations (r_a) between intelligence and 38 phenotypes were computed using LD score

regression²⁷, as described above, based on GWAS summary statistics obtained from publicly

available databases

(http://www.med.unc.edu/pgc/results-and-downloads;

http://ldsc.broadinstitute.org/; Supplementary Table 18). The Bonferroni-corrected significance

32

threshold was 0.05/38 traits= 1.32×10^{-3} .

GWAS catalog lookup

We used FUMA to identify SNPs with previously reported ($P < 5 \times 10^{-5}$) phenotypic associations in

published GWAS listed in the NHGRI-EBI catalog²¹ which overlapped with the genomic risk loci

identified in the meta-analysis. As an additional relevant phenotype of interest, we examined

whether the genes associated with intelligence in this study (by FUMA mapping or GWGAS) were

overrepresented in a set of 1,518 genes linked to intellectual disability and/or developmental

delay, as compiled by RegionAnnotater (https://github.com/ivankosmos/RegionAnnotator).

Many of these have been identified by non-GWAS sources and are not represented in the NHGRI

catalog. We tested for enrichment using a hypergeometric test with a background set of 19,283

genomic protein-coding genes, as in FUMA. Manual lookups were also performed to identify

overlapping loci/genes with known previous GWAS of intelligence.

Mendelian Randomization

To infer credible causal associations between intelligence and traits that are genetically

correlated with intelligence, we performed Generalised Summary-data based Mendelian

Randomization⁴⁰ (GSMR; http://cnsgenomics.com/software/gsmr/). This method utilizes

summary-level data to test for causal associations (b_{xy}) between a risk factor and an outcome by

using genome-wide significant SNPs as instrumental variables. HEIDI-outlier detection was used

to filter genetic instruments that show clear pleiotropic effects on the exposure phenotype and

the outcome phenotype. We used a threshold p-value of 0.01 for the outlier detection analysis

in HEIDI which removes 1% of SNPs by chance if there is no pleiotropic effect. To test for a causal

effect of intelligence (b_{zx}) on an outcome (b_{zy}) we selected traits in non-overlapping samples that

showed significant genetic correlations (r_a) with intelligence. We tested for bi-directional

causation by repeating the analyses using independent GWS SNPs related to the outcome

phenotypes as exposure and intelligence as the outcome phenotype. For each trait, we selected

independent (r^2 =<0.1), GWS lead SNPs as instrumental variables in the analyses. For traits with

less than 10 lead SNPs (i.e. the minimum number of SNPs on which GSMR can perform a reliable

analysis) we selected independent SNPs ($r^2 = <0.1$), with a GWS P-value ($<5 \times 10^{-8}$), except for ADHD

33

for which the threshold was lowered to 1×10⁻⁵ due to the small number of GWS SNPs. The

estimated b_{zx} and b_{zy} are approximately equal to the natural log odds ratio (OR)⁴⁰. An OR of 2 can

be interpreted as a doubled risk compared to the population prevalence of a binary trait for every

SD increase in the exposure trait. For quantitative traits the b_{zx} and b_{zy} can be interpreted as a

one standard deviation increase explained in the outcome trait for every SD increase in the

exposure trait.

Data availability

Summary statistics will be made available for download upon publication (https://ctg.cncr.nl).

References

- Polderman, T. J. *et al.* Meta-analysis of the heritability of human traits based on fifty years of twin studies. *Nature genetics* **47**, 702-709, doi:10.1038/ng.3285 (2015).
- Wraw, C., Deary, I. J., Gale, C. R. & Der, G. Intelligence in youth and health at age 50. *Intelligence* **53**, 23-32, doi:10.1016/j.intell.2015.08.001 (2015).
- Davies, G. et al. Genetic contributions to variation in general cognitive function: a metaanalysis of genome-wide association studies in the CHARGE consortium (N=53949). Molecular psychiatry 20, 183-192, doi:10.1038/mp.2014.188 (2015).
- Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). *Molecular psychiatry* **21**, 758-767, doi:10.1038/mp.2016.45 (2016).
- 5 Sniekers, S. *et al.* Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. *Nature genetics* **49**, 1107-1112, doi:10.1038/ng.3869 (2017).
- Trampush, J. W. *et al.* GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. *Molecular psychiatry* **22**, 336-345, doi:10.1038/mp.2016.244 (2017).
- 7 Zabaneh, D. *et al.* A genome-wide association study for extremely high intelligence. *Molecular psychiatry*, doi:10.1038/mp.2017.121 (2017).
- 8 Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nature genetics* **47**, 291-295, doi:10.1038/ng.3211 (2015).
- 9 Euesden, J., Lewis, C. M. & O'Reilly, P. F. PRSice: Polygenic Risk Score software. *Bioinformatics (Oxford, England)* **31**, 1466-1468, doi:10.1093/bioinformatics/btu848 (2015).
- Vilhjalmsson, B. J. *et al.* Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. *American journal of human genetics* **97**, 576-592, doi:10.1016/j.ajhg.2015.09.001 (2015).
- Hill, W. D. *et al.* Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. *Translational psychiatry* **6**, e980, doi:10.1038/tp.2016.246 (2016).
- Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. FUMA: Functional mapping and annotation of genetic associations. *bioRxiv*, doi:10.1101/110023 (2017).
- Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nature genetics* **46**, 310-315, doi:10.1038/ng.2892 (2014).
- Boyle, A. P. *et al.* Annotation of functional variation in personal genomes using RegulomeDB. *Genome research* **22**, 1790-1797, doi:10.1101/gr.137323.112 (2012).
- Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. *Nature methods* **9**, 215-216, doi:10.1038/nmeth.1906 (2012).
- Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317-330, doi:10.1038/nature14248 (2015).

- de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. *PLoS computational biology* **11**, e1004219, doi:10.1371/journal.pcbi.1004219 (2015).
- Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature genetics* **25**, 25-29, doi:10.1038/75556 (2000).
- Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence differences. *Nature reviews. Neuroscience* **11**, 201-211, doi:10.1038/nrn2793 (2010).
- Posthuma, D. *et al.* The association between brain volume and intelligence is of genetic origin. *Nature neuroscience* **5**, 83-84, doi:10.1038/nn0202-83 (2002).
- 21 MacArthur, J. *et al.* The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic acids research* **45**, D896-d901, doi:10.1093/nar/gkw1133 (2017).
- Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics (Oxford, England)* **26**, 2190-2191, doi:10.1093/bioinformatics/btq340 (2010).
- Peloso, G. M. *et al.* Phenotypic extremes in rare variant study designs. *European journal of human genetics : EJHG* **24**, 924-930, doi:10.1038/ejhg.2015.197 (2016).
- Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. *Bioinformatics (Oxford, England)* **19**, 149-150 (2003).
- 25 Coleman, J. *et al.* Functional consequences of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. *bioRxiv*, doi:10.1101/170712 (2017).
- Konig, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to include chromosome X in your genome-wide association study. *Genetic epidemiology* **38**, 97-103, doi:10.1002/gepi.21782 (2014).
- Bulik-Sullivan, B. *et al.* An atlas of genetic correlations across human diseases and traits. *Nature genetics* **47**, 1236-1241, doi:10.1038/ng.3406 (2015).
- Okbay, A. *et al.* Genome-wide association study identifies 74 loci associated with educational attainment. *Nature* **533**, 539-542, doi:10.1038/nature17671 (2016).
- 29 Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* **4**, 7, doi:10.1186/s13742-015-0047-8 (2015).
- Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide association summary statistics. *Nature genetics* **47**, 1228-1235, doi:10.1038/ng.3404 (2015).
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic acids research* **38**, e164, doi:10.1093/nar/gkq603 (2010).
- 32 Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nature genetics* **48**, 481-487, doi:10.1038/ng.3538
- http://www.nature.com/ng/journal/v48/n5/abs/ng.3538.html supplementary-information (2016).
- GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. *Science (New York, N.Y.)* **348**, 648-660, doi:10.1126/science.1262110 (2015).

36

- Westra, H. J. *et al.* Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nature genetics* **45**, 1238-1243, doi:10.1038/ng.2756 (2013).
- Zhernakova, D. V. *et al.* Identification of context-dependent expression quantitative trait loci in whole blood. *Nature genetics* **49**, 139-145, doi:10.1038/ng.3737 (2017).
- Schmitt, A. D. *et al.* A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. *Cell reports* **17**, 2042-2059, doi:10.1016/j.celrep.2016.10.061 (2016).
- Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics (Oxford, England)* **27**, 1739-1740, doi:10.1093/bioinformatics/btr260 (2011).
- 38 Skene, N. G. *et al.* Genetic Identification Of Brain Cell Types Underlying Schizophrenia. *bioRxiv*, doi:10.1101/145466 (2017).
- de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of geneset analysis. *Nature reviews. Genetics* **17**, 353-364, doi:10.1038/nrg.2016.29 (2016).
- Zhu, Z. *et al.* Causal associations between risk factors and common diseases inferred from GWAS summary data. *bioRxiv*, doi:10.1101/168674 (2017).