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GXP : An Interactive Shell for the Grid
Environment

Kenjiro Taura (University of Tokyo/JST)

Abstract— We describe GXP, a shell for distributed multi-
cluster environments. With GXP, users can quickly submit a com-
mand to many nodes simultaneously (approximately 600 millisec-
onds on over 300 nodes spread across five local-area networks).
It therefore brings an interactive and instantaneous response
to many cluster/network operations, such as trouble diagnosis,
parallel program invocation, installation and deployment, testing
and debugging, monitoring, and dead process cleanup. It features
(1) a very fast parallel (simultaneous) command submission, (2)
parallel pipes (pipes between local command and all parallel
commands), and (3) a flexible and efficient method to interactively
select a subset of nodes to execute subsequent commands on. It is
very easy to start using GXP, because it is designed not to require
cumbersome per-node setup and installation and to depend only
on a very small number of pre-installed tools and nothing else.
We describe how GXP achieves these features and demonstrate
through examples how they make many otherwise boring and
error-prone tasks simple, efficient, and fun.

I. I NTRODUCTION

Working with a large number of distributed resources is
troublesome. Among many difficulties, one that everybody
immediately faces is the lack of tools efficiently supporting
‘everyday’ operations, such as parallel command submissions,
multi-nodes file replications, and process cleanup. Of course,
there are many popular tools that execute asingle such
operation, such as rsh and ssh [1] for command submissions,
and rcp, scp, rsync, and cvs for file replications. There are
also Grid-oriented version of some of such tools including
globus (globusrun) [2] and GridFTP. However, when it comes
to efficiently manipulating many (say,> 100) nodes spread
across multiple administration domains, we need a substantial
amount of effort to combine them.

Let us take a parallel command submission for example.
When developing distributed applications, we often need to
launch an identical or a similar command on all nodes involved
in a computation. An obvious example is the case when we
develop a parallel software running on the Grid. We must
not only be able to quickly run the executable on many
nodes, but also be able to, among others, copy sources and/or
configuration files, compile them, and copy the executables.
When using clusters, we frequently have to kill processes on
each of the nodes. Each of such operations needs to run an
identical or a similar command on some selected nodes.

One could imagine an ad-hoc solution in which the user
writes a small script that issues rsh or ssh as necessary. Besides
consuming user’s time of writing such scripts in the beginning,
this approach quickly becomes unmanageable in large scale
by several reasons. First, some nodes may not be directly
reachable from the user’s home node, due to firewalls or

NATs. In such circumstances, it is not enough to issue ssh/rsh
command to each node. The user instead needs nested logins.
Second, directly issuing a remote login command to all nodes
from the user’s home does not scale even if it is possible at
all. It would incur unacceptable latencies, especially for short
jobs. Finally, in large scale environments it is usual that some
nodes are dead, so we must have a mechanism to avoid being
stuck on them.

While there have been much progress in Grid middleware
including job schedulers [3], Grid-enabled job submission [2],
and GridRPC [4], relatively little attention has been paid
to improving efficiency of daily operations. This potentially
keeps potential application developers away from the Grid,
and makes them stick to more comfortable single cluster or
SMPs, despite their small scale. We believe improving our
daily experience on the Grid will accelerate research and
development on all areas of Grid software.

To this end, we are developing Phoenix Grid Tools, a set
of tools to improve user’s daily experience on the Grid. This
paper describes one of such tools, GXP, an interactive shell
for the Grid. Elsewhere, we have described early versions
of a similar tool, VPG [5] and MPSH [6], and a high
performance file replication tool NetSync [7]. GXP inherits
many of the features of VPG and MPSH and improves upon
them in many areas. They include ease of use and initial setup,
amount of manual configurations, dynamic node selections,
and flexibility of communication between processes (parallel
pipes). Through our experiences with GXP, we feel GXP is
a powerful tool to enhance the productivity of distributed
operation and programming, and its power comes from the
ability to quickly and instantaneously perform simple tasks
involving many (> 100) nodes. Moreover, we noticed that
many of simple parallel tasks (e.g., parameter sweep or master-
worker style computation) can be comfortably accomplished
solely with this tool + simple and ad-hoc scripting with
no or little network programming. Section III shows several
interesting examples including a simple job scheduler and a
flexible parallel program launcher.

Rest of the paper is organized as follows. Section II
describes design of GXP. Section III demonstrates several
example tasks of which GXP can significantly enhance the
productivity. Section IV shows performance measurement.
Section V mentions related work and Section VI states con-
clusion and future work.
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II. GXP DESIGN

A. Design Constraints

GXP is designed from the beginning to meet the following
constraints.
• Overcome Connection Restrictions:It works in typical

network configuration where many of inter-subnet or
inter-cluster connections are blocked by firewalls and
NATs. It finds their ways to reach necessary nodes, trying
nested logins as necessary, without assuming too much
help given by the user.

• No Per-Node Installations, No Daemons:It does not
require permanent daemons specific to GXP on each of
the resources. This significantly reduces its initial setup
cost. Moreover, it does not require explicitly installing
GXP program on any of the remote resources. Once
installation on the user’s home node has been done, s/he
is ready to use GXP and it is installed on each of the
designated resources automatically. Currently the source
file of GXP is a single python file (about 2,500 lines), so
installing it on the user’s home node takes a single file
copy or download to whatever places the user wants.

• Minimum Prerequisites: Along the same line, GXP is
designed so that it depends only on a small number
of pre-installed software that are considered “standard”
on Unix platforms. It is thus likely the case that these
prerequisites are already met in the user’s environment.
We detail the current prerequisites in Section II-C.

• Fault Tolerance: It has a simple fault tolerance that does
not stuck on dead nodes but leaves them behind.

B. Using GXP

Using GXP involves the following steps.
• Preparation: Write a configuration file describing a

small number of “key nodes” and the user’s login names.
This is necessary only for the first time or when it must
be modified. Details are in Section II-C.

• Explore Phase:Launch GXP, which brings up a GUI like
Figure 1. With this GUI, the user can explore the network,
discovering other nodes, selecting nodes the user wants
to use later, and building a connection tree among them.
Details are in Section II-D.

• Shell Phase:The user enters an interactive shell in which
s/he can dynamically select nodes to execute commands
on and issue command lines to the selected nodes, as
many times as desired. Details are in Section II-E. The
user can switch back and forth between the explore phase
and the shell phase.

C. Preparation

GXP configuration file basically specifies a list of nodes
the user wants to use, along with login names suitable for
each of them. However, literally listingall nodes is already
overwhelming and error-prone for users. It is particularly so
if the user uses different sets of nodes for different jobs. We
would like to retain configuration files mostly static, while
allowing selection of desired resources per session.

Fig. 1. GXP GUI

hosts = [
"gw.www.abc.p.u-tokyo.ac.jp",
"gway.p.u-tokyo.ac.jp",
"gateway.xxx.q.u-tokyo.ac.jp",
"pub.yyy.w.u-tokyo.ac.jp",
"public.zzz.org"
]

default_user = "tau"
user_map = [

("abc.p.u-tokyo.ac.jp", "tau"),
("p.u-tokyo.ac.jp", "taue")
]

Fig. 2. An Example Configuration File

To this end, GXP can start with a small number of manually
specified nodes andfind their neighbors automatically.We
currently use NIS for neighbor discovery where available. As
a consequence, a typical GXP configuration file only specifies
one node for each LAN (NIS domain, to be more precise).
When a user has an access to a remote cluster or a LAN,
s/he typically remembers a designated gateway host to login,
from which other hosts in the same cluster or the LAN can
be reached. GXP configuration file naturally fits this model.

Suffixes of host names can be used to specify a login name
common for a set of nodes. Figure 2 specifies an example
configuration file. This is derived from the author’s actual
configuration file (with node names changed for our security)
from which we reach more than 300 nodes (500 CPUs) spread
across 5 clusters.

D. Explore Phase

This phase is an interactive process in which the user,
through the GUI, is presented with a list of node names and
their status, checks nodes s/he wants to use, and launches an
“Explore” command, which tries to reach them.

See Figure 1 again. GXP displays all nodes whose names
have been found, along with their statuses on their left column.
A status is eitherreached,indicated by a character‘o’ in
the column, ornot yet reachedindicated by a checkbutton.
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Fig. 3. A Login Tree. A node is a host, the root node the local host, and an
edge an rsh/ssh connection.

Initially no nodes have been reached (except for the local node,
which is not displayed). All nodes that have been reached
are connected by available remote shell sessions. They form
a tree whose root is the user’s home node (Figure 3) and
children of a nodep are the nodes directly reached from
p by one of the available remote shell command. While
our current implementation recognizes only ssh and rsh as
a remote shell command, GXP can use any command that
can remotely invoke an arbitrary command line and gives the
local process handles to the standard input/output/error of the
remote process. We hereafter call this treethe login tree. It is
initially a singleton tree whose only node is the user’s local
host.

When users wish to reach additional nodes, they check their
buttons and presses the “Explore” button in the top row. Then
GXP tries to expand the login tree to include them. On each
of the newly reached nodes, GXP searches for names of its
neighbor nodes and newly discovered names are displayed in
the GUI. The user repeats this process (i.e., check buttons and
then press the Explore button) until s/he reaches all the wanted
nodes.

Issues involved in this phase are:
1) Bootstrapping or Automatic Installation:As described,

GXP does not require the user to install it on each of the
remote nodes. It instead makes a temporal copy of the GXP
program file (about 2,500 lines of python code as of writing) to
a remote node each time GXP logs in the node. The temporal
file gets removed when GXP program quits a session, unless
it unexpectedly crashes. Note that the program is not really
installed in the literal sense that it permanently stays in the
remote nodes’ disks. It is instead temporarily copied for every
GXP session, to every single node. We made this decision to
make upgrading GXP software trivial.

An interesting bootstrapping issue that arises is how to
minimize pre-installed applications this automatic installation
process depends on. We copy the program only assuming
the availability of python and a remote shell command, and
nothing else, both on the local and the remote side. Logically,
installing the program on a remote node involves the follow-
ing.

• Check if the destination directory exists and create it if it

does not. Currently, we usegxp_work directory under
the user’s home directory. The entire directory can be
removed when there is no active GXP sessions of the
user.

• Generate a unique temporary file name under the desti-
nation directory.

• Copy the program under the generated file name.

We execute them by letting python interpreter read its program
via its standard input (i.e., giving ’-’ as a program file name).
We feed its standard input with a copy of the script, specifying
options so it executes the above operations, writes the name
of the installed file to its standard output, and then quit. The
local host waits for the file name to appear in the standard
out, and considers the login failed if it does not come back in
a specified time.

2) Searching for the Login Tree:When an Explore button
is pressed, the local node makes a plan on how to reach
requested nodes (i.e., nodes whose buttons are checked). In
graph terminology, the problem is how to extend the current
login tree so that the extended tree spans all the checked and
reached nodes. A login attempt is made along the new edges
of the extended tree. Among many criterion defining good
trees, the most important criteria is of course to draw edges on
which a login will succeed. Most nodes in a LAN/cluster are
typically not directly accessible from external hosts, so ideally,
such edges should not be chosen without being tried. Yet,
it appears difficult to quickly perform this kind of selections
without user’s help. In our earlier work [6], we proposed a
simple configuration file syntax to concisely represent network
configurations. We believe the approach was valid, but also felt
that as a user-friendly tool, we should seek an alternative too.

At present, GXP implements a very naive heuristic to draw
edges between nodes. As the strongest rule, GXP never selects
an edge on which a login previously failed in the current
session, so by repeating explores, a single host is tried to
reach along different paths. Otherwise, the heuristic works as
follows. Requested nodes are chosen in a random order, and
for each node, its parent is chosen in the current login tree.
Once chosen, the tree data structure is extended by adding
the requested node and then we proceed to the next requested
node. To choose the parent, nodes already in the current login
tree (including ones added in the current planning process) are
scored based on a weighted sum of the following three scores.

• A score based on similarity of its name to the requested
node.

• A score based on its number of children. When it be-
comes closer to a predetermined constant (currently five),
the node will get a higher score.

• A score based on its depth. Nodes at lower depths get
higher scores.

These heuristics are useful to get nodes within a LAN/cluster
connected together, while maintaining the shape of the tree
close to a perfectk-ary tree (wherek is currently five).

However, this still does not help in finding the “gateway”
node of a LAN/cluster. That is, which nodes should be first
reached from outside the LAN/cluster? We do not have a
sufficiently reliable and portable solution yet. Asking the
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user to supply information is one possibility. GXP’s current
workaround is to exploit the fact that the user normally writes
only gateways in their configurations, so GXP initially knows
a small number of nodes. Assuming this, we currently ask the
user toreach all the gateways firstduring the Explore phase,
and then explore inside clusters/LANs. This perfectly works
most of the time because gateways are normally globally
reachable. Even if some are not, since GXP does not perform
failed logins again, simply retrying Explore will hopefully find
the right path after several attempts. Of course this will become
infeasible once the number of clusters become large and many
of their gateways are open only to certain selected hosts.

3) Secure Single Sign-On:To login many machines,
it is clearly undesirable for users to type their pass-
words/passphrases each time they must authenticate them-
selves to a new machine. It is instead highly desirable to
have a single sign-on capability in which they have to type
their passphrases only once to access all machines they have
accesses to.

GXP’s single sign-on capability is limited by that of the
underlying remote shell commands (ssh and rsh) and configu-
rations. GXP currently never carries credentials over network.
Thus, if an explore phase attempts to login a machine and is
asked to input a password or a passphrase, that login attempt
simply fails.

As of writing, GXP provides no particular help on this issue.
We believe typical users won’t have much trouble with this,
because:
• Inside a cluster, users can normally hop between nodes

via rsh without passwords (.rhosts or .hosts-equiv au-
thentication). This is unlikely to change because among
others, MPI typically needs them. Therefore the main
issue is how to authenticate a user to a gateway from
outside the LAN.

• One simple approach is to reach all gateways directly
from the local host with ssh public key authentication,
if this is possible. Use ssh-agent and ssh-add so that ssh
invoked by GXP does not ask passphrases.

• Although not implemented yet, GXP could forward ssh-
agent connection when invoking ssh where allowed.
This single sign-on feature built in ssh allows a remote
gateway to authenticate the user to a third gateway. This
would work up to not too many number of gateways.

• If all the above are somehow not possible or undesirable,
setup public/private keys with empty passphrases and
occasionally refresh them.

E. Shell Phase

When the user presses “Enter Shell” button in the GUI, GXP
enters a shell phase and prompts the user for a command.
Table I summarizes the list of available commands. Among
them, the most basic is the ’e(xec)’ command which executes
a given command on all the “selected” nodes. We detail later
how selected nodes are determined. For now, it suffices to say
all nodes that GXP reached are selected by default. Thus, the
command

e hostname

e cmd executecmd on selected nodes
l cmd executecmd on the local node
cd dir change directory todir on selected nodes
lcd dir change directory todir on the local node
exportvar=val set environment variablevar to val on selected nodes
smask select nodes whose last command status are zero
rmask select all nodes
bomb clean up processes (see text)

TABLE I

SUMMARY OF GXP COMMANDS IN SHELL PHASE.

P

P

P

P

P

P

L R

standard out

standard in

Fig. 4. Behavior of Parallel PipeL{{P}}R

executeshostname command on all nodes, displaying all
reached host names on the user’s terminal.

An argument of‘e’ command can be an arbitrary shell
command syntax including pipes, redirections, environment
variables, and command substitution. In addition,‘e’ com-
mand accepts an extended syntax, which we call “parallel
pipes” discuss below.

1) Parallel Pipes: Running an identical or a similar com-
mand on all nodes is already useful in many circumstances, but
through our experiences, we found that the ability to connect
inputs/outputs of parallel commands to local commands makes
GXP much more powerful. This is a natural extension to Unix
pipes, so we call this facilityparallel pipes.

The full syntax of the‘e’ command is as follows.

e L {{ P }} R

whereL, P , andR are all Unix shell command syntax. The
behavior is as follows (see Figure 4).

• L andR are executed locally.
• P is executed in all selected nodes.
• Standard outputs ofL is sent to the standard input of

each ofP . That is, the output is broadcast.
• Standard outputs ofP are merged and sent to the standard

input of R. This merge is undeterministic and by default,
the granularity is a single line (i.e., a single line is not
intervened by other characters).

Here are some default rules.

• When L is omitted, it defaults to a ’:’ command (a
command that immediately terminates).

• When R is omitted, it defaults to cat, which effectively
displays the outputs ofP .
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• When bothL and R are omitted, the user can simply
abbreviate{{ P }} to P .

Simple examples are given below.
• e {{ hostname }} sort will list all selected host

names in an alphabetical order. This is often easier to read
for human beings and more appropriate for configuration
files that must list machine names (e.g., MPI’s ma-
chinesfile). e {{ echo ‘hostname‘:2 }} sort
will exactly generate a MPI’s machinesfile (two CPUs
for each node).

• e cat file {{ cat > remotefile }} will effectively
copy a local file namedfile, to each of the selected
nodes under nameremotefile. This is very useful to copy
sources/configuration files/input data of parallel applica-
tions.
e tar cvf - directory {{ tar xvf - }} will
do the same thing for a directory.

We will see more interesting combinations later in Section III.
2) Node Selection:Another feature that turned out to be

vital is an efficient mechanism to select nodes on which
parallel commands are run. Nodes on which a command
should be run differ depending on tasks and stages. For
example,
• for many of the file system operations such as

file/directory transfers and compiling applications, a sin-
gle node should be selected for each (NFS-shared) file
system.

• in heterogeneous environments, we may sometimes need
to work separately for each architecture, this time on
Linux, this time on Solaris, etc.

• it will be common to drop busy nodes from the selection.
• for testing and debugging, a small number of nodes are

often selected.
• for testing and debugging, only nodes in a single cluster

are often selected.
• for production runs, as many nodes as possible will be

selected.
It is difficult to anticipate in advance what kind of node
selections will become useful, so the users must be able to
select nodes interactively as the needs arise.

For this purpose, we introduce a builtin command called
smask(set mask). Its effect is to select nodes on which the last
command succeeded (i.e., exited with status zero). Therefore,
to select some nodes, the user performs the following steps.

1) issues a command that should succeed on (and only on)
nodes the user like to select, and

2) issues smask command. Then, subsequent commands
will be executed on the nodes on which the first com-
mand succeeded.

3) To doublecheck, after a selection has been made, issuing
e hostname will show the nodes actually selected.

GXP’s prompt shown in Figure5 displays the number of nodes
on which the last command succeeded, therefore the user often
can have some confidence about the selection before issuing
smask .

smask - does the reverse. It will select nodes on which the
last commands failed. Commandrmask(reset mask) command

GXP[32/124/211]>>>

Fig. 5. An example GXP prompt. The three numbers separated by slashes
represent, from left to right, the number of nodes on which the last command
succeeded, the number of nodes currently selected, and the number of nodes
reached.

will revert to the default selection of all reached nodes.
Here are some examples.

• To select nodes in a particular cluster, the following is
often adequate.
GXP[96/96/96]>>> e hostname | grep do-
main
GXP[32/96/96]>>> smask
GXP[32/32/96]>>>
The first command succeeds only on nodes whose names
contain a stringdomain. So if the user knows a string that
discriminates a cluster, it succeeds on the desired cluster.
By looking at the prompt at the second line, the user will
learn it succeeded on 32 nodes. If it matches the user’s
knowledge about the number of nodes in the cluster, the
user will have confidence before actually issuingsmask
command.

• The following command will select Linux nodes.

GXP[211/211/211]>>> e uname | grep Linux
GXP[160/211/211]>>> smask
GXP[160/160/211]>>>

• A more tricky but frequently used technique is to select
a single node for each file system. Suppose for the sake
of simplicity that the current working directory of all
nodes are the user’s home directory, which may or may
not be shared between nodes. Typically, nodes within a
single cluster share a home directory, and nodes across
clusters do not. We would like to elect a single node
from each shared home directory, to perform subsequent
file operations safely. An interesting trick is to use mkdir
command.

GXP[211/211/211]>>> e mkdir xxxx
... many error messages saying directory
already exist ...
GXP[5/211/211]>>> smask
GXP[5/5/211]>>>

Command ’mkdir’ should succeed for one node per a
physically distinct home directory. We regularly use this
technique to deliver files to all nodes, compile sources on
each cluster, etc.

• Combinations of Unix commands give us powerful ways
to select nodes dynamically. For example, the following
will select nodes based on their load averages.

GXP[211/211/211]>>> uptime \
| awk ’{ if ($(NF-2) > 0.5) print "H" }’ \
| grep H

GXP[1/211/211]>>> smask
GXP[1/211/211]>>>

Commanduptime will display the host’s load average of the
past one minute in the third from the right column (obtained
via $(NF-2) expression in the awk command). The first
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command will succeed on nodes whose load averages are
higher than0.5. Such selections are often useful in cluster
troubleshooting.

3) Process Cleanup:One of the biggest headaches in
developing cluster/Grid software is process cleanup. Due to
software bugs or operation errors, processes that should ter-
minate might keep running, processes that terminated might
leave as zombies, etc. Although fixing software bugs so that
they almost never happen is an ultimate solution, in practice,
we sometimes have to act retroactively or periodically so as to
clean up (i.e., kill) whatever processes should have terminated.
Doing so on every single cluster node is a nightmare.

GXP supports a command, calledbomb, which kills all
processes of the user, except those constituting the current
GXP session. More precisely, thebomb command does the
following on each node.
• Run ps command with-efl option, which lists all

processes along with their parents and their effective user
id.

• Climb the process tree from the current (GXP) process,
until we encounter a process with a different effective
user id. In the end of this process, we normally encounter
a remote login daemon (e.g., sshd) that born the current
GXP session on the node. We call the last process of the
same effective user id the root process.

• Kill all processes of the same user id, except the children
of the root process.

In our experiences, this command is vital for making clus-
ter/Grid programming productive.

III. I LLUSTRATING APPLICATIONS

We have shown so far individual GXP commands and their
uses. In this section, we show several examples showing how
GXP enhances the productivity of network/distributed/parallel
programming. The essence is that, the parallel pipe con-
struct of GXP establishes communication channels between
processes on behalf of the user and make them available
through standard input/output. Therefore, it often happens
that no network programming is necessary to implement a
simple coordination between processes, and even existing
Unix tools fit for a purpose. This is again analogous to
Unix redirections/pipes where the programmer can manipulate
files and communicate with other processes without knowing
the details of how they are done at the lower level. GXP
brings this concept to distributed/parallel programming setting,
where standard input/output of processes connect to those of
processes of other nodes or even of other clusters, hiding much
more complexities than the regular Unix setting.

A. Parameter Sweep : Static Case

Consider executing many command lines using many nodes.
A single command line should be executed on an arbitrarily
selected single node. Typically, these command lines run the
same sequential program with different arguments. This model
of parallel execution is often used in Grid environments and
called embarrassingly parallel, parameter sweep, task farming,
and so on. We hereafter call a single command line a single

host1: ./app 0 1 2
host2: ./app 2 3 4
host3: ./app 3 4 5
...

Fig. 6. An example task file

task.The goal is to execute all tasks as fast as possible using
many nodes.

GXP’s model of execution is to run asinglecommand line
on all nodes, so it is slightly different from the parameter
sweep model. Fixing the gap needs a little scripting. To make
our problem setting more specific, consider in this section a
simple case where the work assignment is static. That is, we
can determine which tasks should be executed on which nodes
before executing the first task. In practice, we often need more
dynamic work assignments, which will be discussed later. In
the simple setting we consider for now, we can implement the
parameter sweep model as follows.

• Tasks are described in a file, called atask file, a single
task per line.

• In addition, each line of the task file is labeled with the
name of the host that should execute it. Figure 6 shows
an example task file, where a label is put on the first field
of each line.

• The task file is broadcast to all nodes using the parallel
pipe syntax (i.e.,cat taskfile {{ . . . }} ).

• Running on each node is a simple script that filters lines
based on the label and executes whatever passed the filter.
In this example, the following simple awk script suffices.

awk ’{ if ($1 == h) system($2); }’ \
FS=":" h=‘hostname‘

To summarize, the following GXP command line executes all
commands listed in the task file, distributing work according
to labels in thetaskfile .

e cat taskfile {{ \
awk ’{ if ($1 == h) system($2); }’ \
FS=":" h=‘hostname‘ }}

B. Parallel Program Launcher

In the above example, the communication pattern of pa-
rameter sweep applications exactly fit to the parallel pipe
model of GXP. The communication occurs only between an
individual worker and the coordinator (master). GXP routes
these messages on its established channels, thereby freeing
the programmer from network programming altogether.

Many parallel programs, however, have more complex
communication patterns and hence need direct any-to-any
communication. Consider launching a parallel program whose
participating nodes communicate with each other via sockets
(e.g., mpirun). A common problem isport assignment and
advertisement.Since it is not practical to statically fix the
port number of the processes, launching a parallel program
often involves a protocol to announce individual processes’
listening port number. A bootstrapping problem occurs as to
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how to announce these port numbers. Normally, a process
that launches these remote processes serves as a hub. GXP’s
parallel pipes is ready for this purpose and makes writing such
protocols trivial as follows.

• Each node emits a single line describing its〈 hostname,
port number〉 pair to its standard out.

• These lines are collected (via the parallel pipe syntax
{{ . . . }} . . . ).

• The only problem is how to feed this informationback to
each node. For this purpose, we use Unix’s FIFO (a.k.a.
named pipe). These lines are written to a FIFO, read by
a local process and broadcast to all processes, again by
the parallel pipe syntax.

To summarize, the following command line lets all processes
know each other’s hostname and port number.

e cat q {{ ./proc ... }} head -np > q

whereq is a named pipe andnp the number of processes.
Using this framework, we wrote a simple network di-

agnosis/measurement tool called “all-to-all-connector” which
simply brings up a process on each node and reports which
pairs (out ofN2, whereN is the number of processes) can be
directly connected via theconnect system call. It took 73
lines of python script. It will be easy if not trivial to extend
this program so that it measures latencies between nodes.

A particularly instructive in this example is the fact that,
using FIFO this way, we can establish a bidirectional channel
between the local node and remote nodes. This gives a very
powerful framework which encompasses master-worker style
computation, where communication occurs only between a
worker and the master.

C. Parameter Sweep : Dynamic Work Assignment

We have addressed earlier how to run parameter sweep
parallel applications assuming static work assignment. In this
paragraph, we extend the model to work assignment based on
dynamic availability of nodes. The framework we consider is
one in which each worker individually indicates to the master
its availability. The master then knows the pool of available
workers. A master sends a description of a task to each of
available workers, until all tasks have been finished.

In the simplest model, a worker considers it being available
when there is no unfinished task currently assigned to it. More
sophisticated criterion are possible, such as ones based on
the host load average, memory availability, and so on, but
their differences basically boil down to the differences in the
definition of “availability.” Thus, this section sticks to the
simple greedy model in which a worker simply repeats getting
a task and executing it, and the master simply dispatches tasks
to workers in FIFO manner.

Following the idea of static work assignment case discussed
in Section III-A, what we need in this case is a way to
dynamically label tasks based on availability of workers. A
worker’s availability is naturally indicated by a message from
the worker to the master, which in GXP amounts to a single
printf which writes its host name to the standard output.
Using the idea introduced in Section III-B, we can feed it

back to the master via Unix named pipe. The master reads a
single line from a task file, which in this case only describes
tasks (command lines, without destination host names),and
the named pipe. This effectively synchronizes an available
worker with a single task. When the matching has been done, a
line describing destination host and the task is emitted to the
master’s standard out. To summarize, we run the following
parallel pipe.

e master q taskfile \
{{ worker ‘hostname‘ }} cat > q

where

• master is a program that repeats reading a single line
from each oftaskfile and q, combining them in a
single line, and writing it to the standard out.

• worker is a program that initially writes its name (given
in the command line argument) to the standard out,
and then repeats reading a line from standard input and
executing tasks labeled with its name, ignoring other
lines.

Currently,master takes 89 lines of python code andworker
109 lines, with simple support for status reporting and logging.

We have used this very simple code to run11, 750 tasks
over 350 Xeon CPUs, each taking1, 000 to 4, 000 seconds.
During the run one node got rebooted, and a power outage
occurred which leads to disconnecting the master from the
network. GXP at present has no provision for fault tolerance
of individual jobs, so when a node crashes or a network dis-
connects during a single command execution, the application
must reboot and continue. The master code is designed so
that it does not reissue the finished task, so when the above
events occurred, we simply killed all running processes and
restarted the master and workers. The work continued without
duplication and finally completed.

This experience indicates GXP is useful for parallel pro-
cessing over multiple clusters. Of course, the claim is limited
to the extent that the life time of the application is not too
long to make node/network failures real issues. Nevertheless,
we believe such a quick and ad-hoc parallelization will attract
many application developers.

IV. BASIC PERFORMANCEMEASUREMENT

Our primary interest is latencies of short jobs. Figure 7 is the
record of one hundred invocations ofhostname commands,
inside a single cluster. The cluster’s spec is in Table II. The
latency is the time between the point the command was issued
at the local host and the point all standard output have been
sent to the user’s terminal.

In this single cluster setting, GXP maintains a perfect
quintanary tree, so it reaches 6 nodes with≤ 1 hop, 31 nodes
with ≤ 2 hops, and 156 nodes with≤ 3 hops. Since the
cluster’s node count is 112, we experimented with 6 and 112
nodes. We also had experimented with 31 nodes, but the result
was not essentially different from the 112 nodes case. Mean
values are 82 msec on 6 nodes and 260 msec on 112 nodes.

Figure 8 shows the case where nodes are spread across
clusters. Nodes that participated are listed in Table III. GXP
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Latency of Short Jobs in a Single Cluster (hostname)
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Fig. 7. Latencies of hundred invocations of hostname commands in a single
cluster (average: 82 msec on 6 nodes and 260 msec on 112 nodes).

Name IBM BladeServer
CPU dual Xeon 2.4GHz/2.8GHz
Nodes 112
Memory 2GB/node
Network Dell PowerConnect Gigabit Ethernet
OS Linux

TABLE II

THE CLUSTER USED IN THE EXPERIMENT OFFIGURE 7

built what seemed the “best” tree with some user interactions.
That is, the local host directly reached each of the cluster
gateways, from which all other cluster nodes are reached. The
node count was 327 and the most distant node was five hops
away from the local host. The average latency was 611 msec.

These numbers indicate GXP actually maintains an interac-
tive response even for very shot jobs, at least up to this number
of nodes.

V. RELATED WORK

GXP is primarily related to (1) work on fast process
invocations/management in distributed environment, and (2)
work on shell in distributed environment.

Latency of Short Jobs (hostname) across Five Clusters
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Fig. 8. Latencies of hundred invocations of hostname commands in five
clusters (average: 611 msec on 327 nodes).

OS Nodes
Linux 1
Linux 112
Linux 64
Solaris 119
Linux 31

TABLE III

FIVE LAN S USED IN THE EXPERIMENT OFFIGURE 8

A. Fast Process Invocation/Management

To the best of our knowledge, MPD reports the best result
[8] regarding quick process invocation on a large number of
nodes (approximately two seconds on a 211 nodes cluster).
The target of MPD is a single cluster environment. Gfpmd
[9] aims at fast process invocation across clusters. Their main
design choices are similar to those of MPD. There are several
interesting differences in design choices of MPD/Gfpmd and
GXP, as discussed below.

• MPD/Gfpmd assume a daemon is permanently running
on each node, whereas GXP assumes no permanent
daemons except for standard remote login daemons. GXP
essentially lets individual users invokeuser level, per
sessiondaemons (through remote logins performed by
the Explore phase), each time the user starts a GXP
session. Our approach significantly reduces installation
and management burden with extra session start up cost.

• While the startup time may be inconvenient for the user,
we believe it is difficult to avoid in our target environment
where nodes may belong to different administrative (se-
curity) domains and different users may have accesses to
different set of domains. MPD seems to assume daemons
operate in a single administrative domain. Gfpmd requires
authentication for individual job submission. GXP aban-
dons the idea of having a single daemon for all users.
By maintaining a separate tree for individual users, we
get rid of authentication on individual job submissions on
Grid environment. Another benefit is since it completely
runs in the user level (except using standard remote shell
daemons), separations between users is simply made up
to the operating system. GXP does not have to be a highly
trusted piece of software, as was the case in one-daemon-
for-all approach. Another side benefit is GXP allows
incremental deployment by individual users, whereas the
daemon approach must persuade system administrators to
be deployed.

• MPD uses a ring topology to connect daemons, Gfpmd
a hierarchy of rings, whereas GXP uses a (quintanary
by default) tree. We believe our better latency result (611
msec on 327 nodes across five clusters, compared to about
two seconds on 211 nodes in a single cluster [8]) is in
large part due to this process topology (i.e., a shorter
hop count). Gfpmd paper [9] reports that Gfpmd spends
a large amount time in building a job-specific network
connections for standard I/O and signal delivery. GXP
does not make new connections for each command, but
uses the same connections (login tree) for all commands.
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• GXP, designed as a shell in the first place, supports a
flexible and interactive way of node selections (smask
command), for which MPD/Gfpmd have no particular
support.

Scalable parallel Unix commands [10] are built on MPD
and provide a set of Unix-like tools written in MPI. They
show many interesting examples where parallel programs can
be used not only for high performance computation, but also
for interactive cluster operations. GXP shares this spirit. Their
focus is the design of an individual Unix-like command in
parallel environment. On the other hand, GXP stresses the
power of combining existing serial Unix commands through
our proposed parallel pipes. We also noticed through our
experience the importance of efficient and interactive node
selections, for which GXP proposes a powerful and interactive
method.

B. Shells for Distributed Environments

GXP was the last descendant of our earlier work, VPG
[5] and MPSH [6]. VPG implemented a transparent job
submission across firewall/NAT. It also featured an elaborate
self-stabilization after a network or a node fault occurs, but
assumed a somewhat cumbersome per-cluster installation and
configuration. MPSH realized many of the GXP’s features
including automatic installation on individual cluster nodes,
fast parallel command submissions, and ease of configurations.
GXP’s main new features are parallel pipes and node selec-
tions.

VI. CONCLUSION AND FUTURE WORK

We described GXP, a shell for Grid environment. Getting
started with GXP requires a setup only on a local host, so
it has a very low entry barrier. It features a fast command
submission (611 msec on 327 nodes across five LANs), a
flexible model of node selection, and a powerful parallel pipe
syntax. These features together enhance the productivity of
many interactive cluster/Grid operations. GXP makes simple
coordination of processes trivial, as demonstrated by parameter
sweep scheduler and an MPI-like parallel program launcher.
GXP will be available for download by the end of 2004 3Q
from the author’s home page.
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