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Abstract

Motivation: Multiple marker analysis of the genome-wide association study (GWAS) data has

gained ample attention in recent years. However, because of the ultra high-dimensionality of

GWAS data, such analysis is challenging. Frequently used penalized regression methods often

lead to large number of false positives, whereas Bayesian methods are computationally very ex-

pensive. Motivated to ameliorate these issues simultaneously, we consider the novel approach of

using non-local priors in an iterative variable selection framework.

Results: We develop a variable selection method, named, iterative non-local prior based selection

for GWAS, or GWASinlps, that combines, in an iterative variable selection framework, the compu-

tational efficiency of the screen-and-select approach based on some association learning and the

parsimonious uncertainty quantification provided by the use of non-local priors. The hallmark of

our method is the introduction of ‘structured screen-and-select’ strategy, that considers hierarchic-

al screening, which is not only based on response-predictor associations, but also based on

response-response associations and concatenates variable selection within that hierarchy.

Extensive simulation studies with single nucleotide polymorphisms having realistic linkage dis-

equilibrium structures demonstrate the advantages of our computationally efficient method com-

pared to several frequentist and Bayesian variable selection methods, in terms of true positive rate,

false discovery rate, mean squared error and effect size estimation error. Further, we provide em-

pirical power analysis useful for study design. Finally, a real GWAS data application was consid-

ered with human height as phenotype.

Availability and implementation: An R-package for implementing the GWASinlps method is avail-

able at https://cran.r-project.org/web/packages/GWASinlps/index.html.
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1 Introduction

We consider analysis of genome-wide association study (GWAS)

data using variable selection regression. Majority of the frequentist

and Bayesian variable selection methods, that have been applied to

GWAS data (Carbonetto and Stephens, 2012; Cho et al., 2010;

Guan and Stephens, 2011; He and Lin, 2011; Li et al., 2011; Wu

et al., 2009) are, in theory or in implementation or in both, privi-

leged to handle only moderate to high-dimensional data. Because

GWAS data are ultrahigh-dimensional, GWAS analysis using such

methods may be statistically inappropriate, often resulting in a large

number of false positives, or especially for the Bayesian methods,

computationally quite expensive if not infeasible. This article intro-

duces a novel Bayesian method, which aims to ameliorate the above

issues by providing efficient and parsimonious variable selection for

GWAS.

A GWAS is an examination of the genetic variants, typically sin-

gle nucleotide polymorphisms (SNPs), across whole genomes of dif-

ferent individuals. The number of SNPs measured in a GWAS may

range from thousands to millions, and is much larger than the sam-

ple size. In this work, by ‘high-dimensional data’ we generally mean

data where the number of independent variables, p, is one or several

orders of magnitude higher than the number of samples, n and by

‘ultra-high-dimensional data’ we specifically refer to cases where the

order of p is more than the polynomial order in n, i.e. p > O ncð Þ. In

GWAS data the number of SNPs p is often > O ncð Þ and even O cnð Þ,
i.e. exponential order in n. To date, the most common approach to

analyze GWAS data is single marker analysis, where individual

SNPs are tested for association with a phenotype independently of

the other SNPs (Zeng et al., 2015). However, such ‘single SNP ana-

lysis’ often suffer from low accountability for the total estimated

heritability (the ‘missing heritability’ problem), low detection power

for individual effect sizes, large number of false positives and highly

conservative Bonferroni multiple comparison corrections (Gao

et al., 2010; Manolio et al., 2009; Stringer et al., 2011). Contrasted

to single-SNP analysis, the approach of analyzing multiple or

genome-wide SNPs simultaneously has gained ample attention in

the recent years, because: (i) SNPs may be correlated amongst them-

selves, (ii) some causal SNPs might affect the phenotype, not mar-

ginally, but only in presence of certain other SNPs and (iii) some

non-causal SNPs might affect the phenotype marginally, but not

when certain other SNPs are in the model (Visscher et al., 2012).

However, because of the ultra-high-dimensionality of the GWAS

data and higher chance of encountering correlated predictors, joint

association analysis of multiple SNPs is challenging. Possible ways

to handle multiple SNPs include SNP-set analysis (Wu et al., 2010,

2011) and dimension reduction through variable selection, of which

the latter one is our present focus.

The most common approach to perform multiple SNP regression

analysis of GWAS data is to use some form of penalized regression

method. Generally, these methods add a penalty term to the cost

function, forcing certain effect sizes to be set as zero and hence

provide a SNP selection. Various frequentist penalized regressions

methods have been used to analyze GWAS data, such as, Ridge

(Whittaker et al., 2000), LASSO (Wu et al., 2009), Elastic Net (Cho

et al., 2010) and adaptive LASSO (Sampson et al., 2013). Further,

for ultra-high-dimensional variable selection, Fan and Lv (2008)

proposed an iterative method ISIS, that takes a two-step approach

to selection: first eliciting a low-dimensional subset of all predictors

using some association criterion with the response, called the screen-

ing step and then selecting from that screened set of predictors using

some regularized regression method, called the selection step.

In the Bayesian framework, available multi-SNP analysis meth-

ods include, but are not limited to, Bayesian LASSO (Li et al.,

2011), fully Bayesian variable selection regression with Markov

chain Monte Carlo (MCMC)-based inference (Guan and Stephens,

2011), Bayesian variable selection regression with variational infer-

ence (Carbonetto and Stephens, 2012), evolutionary stochastic

search (Bottolo and Richardson, 2010; Bottolo et al., 2013) and

Bayesian efficient linear mixed modeling (Zhou et al., 2013). All the

above Bayesian methods are based on traditionally used ‘local’ pri-

ors, in contrast to which, non-local priors are recently proposed in

the literature (Johnson and Rossell, 2010). In a variable (SNP) selec-

tion problem, the null value of the parameter (effect size of a SNP)

associated with a predictor is typically zero, meaning that if the esti-

mated value of the parameter deviates from the null value, the pre-

dictor is included in the model. In this context, a non-local prior on

a parameter is a prior that has zero density at the null value of the

parameter, whereas local priors have a positive density at the null

value. It is well known that non-local priors provide parsimonious

variable selection leading to reduced false positives (Johnson and

Rossell, 2012). Hence, their use holds considerable promise for

GWAS data analysis. Recently, Chekouo et al. (2016) have used

non-local priors in the modeling of imaging genetics data with

low dimension. However, direct implementation of non-local priors

to high-dimensional GWAS data is computationally challenging.

To the best of our knowledge, no attempt has been made to accom-

modate the use of non-local priors for GWAS data analysis

except for the recent work by Nikooienejad et al. (2016), who devel-

oped a non-local prior based variable selection method for high-

dimensional genomic studies with binary phenotypes.

In this article, we propose a novel high-dimensional variable se-

lection method for continuous phenotypes, which is computational-

ly efficient and provides parsimonious variable selection, making it

a desirable method for GWAS data analysis. Specifically, our ap-

proach has two novelties–

i. We propose an iterative scheme of variable selection, where

within each iteration, variable selection is nested within a

‘structured screening’ framework. In other words, our method

considers an iterative ‘structured screen-and-select strategy’ for

variable selection.

ii. We consider the use of non-local priors within the above-

mentioned structured screen-and-select framework, for analyz-

ing GWAS data with continuous phenotypes.

The proposed iterative structured screen-and-select strategy has

two intuitive advantages: first, opposed to selecting all the SNPs in

one step, it breaks down the selection problem into small chunks

thereby making small or moderately high-dimensional methods ap-

plicable within each chunk and secondly, it performs screening hier-

archically through the imposition of a structure that is informed by

the dependence pattern in the data. On the other hand, for linear

models, specifically non-local prior based procedures achieve model

selection consistency for p � O nð Þ, whereas local prior based proce-

dures have not been shown to have this consistency and frequentist

model selection procedures including the penalized likelihood-based

methods are shown to have such consistency when p is fixed a priori

or p � O n1=3
� �

(Johnson and Rossell, 2012). Hence, the use of non-

local priors to select variables within our structured-screen-and-

select framework is an appealing choice. As the implementation of

non-local prior based variable selection for small to moderately

high-dimensional linear models is fast, endowed with the above

advantages, our method is able to provide an efficient and
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parsimonious variable selection for GWAS with continuous

phenotypes. We call our method iterative non-local prior based se-

lection for GWAS, or GWASinlps, which is described in the follow-

ing section.

2 Materials and methods

2.1 Phenotype model
Let us consider n subjects, each having genotype values for p SNPs.

Suppose yn�1 ¼ y1; y2; . . . ; ynð Þ is the vector of continuous pheno-

types (such as height, weight, blood pressure), and Xn�p is the ma-

trix of genotype values, henceforth called the genotype matrix, with

ith row xi corresponding to subject i. The genotype value for subject

i and SNP j is the number of a particular reference allele (most often

the minor allele) of SNP j, present in subject i. We consider biallelic

SNPs and an additive genetic model. Hence, the genotype values are

0, 1, or 2. Suppose bp�1 ¼ b1;b2; . . . ;bp

� �
denotes a regression vec-

tor of SNP effect sizes.

In the variable (or model) selection context, a collection of

SNPs defines a model. With p SNPs, we can have 2p distinct

models. Let us index a model by k ¼ fk1; k2; . . . ; kjg, with

1 � k1 < k2 < . . . < kj � p, and assume that for model k, the vec-

tor of SNP effects is b ¼bk with bk1
; bk2

; . . . ;bkj
6¼ 0 and bk0 ¼ 0 for all

k0 2 f1;2; . . . ;pg n fk1; k2; . . . ;kjg, where j 2 f0; 1; . . . ; pg. Further

suppose Xk denotes the design matrix corresponding to model k and xik

denotes the ith row of Xk. With these notations set, for model k, we as-

sume that the ith response yi arises from a general linear model, given by

yi ¼ x0ikbk þ �i; (1)

where �i; i ¼ 1; . . . ;n, are identically and independently distributed

normal errors with mean 0 and unknown variance r2
� . Note that, if

there are other available covariates (such as age, gender, principal

components), which may be considered as confounding variables,

they can be included in the Xk matrix as well. Alternatively, one can

adjust the phenotype vector and individual SNP genotype vectors

for these confounders by updating these vectors with residuals from

univariate regressions with the confounders as predictors (Price

et al., 2006). For visual simplicity, we do not use explicit notations

for the confounders here.

2.2 Non-local priors for SNP effect sizes
For the SNP effects vector bk, in contrast to traditionally used local

priors, we consider a non-local prior (Johnson and Rossell, 2010),

that converges to zero as the effect size tends to its null value, which

is typically 0 in the variable selection context. In this work, we in-

vestigate two choices of the non-local prior for the effect sizes––the

product moment prior (pMOM prior) and the product inverse mo-

ment prior (piMOM prior; Johnson and Rossell, 2012). For model

k, in what follows, let us denote the non-zero elements of bk by

b1k; b2k; . . . ;bjkjk
� �

, where jkj is the number of SNPs included in

model k.

As the first choice, for the non-zero components of bk we assume

a pMOM prior, which is the product of individual moment (MOM)

priors on those non-zero components, and can be expressed as

p bk j r; s; r2
� �

¼M�1
jkj sr2
� ��jkj2�rjkjYjkj

k¼1

b2r
ik exp �

Xjkj
k¼1

b2
ijkj

2sr2

" #
; (2)

where Mjkj ¼ 2pð Þ�jkj=2
�

2r� 1ð Þ!!
�jkj

, with 2r� 1ð Þ!! ¼
Qr

j¼1

2j� 1ð Þ, is a marginalizing constant independent of s and r, r ¼ 1;2;

. . . is the order of the prior, s>0 is a scale parameter and r2 ¼ r2
� .

As the second choice, for the non-zero components of bk we assume

a piMOM prior, which is the product of individual inverse moment

(iMOM) priors on those non-zero components, and can be expressed as

p bk j �; s;r2
� �

¼
sr2
� ��jkj

2

C �
2

� �� �jkjY
jkj

k¼1

jbikj� �þ1ð Þ exp �
Xjkj
k¼1

sr2

b2
ijkj

" #
; (3)

where � > 0 and s > 0 are, respectively, the shape and the scale

parameters of the prior, and r2 is defined similarly as for the

pMOM prior.

Figure 1 depicts the density curves of the MOM (r¼1, s ¼ 1)

and iMOM (� ¼ 1, s ¼ 1) priors in red and blue solid lines, re-

spectively. The construction of the MOM prior is based on Normal

density (red dashed line) whereas the iMOM prior is functionally

related to the inverse gamma density (blue dashed line).

Consequently, the MOM prior has tail behavior similar to the

Normal distribution, whereas the iMOM prior has heavier tails. On

the other hand, in the vicinity of zero, iMOM prior vanishes quite

rapidly compared to the MOM prior. Intuitively these imply: (i) if a

standardized effect size is large, the iMOM prior, by virtue of pos-

sessing heavier tails, allows greater support for its detection and un-

biased estimation, whereas the MOM prior might over-shrink,

leading to bias; (ii) if a standardized effect size is small (but non-

zero), the MOM prior provides better support for its detection and

unbiased estimation, whereas iMOM prior might lead to bias from

over-shrinking. Because of this trade-off, the usefulness of the choice

of non-local prior will depend on the nature of the effect size distri-

bution of the data under consideration.

Note that, in the expressions of the priors for the effect sizes,

if only one component of the effect size vector bk is zero, the density

p bkð Þ is zero. This is a crucial feature of the pMOM and piMOM

priors, which imposes, for variable selection, a strong penalty on the

regression vector with at least one 0 component, facilitating consist-

ent identification of the causal SNPs (Johnson and Rossell, 2012)

and for coefficient estimation, a strong data-dependent shrinkage on

the effect sizes (Rossell and Telesca, 2017). Following Johnson and

Rossell (2012) we assume an inverse gamma (0.01, 0.01) prior for

r2
� , and a beta-binomial prior for the model space, given by

p kjcð Þ ¼ cjkj 1� cð Þp�jkj; with c � beta 1; 1ð Þ.

2.2.1 Choice of hyperparameters

For simplicity, we set r¼1 for the pMOM prior and � ¼ 1 for the

piMOM prior. In fact, for r�2 the MOM prior becomes
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Fig. 1. MOM prior (r¼1, s ¼ 1) and iMOM prior (� ¼ 1, s ¼ 1) in solid lines;

N(0, 1) and the Inv-Gamma (1, 1) distributions in dashed lines
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considerably peaked on both sides of zero followed by a rapid fall to

zero while the tail behavior stays similar. Hence, considering r>1

may lead to increased bias. The other hyperparameter s, for both the

priors, controls how much dispersed the prior is around 0. The

larger s is, the more well-spread is the prior over the parameter

space and so relatively large values of the parameter are encouraged.

However, a smaller s is more likely to detect the effect of smaller

values of the parameter. As GWAS effect sizes are generally very

small, in this work, we estimate s such that the non-local prior

assigns a probability of 0.01 to the event that a standardized effect

size will fall in the interval (–0.05, 0.05). Such estimates of s for the

MOM and iMOM priors are 0.022 and 0.008, respectively

(Johnson and Rossell, 2010).

2.3 GWASinlps method
The GWASinlps method is designed to select SNPs iteratively in steps.

Given an initial list of SNPs, S, the genotype matrix X and the pheno-

type vector y, the procedure begins in iteration 1 by determining those

k0 SNPs that have highest ranking in association with the phenotype.

We refer to these k0 SNPs as the leading SNPs of the iteration.

Absolute value of the Pearson correlation coefficient between a SNP

and the phenotype is considered as the measure of association. The as-

sociation measures are computed based on the pairwise-complete

data points. Suppose S1; S2; . . . ; Sk0
denote the k0 leading SNPs that

are determined by the association ranking.

For each leading SNP Sj; j ¼ 1; . . . ; k0, independently of others, we

determine all those SNPs (including Sj) that have absolute correlation

coefficients with Sj more than or equal to rxx, where rxx 2 (0, 1)

is a given threshold. Conceptually this amounts to

determining all those SNPs that are in LD with Sj with a strength at least

rxx. Let Sj ¼ Sj1; Sj2; . . . ; Sjlj

� �
denote the set of all such SNPs. We call

Sj; j ¼ 1; 2; . . . ;k0, the leading sets of the iteration. Determination of

the leading SNPs and subsequent determination of the leading sets,

combinedly, constitute a ‘structured screening’ procedure, which is an

innovative approach in the literature of variable selection based on the

‘screen-and-select’ strategy and has important consequences for our

GWASinlps method as discussed in the Discussion Section.

For each leading set Sj; j ¼ 1; . . . ;k0, we perform non-local prior-

based Bayesian variable selection only with the SNPs included in Sj

(Johnson and Rossell, 2012). The Bayesian variable selection is

based on the phenotype model specified in Equation (1), the non-

local prior for the SNP effect sizes specified in Equation (2) or

Equation (3) and the specified model space prior. Specifically, the

variable selection is achieved by generating MCMC simulations

from the posterior distribution on the model space, identifying

the model with the highest frequency of appearance among the

simulations as the HPPM and then selecting the SNPs included in

the HPPM. Suppose Ssel
j is the set of selected SNPs from the leading

set Sj.

Define S 1ð Þ ¼ [k0

j¼1Sj as the set of all SNPs from all leading sets Sjs

and Ssel
1ð Þ ¼ [

k0

j¼1Ssel
j as the set of all selected SNPs from all Sjs. We

consider Ssel
1ð Þ as the set of SNPs selected at iteration 1. The SNPs in

S 1ð Þ are dropped from the initial SNP list. In addition, the response

vector y is updated with the residuals from a multiple regression of y

on the SNPs in Ssel
1ð Þ.

With the updated list of SNPs and the updated response vector

from iteration 1, iteration 2 proceeds similarly as above. Provided

the updated SNP list contains at least one SNP, the procedure may

continue selecting SNPs through successive iterations until a pre-

determined number m of selected SNPs is reached and m determines

a stopping criterion. In any iteration i, if Ssel
ið Þ is empty, we remove

the SNPs in S ið Þ from S, skip the rest of the ith iteration and jump to

the (iþ1)th iteration. The maximum allowed count of such skip-

ping, denoted by nskip, determines another stopping criterion of

GWASinlps.

Together with all the constraints, the GWASinlps procedure is

outlined in Algorithm 1. One essential feature of GWASinlps is

that, within an iteration, a SNP that is correlated with multiple

leading SNPs has opportunity to be selected from multiple non-

local prior based MCMC runs on multiple leading sets. So, even if

a SNP is not selected from one leading set, it may well be selected

from some other leading set. However, if a SNP, present in one or

more of the leading sets, is not selected in the current iteration al-

together, that SNP is dropped from subsequent iterations. As

such, GWASinlps provides an elegant trade-off between two

extremes–dropping a SNP immediately if it is not selected at one

instance, at one hand, and giving a SNP indefinite consideration

for getting selected, on the other. It is advisable to use imputed

data as input in the GWASinlps procedure as the non-local

prior based Bayesian variable selection requires fully available

design matrix.

2.3.1 Choice of GWASinlps tuning parameters

GWASinlps has several tuning parameters, namely, k0, rxx, m, nskip,

that should be chosen considering prior knowledge on the dataset

and/or experimenter necessity. Regarding k0, setting a low value

will maintain a low number of leading sets, and consequently some

causal SNPs that affect the phenotype better only in presence of cer-

tain other SNPs may not get selected, but such setting will safeguard

against false positives. However, if the dataset contains only a few

SNPs with high association measure with the phenotype, unless their

effects are removed, other causal SNPs may not get selected and in

that case, choosing a large k0 may just increase the computational

time without any gain in detection.

Algorithm 1 GWASinlps procedure

Require: S; X; y; family;k; rxx;m; nskip

1: i 0; skip 0; Ssel  ½�
2: while cardðSselÞ < m and cardðSÞ > 0 and skip < nskip do

3: i iþ 1

4: S1; S2; . . . ; Sk0
 (Leading SNPs) Top k0 SNPs in S with

highest absolute correlation, jcor(X½‘Sj’�; y)j, with y

5: for j ¼ 1 to k0 do

6: Sj  ðSj1; Sj2; . . . ; Sjlj Þ  (Leading set) All SNPs with

absolute correlation � rxx with Sj

7: Ssel
j  SNPs in the HPPM obtained from non-local

prior based variable selection within Sj

8: end for

9: SðiÞ  [k0

j¼1Sj; Ssel
ðiÞ  [

k0

j¼1Ssel
j

10: if Ssel
ðiÞ is non-empty then

11: Ssel  ½Ssel; Ssel
ðiÞ �

12: y  Residuals from multiple regression of y on the

SNPs in Ssel
ðiÞ

13: else

14: skip  skip þ 1

15: end if

16: S S n SðiÞ
17: i iþ 1

18: end while

19: return Ssel
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The intuitive choice of rxx is 0.5. However, in the genetics litera-

ture, for an LD-pruned GWAS dataset, an inter-SNP correlation of

0.2 may often be considered high enough, especially if the SNPs be-

long to the same chromosome. Hence, a reasonable choice of rxx

should depend on the application specific need and background.

However, for a GWAS dataset that has not been LD-pruned, the

leading sets will generally be much larger in size and the evaluation

of HPPM will be computationally costing without giving much gain.

Hence, for unpruned datasets a higher value of rxx is recommended.

We may let GWASinlps procedure to continue running until no

SNP is left to become a leading SNP. Alternatively, given constraints

in terms of m and/or nskip, the stopping point is determined

by whichever constraint is challenged first. Here, we arbitrarily set

nskip ¼ 3 and m¼500, a large number.

2.3.2 Prediction

After GWASinlps-based SNP selection, the selected SNPs may be

used in an estimation model to perform effect size estimation and

phenotype prediction. For the applications in the simulated and real

data studies discussed below, we use a non-local prior based estima-

tion model (Rossell and Telesca, 2017) that considers the full model

regressing the phenotype on all the GWASinlps selected SNPs, and

generates samples from the posterior distribution of the SNP effect

sizes. The SNP effect sizes are estimated using the mean of these pos-

terior samples. Finally, the predicted values of the phenotype are

obtained by using these effect size estimates in Equation (1).

2.4 Simulation studies
In order to demonstrate the performance, flexibility and advantage of

the GWASinlps method, we conduct extensive simulation study with

SNPs having realistic LD structure. We divide all the simulations into

two sets: Simulation 1, used to perform methods comparison and

Simulation 2, used to perform power analysis.

2.4.1 Simulated data for methods comparison (simulation 1)

In simulation 1, for methods comparison we considered analysis of

simulated data with SNP genotypes having an LD structure resem-

bling that of real genotyped SNPs. We varied both the number of

SNPs p and the number of samples n and for each combination of p

and n, independently generated datasets. Specifically, we considered

three different values for both p and n. Corresponding genotype

matrices were generated using HAPGEN2 (Su et al., 2011) as fol-

lows. From the SNPs present in chromosome 1 p-arm, we con-

structed three sets: SNPs belonging to region 3 (bp 1–84 400 000),

regions 2 and 3 (bp 1–106 700 000) and regions 1, 2 and 3 (bp

1–123 400 000). In each set, we retained only those SNPs that are

included in the legend files of the phased haplotypes from the

HapMap 3 release 2 (see Supplementary Material Web Resources).

Next, using the SNPs of each set in HAPGEN2, for three different

sample sizes 2000, 3000 and 5000, we generated genotype matrices

having similar LD structure as the chromosome 1 haplotypes present

in the CEUþTSI reference panel and similar fine-scale recombin-

ation rates as in the genetic map of chromosome 1. The generated

genotype matrices were randomly pruned using a reference LD ma-

trix of �9 million SNPs and a threshold of r2 ¼ 0.8 (Wang et al.,

2016). Regular quality control was performed using 0.01 minor al-

lele frequency (MAF) threshold. Duplicate SNP columns and con-

stant SNP columns were removed. After the above steps, the number

of SNPs in the three sets was approximately 10 000, 15 000 and

20 000, which are the three different values of p considered for the

analysis. For each SNP set, we randomly chose 20 SNPs as the

causal SNPs. For the causal SNPs, standardized effect sizes were in-

dependently generated from the N(0, 1) distribution. For the

remaining SNPs, the effect sizes were set as zero. In order to generate

the phenotype data, we considered five heritability values 0.1, 0.2,

0.3, 0.4 and 0.5. Phenotypic variance explained (PVE) was consid-

ered to represent heritability. Thus, for a given heritability h2,

the phenotypes were generated by adding to Xb, independent N(0,

SD ¼ g) noise, where g was determined such that h2 ¼ var Xbð Þ=
var Xbð Þþgð Þ: For each combination of p and n, we simulated 100

independent replicates.

2.4.2 Simulated data for power analysis (simulation 2)

In simulation 2, to conduct power analysis for our GWASinlps

method we considered, as before, simulated SNP genotypes with

realistic LD structure. The genotype matrix was generated using

HAPGEN2 (Su et al., 2011) in the following way. We selected all

chromosome 21 SNPs contained in the legend files of the phased

haplotypes from the HapMap 3 release 2 (c.f. Simulation 1). The

number of selected SNPs were 19 306. We considered 19 different

sample sizes ranging from n¼1000 to n¼10000, increasing by

500. For each sample size, using the selected SNPs in HAPGEN2,

we generated genotype matrix having similar LD structure as the

chromosome 21 haplotypes present in the CEUþTSI reference panel,

and similar fine-scale recombination rates as in the genetic map of

chromosome 21. Similarly to Simulation 1, the generated genotype

matrices were randomly pruned, subjected to regular MAF

correction and corrected for duplicate and constant SNP columns.

After the above steps, �8000 SNPs were left in the genotype matri-

ces of all sample sizes. From the SNPs common to all genotype

matrices, we randomly selected 25 SNPs as causal SNPs. For the

causal SNPs, standardized effect sizes were independently generated

from the N(0, 1) distribution. For the remaining SNPs, the effect

sizes were set as zero. To generate the phenotype data, we consid-

ered three heritability values 0.05, 0.1 and 0.15. Representing herit-

ability by PVE, for a given heritability h2, the phenotypes were

generated by adding to Xb, independent N(0, SD ¼ g) noise, where

g was determined similarly as in Simulation 1. For each combination

of p and n, 100 independent replicates were simulated.

2.5 Thematically organized psychosis data
We applied our GWASinlps method to analyze a real dataset

obtained in the Norwegian Thematically Organized Psychosis

(TOP) research study at the University of Oslo and Oslo University

Hospital (see Supplementary Material Web Resources). The dataset

contains imputed genotype data from three different batches for

controls and patients diagnosed with severe mental illness. As recent

research showed that human height is considerably polygenic in na-

ture (Yang et al., 2010), we considered height as the phenotype in

our analysis. The genotype data from the several different batches

were combined, and the combined data underwent regular quality

control whereby SNPs with MAF less than 0.01 were removed and

LD-based pruning with a threshold of r2 ¼ 0.8 (c.f. Simulation 1).

Further, if duplicate SNPs columns were present, only one was

retained and any all-equal SNP column was removed. The number

of retained SNPs was �55 000. We adjusted the values of height

and SNP genotypes for gender by updating them with the residuals

from univariate regression on gender.

2.6 Implementation and scalability
We have implemented our GWASinlps method within the program-

ming language R (R Core Team, 2016). We used the following R
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packages: mombf (Rossell et al., 2016) for non-local prior computa-

tions, glmnet (Friedman et al., 2010) for regularized regression ana-

lysis and snowfall (Knaus, 2015) for parallel programming to

facilitate computation. The software pi-MASS was used to imple-

ment the analysis of Guan and Stephens (2011). All parallel compu-

tations were performed using the Extreme Science and Engineering

Discovery Environment, supported by National Science Foundation

grant number ACI-1053575 (Towns et al., 2014). The genetic simu-

lation software HAPGEN2 (Su et al., 2011) was used to simulate

genotype matrices. LD-pruning was performed using the commercial

software package MATLAB (MATLAB, 2016). We wrote an R

package implementing our method and made it freely available.

Regarding scalability and speed, GWASinlps breaks up the

whole selection problem into small chunks by means of a structured

screening that needs to compute only the Pearson’s correlation

coefficients between variables. Within each small chunk, Bayesian

variable selection is a low-dimensional to at most a moderately

high-dimensional problem (p � O n log nð Þð Þ). As computation of

Pearson’s correlation is of O nð Þ complexity and very fast using R

(and most other standard softwares), with proper choices of the tun-

ing parameters k0 and rxx, handling ultrahigh-dimensional data is

computationally efficient for our method when compared to rele-

vant existing methods and does not present any advanced level of

challenge.

3 Results

In this section, we present the results from the simulated and real

data analyses. The statistics that we have used for the evaluation of

the variable selection and prediction are (i) true positive rate (TPR)

or sensitivity (the number of causal SNPs selected divided by the

number of causal SNPs), (ii) false discovery rate (FDR; the number

of non-causal SNPs selected divided by the number of SNPs

selected), (iii) mean squared error (MSE) of prediction, (iv) l2 estima-

tion error in the effect sizes (b-error) and (v) relative prediction gain

(RPG; Guan and Stephens, 2011), which is a unitless number that

measures how much of the extractable signal present in the data has

been detected by a method and is defined as

RPG ¼
MSE using only intercept�MSE using estimated effect sizes

MSE using only intercept�MSE using true effect sizes
:

Thus, if the PVE (heritability) of a phenotype is 0.1, then an

RPG of 0.6 for a method indicates that the method can extract 60%

of this PVE from the data, which is to say, the method can explain

6% of the total variance in the phenotype values.

3.1 Simulation 1 analysis results
In Simulation 1 analysis, we compare our GWASinlps method with

frequentist LASSO (Tibshirani, 1996) and Elastic net (Zou and

Hastie, 2005) methods and Bayesian pi-MASS (Guan and Stephens,

2011) method. In addition, we compare GWASinlps results with the

results obtained using Zellner’s g-prior (Zellner, 1986) within our

structured screen-and-select framework instead of a non-local prior,

henceforth referred to as igps.

We analyzed Simulation 1 datasets using GWASinlps

(k0 ¼ 1; rxx ¼ 0:2) with pMOM and piMOM priors and also using

igps (k0 ¼ 1; rxx ¼ 0:2) with frequently used setting g¼n, LASSO

and Elastic Net with tuning parameter a ¼ 0.75, 0.5, 0.25 and pi-

MASS. For LASSO and Elastic Net, two mostly used choices of the

tuning parameter k were considered: the value of k that gives

minimum mean cross validated error, henceforth called l.min and

the largest value k such that error is within 1 standard error of the

minimum, henceforth called l.1se, both in a 10-fold cross validation.

For GWASinlps analysis, we used 1800 MCMC iterations after 200

burn-ins, whereas for pi-MASS we used 10 000 iterations after 1000

burn-ins.

We average the Simulation 1 analyses results across the consid-

ered heritability values, and in what follows, present these average

measures. For a real GWAS data, n and p will be known but true h2

will generally not be known, so it is meaningful to compare method

performances averaged across the unknown quantity. However, we

make the heritability-specific individual estimates available in the

Supplementary Tables S1 through 5. We summarize the results of

Simulation 1 analyses in Figure 2 showing barplots of TPR and

FDR, and Figure 3 showing barplots of MSE and b-error. We note

that, LASSO with l.1se tuning performed better than l.min tuning in

all cases. So, for clarity, in these figures we show only l.1se based

results. Both figures constitute of nine cells arranged in a three-by-

three grid with number of SNPs in rows and number of samples in

columns. Specifically, each cell in Figure 2 shows the barplots of

TPR (in darker shade) and FDR (in lighter shade) for several differ-

ent competing methods. On the other hand, each cell in Figure 3

shows barplots of MSE (in denser lines) as percentage of the highest

observed MSE in all (n, p) combinations, and barplots of b-error

(in sparser lines) as percentage of the highest observed b-error in all

(n, p) combinations, for all the competing methods. Because of the

difference in the order of MSE and b-error, percentage measures

were used to avoid distortion of the graphs, for the sake of presenta-

tion. We make the actual error estimates available in the

Supplementary Tables S4 and S5.

We note that, compared to the regularized regression methods,

GWASinlps has provided (i) much lower FDR, with competing TPR

uniformly across sample size and number of SNPs, (ii) almost equal

TPR for larger p, i.e. in presence of higher sparsity which is usual in

GWAS data and (iii) uniformly lower MSEs and b-errors across

sample size and number of SNPs. Further, we note that, with the in-

crease of heritability, GWASinlps yielded decreasing number of false

discoveries whereas the regularized regressions methods mostly

showed an increasing trend. On the other hand, pi-MASS with com-

parable number of MCMC iterations as GWASinlps selected too

few SNPs and resulted in inferior results compared to all other

methods. Note that, igps method, which enjoys our structured

screen-and-select framework, has performed better than the regular-

ized regression methods and pi-MASS, as well. This clearly demon-

strates the utility and efficient model space exploration ability of our

proposed structured screen-and-select approach. In Figure 2, the

performance of igps is quite competitive with GWASinlps. Figure 3

shows whereas igps generally provided smaller b-error, GWASinlps

generally provided smaller MSE, which is intuitively justified as the

non-local priors achieve model selection consistency with p ¼ O nð Þ
(Johnson and Rossell, 2012). Further, we note that GWASinlps with

pMOM prior has shown slightly better performance than with

piMOM prior in overall analysis. Hence, for Simulation 2, we pre-

sent only pMOM-based results.

Regarding computational time, average runtime for dataset with

n¼2000, 3000, 5000 were respectively about 0.6 mins, 0.8 mins

and 1.1 mins for pMOM prior, and 3.1 mins, 4.5 mins and 5.4 mins

for piMOM prior and average runtime for dataset with p¼10 000,

15 000, 20 000 were, respectively, about 0.6 mins, 0.8 mins and 1.1

mins for pMOM prior and 5.6 mins, 3.1 mins and 4.3 mins for

piMOM prior.
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3.2 Simulation 2 analysis results
In Simulation 2 analysis, we perform power analysis for our

GWASinlps method using both (variable) selection power and pre-

diction power. We divided each Simulation 2 dataset into train and

test data allotting three-quarters of samples to the train data. We

analyzed the train datasets using our pMOM-based GWASinlps

method with k0 ¼ 1 and rxx ¼ 0.2, which is a stringent setting favor-

ing the minimization of false positives. The power of variable selec-

tion, or selection power, empirically was defined as the TPR. The

power for prediction was assessed through RPG. Both estimates

were averaged over the 100 independent replicates. The results of

Simulation 2 analyses are presented Figure 4 showing plots of TPR,

and Figure 5 showing plots of RPG. For all considered heritabilities,

Figure 4 shows the evolution of selection power and the correspond-

ing false positive count, as the sample size is increasing. In Figure 5,

we show the evolution of RPG for the train and test data with

increasing sample size. We note that for the lowest considered herit-

ability 0.05, below the sample size of 3000, the RPG values showed

unstable fluctuations because of overfitting. So, for the sake of better

visual representation, in Figure 5, we truncated the plots below
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Fig. 2. Simulation 1 barplots of TPR and FDR of variable selection for all (n, p) combinations, using our GWASinlps pMOM and piMOM methods, Zellner’s g-prior

within our structured screen-and-select framework, LASSO, Elastic Net with several choices of tuning parameter a and pi-MASS. All the results are averaged

across the considered heritability values and 100 replicates
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n¼3000. We make all Simulation 2 TPR, TNR, FDR and RPG val-

ues available in the Supplementary Tables S6 and S7.

From Figure 4, we note that with sample size increasing, selec-

tion power has increased steadily whereas number of false positives

decreased, as would be desired. Figure 5 test data plot shows that

with the increase of sample size, our method has been able to detect

more and more of the extractable signal present in the data. Both

the figures nicely demonstrate the consistency of our variable selec-

tion method.

3.3 Sensitivity analysis for GWASinlps tuning

parameters
As the GWASinlps method depends on few tuning parameters, we

perform a sensitivity analysis. Unless the experimenter wishes to

obtain at most a specific number of selected SNPs, m is set at a

high value by default. Hence, for the sensitivity analysis, we

consider the other tuning parameters k0, rxx and nskip. As data, we

use the first 30 replicates corresponding to p¼10 000, n¼2000

and h2 ¼ 0.5 from Simulation 1. We consider the following
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Fig. 3. Simulation 1 barplots of MSE and l2 estimation error in effect sizes (b-error) for all (n, p) combinations, using our GWASinlps pMOM and piMOM methods,

Zellner’s g-prior within our structured screen-and-select framework, LASSO, Elastic Net with several choices of tuning parameter a and pi-MASS. All the results

are averaged across the considered heritability values and 100 replicates, and then expressed as percentages of the highest observed value of the corresponding

error in all (n, p) combinations
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grid of values: k0 2 f1; 2; 3;4;5g; rxx 2 f0:2; 0:35;0:5;0:75; 0:9g
and nskip 2 f1; 2; 3;4; 5g, which contain the specific values of the tun-

ing parameters used in Simulations 1 and 2 analyses. We analyze

the datasets using GWASinlps pMOM prior-based method with each

combination of k0; rxx;nskip

� �
from the above grid of values.

As a measure of assessing sensitivity of the analysis to the choices

of tuning parameters, we consider MSE. The MSEs from the sensi-

tivity analysis are provided in the Supplementary Table S8. Note

that, lower values of k0 and rxx will safeguard more against false

positives, and hence will tend to yield sparser SNP selection, where-

as higher values of k0 and rxx will tend to yield more liberal SNP se-

lection and hence will automatically lead to lower MSEs. However,

from the Supplementary Table S8, we see that the fluctuation of

MSE in the whole considered grid of tuning parameters is quite

modest. The range of all the MSEs is (8.23, 9.15) with a SD of 0.27,

which is not very high for a sample size of n¼2000.

3.4 TOP data analysis results
To analyze the real dataset with GWASinlps, we considered 20

random divisions of the data into train and test data allotting

three-fourth of the subjects to the train data. For each division,

GWASinlps (k0 ¼ 1; rxx ¼ 0:2) with pMOM prior was applied to

the corresponding train data, resulting in a set of selected SNPs. The

number of SNPs that appeared in at least half (i.e. 10) of these SNP

sets is 7, whereas the number of SNPs that appeared in at least one-

fourth (i.e. 5) of these SNP sets is 26. The MSEs from the train and

test data are respectively 44.82 and 46.86 using the above 7 SNPs,

and 40.24 and 50.98 using the above 26 SNPs. Specifically, with

those 7 SNPs there is almost no overfitting. All the above 26 SNPs

along with their chromosomal positions, frequency of appearance in

the above twenty sets, rs IDs and gene symbols are given in

Supplementary Table S9. In addition, for each of the above 20 con-

sidered divisions, we also performed variable selection using

LASSO, Elastic Net and pi-MASS. No SNP was selected for any of

the divisions using LASSO and Elastic Net with a varying from .01

to 1 either with l.min or l.1se based regularization. On the other

hand, although pi-MASS selected few SNPs for each division, the

number of common selected SNPs among all divisions was zero.

4 Discussion

We have developed a novel Bayesian method, GWASinlps, for

GWAS variable selection by combining in an iterative framework,

the computational efficiency of the screen-and-select approach based

on some association learning and the parsimonious uncertainty

quantification provided by the use of non-local priors. Although the

frequently used regularized regression methods, such as LASSO and

Elastic Net are able to handle high-dimensional GWAS data and

when implemented through l.min based regularization provide esti-

mates with low MSE, the number of selected SNPs is often too large,

defeating the purpose of a meaningful variable selection. One fre-

quently used alternative is to use l.1se based regularization, that pro-

duces lesser false positives (Friedman et al., 2010). In this work,

through the simulation studies, we have shown that our proposed

GWASinlps method is able to provide a sparser SNP selection than

the above regularized regression methods by largely reducing the

FDR while maintaining a highly competitive profile in terms of TPR

and MSE. Simulation 1 analysis clearly shows that, in overall com-

parison, GWASinlps has achieved a superior balance between
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parsimony and predictive ability compared to both l.min and l.1se

based regularized regression methods. Further, in Simulation 2, by

extensive empirical power analysis, we have provided guidelines for

determining adequate sample size for detecting effect sizes in various

ranges and for achieving desired prediction rates, which are useful

for study design.

Our method is a Bayesian adoption of the ‘screen-and-select’ ap-

proach and comparable to the similar frequentist approach ISIS (Fan

and Lv, 2008). Both GWASinlps and ISIS select variables iteratively.

However, there are some important differences. Within each

iteration, whereas ISIS screens a pre-fixed number of predictors

based on phenotype-predictor association, GWASinlps performs the

screening process hierarchically in two steps, where the first step is

guided by phenotype-predictor association and the second step is

guided by predictor-predictor association. We call this ‘structured

screening’, which is a generalization over the one-stage screening

process of Fan and Lv (2008). Within each iteration, such structured

screening is, what we think, the hallmark of our method and fur-

nishes our method the ability to evaluate a SNP with respect to its

‘belongingness’ to multiple groups of SNPs. Moreover, after an iter-

ation, whereas ISIS drops and regresses out the selected predictors of

that iteration, GWASinlps drops all the screened predictors of that

iteration, but only regresses out the selected predictors. The intuition

is that in presence of the structured screening and the subsequent se-

lection, such iterational dropping of predictors will reduce the re-

dundancy in the overall selection process. In addition, compared to

GWASinlps, the computational scalability of ISIS is quite inferior,

for which we did not venture ISIS-based analysis of Simulation 1. In

addition, with a comparatively lower number of MCMC iterations,

GWASinlps selected more true causal SNPs than the fully Bayesian

method pi-MASS, which becomes computationally quite costing for

large number of MCMC simulations.

Although in Simulation 1, the pMOM prior has shown better

performance than the piMOM prior, such may not be the case al-

ways. As discussed previously, compared to the iMOM prior, the

MOM prior provides more support for the detection of smaller ef-

fect sizes. Generally, for polygenic traits the effect sizes of individual

causal SNPs are low, as is the case in our simulations as well. In

such situations, the pMOM prior is expected to work better.

However, if the effect sizes are more dispersed, the piMOM prior

might outperform the MOM prior.

Desirable extensions of the GWASinlps method may include ex-

tension for binary or categorical data analysis, and adaptation to the

analysis of GWAS summary data. Although applied to GWAS data in

the current work, the basic form of the GWASinlps method is generic

in nature. Hence, although in this work we have set the values of the

GWASinlps tuning parameters considering background information

and experimenter necessity, it may be desirable to develop strategies

to optimally estimate these GWASinlps tuning parameters from data.

Recently, non-local priors have been used in sparse modeling re-

gression where the regression coefficients are assumed to arise from

a mixture of a point mass and a non-local prior (Sanyal and

Ferreira, 2017). Such sparse modeling framework has been applied

to imaging genetics data (Chekouo et al., 2016) with low dimension.

A possible extension of our current method is to make such non-

local prior based sparse modeling feasible for GWAS data.
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