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Worn sensors are popular for automatically tracking exercises. However, a wearable is usually attached to one part of the
body, tracks only that location, and thus is inadequate for capturing a wide range of exercises, especially when other limbs are
involved. Cameras, on the other hand, can fully track a user’s body, but su�er from noise and occlusion. We present GymCam,
a camera-based system for automatically detecting, recognizing and tracking multiple people and exercises simultaneously
in unconstrained environments without any user intervention. We collected data in a varsity gym, correctly segmenting
exercises from other activities with an accuracy of 84.6%, recognizing the type of exercise at 93.6% accuracy, and counting the
number of repetitions to within ± 1.7 on average. GymCam advances the �eld of real-time exercise tracking by �lling some
crucial gaps, such as tracking whole body motion, handling occlusion, and enabling single-point sensing for a multitude of
users.
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1 INTRODUCTION

Regular physical workout improves well-being and reduces the risk of obesity, diabetes, and hypertension [12,
16, 26]. To maintain overall health and build strength, the Centers for Disease Control and Prevention (CDC)
recommends adults to strength train at least twice a week1. However, despite the bene�ts of regular exercise,
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Fig. 1. GymCam uses a camera to track exercises. (Top) Optical flow tracking motion trajectories of various points in

the gym. Green showcases points classified as exercises and red showcases non-exercise points. (Bo�om Le�) Individual

exercise points are clustered based on similarity to combine points belonging to the same exercise. (Bo�om Right) For each

exercise (cluster) GymCam infers the type of exercise and calculates the repetition count.

most people struggle to maintain steady progress. This failure is often attributed to lack of motivation and
feedback [15, 17, 30].

One way to tackle lack of motivation is through gami�cation and tracking [6]. The ability to view personalized
data enhances awareness and enables re�ection of exercise regimens [23]. However, capturing and tracking a
regimen is challenging. Manual tracking is most accurate, but this is tedious for end users. Thus, numerous
commercial and academic e�orts have focused on automatically tracking and quantifying physical activity,
the most pervasive being step count captured by a worn device (e.g., FitBit, Apple Watch, [27, 28]). Nowadays,
consumer devices can track some cardio and strength-training exercises using special applications2, 3. These
applications generally rely on a wearable’s inertial measurement unit (IMU) to monitor e.g., arm motion as users
perform di�erent exercises. Such techniques can be robust for some speci�c exercises, but fail for many others
due to sensor placement where there is limited signal. For example, Maurer et al. found that detecting ascending

2Gymaholic: http://www.gymaholic.me
3Gymatic: https://itunes.apple.com/us/app/vimo�t-auto-exercise-tracker/
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Fig. 2. In gym se�ings, user pose can be challenging to determine due to significant occlusion.

motion such as climbing stairs is more accurate when the IMU is attached to the bag than when attached to a
person’s shirt [19]. Similarly, data from a smartwatch is inadequate for exercises involving other parts of the
body (e.g., leg presses). An alternative is to instrument the exercise machine rather than the user, but that is
too intrusive and also makes free-weight and body weight exercises harder to track. This presents a need for a
method to robustly identify and track a wide range of exercises that a user might perform, while maintaining the
seamlessness o�ered by wearable devices.

To this end, we present GymCam (Figure 1), a vision-based system that uses o�-the-shelf cameras to automate
exercise tracking and provide high-�delity analytics, such as repetition count, without any user- or environment-
speci�c training or intervention. Instead of requiring each user in the gym to wear a sensor on their body,GymCam

is an external single-point sensing solution, i.e., a single camera placed in a gym can track all people and exercises
simultaneously. One camera-based approach would be to track body motions to detect user pose [25, 35]. However,
these techniques are error-prone due to signi�cant occlusion in gym settings (e.g., Figure 2). Thus, instead of
attempting to accurately estimate body keypoints (i.e., skeletons), GymCam leverages the insight that almost all

repetitive motion in a gym represents some form of exercise. Such motions can be readily captured by a camera,
despite heavy occlusion, and used to segment and recognize various simultaneous exercises. We also found that
it is extraordinarily rare for two separate people to exercise at the exact same rate and time, allowing for robust
segmentation even when users are adjacent.
To develop and evaluate our machine learning algorithms, we collected data in our university’s gym for �ve

days. In total, we recorded 42 hours of video and annotated 597 di�erent exercises. We did not record the number
of gym users because our protocol required immediate anonymization of the data (i.e., faces blurred). Users
of the gym were informed that a research team was recording video, but there was no other interaction with
participants, minimizing observer e�ects (e.g., intentional or unintentional changes to their routine). We note
this problem often a�ects research studies where users are aware they are part of an exercise tracking research
study, and the evaluation setting is constrained [21]. We believe this paper presents the �rst truly unconstrained
evaluation of exercise tracking.

The overall process of GymCam is as follows:

(1) Detect all exercise activities in the scene (acc. = 99.6%), then
(2) Disambiguate between simultaneous exercises (acc. = 84.6%), then
(3) Estimate repetition counts (± 1.7 counts)
(4) Recognize common exercise types (acc. = 93.6% for 5 most common exercise types).
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2 RELATED WORK

Previous approaches for exercise recognition and tracking include using wearables, instrumenting equipment,
and using computer vision. In this section, we discuss past work related to each of these key approaches.

2.1 Using Wearables

To help users improve their posture and form, IMUs have been used to track the user’s exercise movements, and
visually compare against optimal posture and movements for guidance [29]. Guidance relies only on tracking user
movements, but our goals include recognizing exercises as well. Data from multiple IMUs has been used to build
Hidden Markov Models that can identify up to 9 exercises with 90% accuracy [8, 9]. Similarly, myHealthAssistant
[27, 28] used a subject-speci�c Bayesian classi�er to recognize 13 exercises with 92% accuracy, and count
repetitions. Such systems typically use noise-free exercise datasets and demonstrate initial feasibility, but often
do not address the problem of reliably segmenting exercises from other activities, and recognizing exercises in
noisy, real-world data.

In recent years, there has been a shift in focus to build a system that could work in-the-wild. Crema et al. used
Linear Discriminant Analysis (LDA) on a stream of data captured by a wearable IMU to classify and count the
exercises performed by a user [13]. The most relevant prior work that uses inertial sensors is Reco�t [21], which
builds upon Muelbauher et al.’s work [22]. Both approaches leverage the repetitive nature of strength training
exercises and use features based on autocorrelation to detect and recognize exercise segments from a stream of
inertial data. Reco�t uses dimensionality reduction for orientation invariance to combat some issues associated
with sensor placement, yet like the others, it is still not possible to track exercises that do not involve the limb
where the sensor is worn. Furthermore, as these approaches require dedicated worn sensors per user, they are
not as scalable as a single-point sensing solution.

2.2 Using Computer Vision

There have been numerous computer vision-based systems that have focused on rehabilitation. Approaches
include using a depth camera to recognize in-home physiotherapy exercises [3], or to track exercises for tele-
rehabilitation [2]. For such use cases, feedback on exercise movements is vital. YouMove pairs a Microsoft Kinect
with a projector to build an interactive mirror that allows users to record and learn physical movements [1].
More recently, systems such as OpenPose [7, 35], V NECT [20] and Adversarial PoseNet [11] have employed deep
learning based approaches to track pose from a RGB feed. However, such techniques typically rely on estimating
the skeleton of a user, which is unreliable when users are far from cameras and there is signi�cant occlusion,
as one is likely to encounter in a multi-user gym setting. To the best of our knowledge, no prior vision-based
exercise recognition and tracking system has been tested in-the-wild.
We draw our motivation from repetition based systems. Levy et al. used deep learning on synthetically

generated data to count repetitive actions such as strumming a guitar or a bird �apping its wings [18]. A similar
approach taken by Papoutsakis et al. identi�es common subsequences (e.g., exercising) in a sequence of actions
(e.g., exercising and walking), and counts the number of repetitions of the common subsequences [24]. However,
we found that these approaches do not work well with multiple repetitive exercises in the same video.

2.3 Instrumentation of Equipment

Gym equipment can also be instrumented to monitor its use. For instance, Velloso et al. instrumented both
the users and the equipment with IMUs [31, 32] and used the system to train a novice user. A combination of
IMU data and motion data from Kinect was used to record an expert’s exercise movements. A novice using the
same system can then compare their and the expert’s movements and assess their progress through a workout
routine. Ding et al. attached RFID tags to dumbbells and used the Doppler shift of the backscatter signal to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 185. Publication date: December 2018.



GymCam: Detecting, Recognizing and Tracking Simultaneous Exercises in Unconstrained Scenes • 185:5

Fig. 3. A wristworn IMU (circled in the photos) is not ideally positioned to monitor many exercises.

recognize exercises, assess their quality and provide feedback to the users [14]. The system was able to achieve
90% accuracy in recognizing ten di�erent gym activities. There are also many commercial products, such as
Bazi�t4, which provides a sensor that integrates with equipment such as free weights and suspension trainers; the
product provides repetition count, with posture and weight recommendations. Other products such as Bow�ex5

instrument dumbbells and other home gym products that sync with a user’s phone via Bluetooth to log repetition
counts.

3 THEORY OF OPERATION

We now discuss the underlying premise behind GymCam that allows it to: (1) detect motion, (2) cluster motions
into separate exercises, and (3) identify and track individual exercises. GymCam leverages the insight that almost
all repetitive motion in a gym represents some form of exercise. Even if a camera cannot see an entire person,
it is still often able to see a small part of the body exhibiting repetitive motion, and can track that body part,
linking it to an exercise later. However, when multiple users are exercising and potentially overlap in a video, it
can be hard for camera-based systems to delineate the exact boundaries between the exercises – an issue worn
sensors do not have to handle. Fortunately, we found it is extremely rare for two users to perform their exercises
at exactly same time, speed, and phase (Figure 4). Thus, by calculating features that capture these dimensions,
GymCam is able to di�erentiate between simultaneous exercises without any supervised training data.

Apart from distinguishing di�erent users, there are other challenges when relying solely on repetitive motion
tracking. Foremost, periodicity can be exhibited by a user’s gait or warm up before starting an exercise. Secondly,
when placed in an unconstrained environment, users tends to be less deliberate with between-exercise moments
(e.g. �dgeting, stretching, walking). These interludes can be quite periodic, and thus indistinct from exercises.
Moreover, in the unconstrained environment of a gym, users may challenge themselves (e.g. lift challenging
weights). Morris et al. [21] observed that "self-similarity [or periodicity] may break down in intensive strength-

training scenarios. For this reason, more validation of intensive weightlifting is important future work." We believe
that the only viable approach to solve the problem of variations in exercise and noisy human behavior, is to
collect extensive training data in the user’s actual workout environment without signi�cant observer e�ect.

4 DATA COLLECTION

We collected data in the Carnegie Mellon University’s varsity gym (seen in Figure 5) over a �ve-day period.

4https://bazi�t.com/
5www.bow�ex.com
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Fig. 4. Four users performing same exercise at di�erent phase and frequency. y-axis shows displacement in terms of pixels.

4.1 Participants and Protocol

To ensure a wide, unobstructed view, we placed one camera on a wall at a height of approximately 4 meters.
This placement was also inconspicuous, aiming to minimize observer e�ects (e.g., users altering their warm-up
or stretching routine, lifting usual weights). The university’s Institutional Review Board and Department of
Athletics o�cials agreed that as long as videos were immediately anonymized, we did not need signed consent
from participants. Nonetheless, gym users were informed that a research team was recording anonymized videos
and any questions, comments or objections should be raised to the gym sta� (though none did). Thus, gym users
were given no instructions regarding exercises, repetitions, breaks, etc., and is as close to unconstrained data
collection as practically possible.

We used a Logitech C922 camera at a resolution of1920 × 1080 to record 15 frames per second (fps) video. We
used a state-of-the-art face detection algorithm [36] to blur the faces of gym users and anonymize the videos.
After dropping periods when the gym was empty, we had 42 hours of data spanning 5 days. We hand annotated
15 hours of this video, which contained 597 exercise instances.

4.2 Labeling

To annotate our captured videos, we tested several tools, but found that it was hard to e�ciently annotate multiple
exercises in the same frame while simultaneously recording their location, the repetition count and the type of
exercise performed. In response, we built a custom annotation software (see Figure 5).

This software allows an annotator to load a video and use a mouse to draw bounding boxes around an exercise.
The annotator can then edit the start and end frame for the annotation to correspond to the start and end of the
exercise. The software also provides basic functions such as play/pause and fast forward at di�erent rates. When
the annotator indicates an end frame for a bounding box (i.e. an exercise), the software requests the repetition
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Fig. 5. Custom video annotation tool. Annotators drew the bounding boxes, and marked the start and end time for each

exercise. They used the text annotation option to add exercise type and repetition count.

count. The annotator also has the ability to add text annotations to each bounding box, recording any notes of
interest. We open-sourced our tool6, and researchers can easily customize it for their speci�c use.

We recruited and trained two student annotators. They were instructed to not count any exercise with fewer
than 3 repetitions. For exercises such as running on a treadmill, elliptical or other cardio machines, the annotators
were simply asked to label "cardio" when asked for a repetition count. The annotators did not annotate ill-de�ned
periods as exercises, but well-de�ned warm ups were labeled appropriately.
To allow multiple annotators to work simultaneously, we split each recorded video into 5 minute segments

and the annotators processed these fragments in batches. If any exercises got split across two video segments, we
counted them as two di�erent exercises. This would never occur in a practical scenario since the input would
be a continuous video stream. However, it was a procedural decision for us to ensure e�cient parallelization
of e�ort. The annotation software recorded all annotations as a JSON �le. These �les could be reloaded, along
with their corresponding videos, to make any post-hoc changes to the annotations if needed. After all exercise
start times, end times, and repetition counts were annotated, a single annotator labeled the exercise types. As
there are several variants of each exercise, and di�erent individuals may call one exercise by di�erent names, this
process ensured quality and consistent labels.

5 ALGORITHM

The goal of our work is to detect, identify, and track exercises, including when people are only partially visible. In
fact, the real test of our approach is when the user is barely visible, but the camera can merely see a weight or a
handlebar moving. Thus, GymCam starts by identifying all movements, and classifying them as repetitive or not.
There could be several movements in a video that belong to the same exercise (e.g., movement of di�erent limbs,
weights, and handlebar), so we combine similar repetitive exercise movements into exercise clusters. Next, for all
motion trajectories in each identi�ed cluster, we derive a combined trajectory to recognize the exercise type and
estimate repetition count for that exercise (cluster). We will now describe our pipeline (Figure 6) in detail.

6https://github.com/zacyu/exercise-annotation-tool
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Fig. 6. GymCam system architecture.

5.1 Detecting Exercise Trajectories

To detect movement, we start by extracting optical �ow trajectories from our video. We initially investigated
OpenCV’s implementation of Lucas-Kanade sparse optical �ow [5]. However, the algorithm failed to track large,
sudden movements and we switched to Wang et al.’s [33] dense optical trajectory extraction method to process all
motion captured by the camera. For every video frame, the algorithm generates new keypoints, which are tracked
continuously across frames to produce a motion trajectory. We found a keypoint max lifespan of 11 seconds
was ideal for capturing several exercise repetitions, while also managing the processing time needed to track
thousands of points in a video stream.
These motion trajectories are then converted into features and passed to a classi�er. To limit the number of

data points, we trim motion trajectories by removing stationary points (i.e., any keypoint that moved less than
4-pixels between frames). We then normalize motion trajectories by their maximum translation and calculate a
feature vector over an (empirically determined) sliding window of �ve seconds, with a stride of one second. Our
feature vector consists of 27 features, a subset of which have also been used in prior work (see [4, 21]).

• Frequency-based features: Our working principle is that exercises are more periodic than non-exercises.
We use frequency-based features to encode this property:
– Number of zero crossings:We calculate the number of zero crossings of the keypoint motion trajectory,
only in the x-axis, and only in the y-axis.

– Variance in zero crossings: Exercises will be more periodic and have a lower variance in zero crossings
than non-exercises.

– Dominant Frequency: The dominant frequency of the signal calculated by frequency transformation.
– Autocorrelation: Autocorrelation characterizes the periodicity of a signal.
– Maximum autocorrelation peak: Higher value indicates higher periodicity.
– Frequency via autocorrelation: The dominant frequency of signal determined via autocorrelation.
– Number of autocorrelation peaks: Unusually high number of peaks indicate noisy signals, which are
more likely to be non-exercises.

– Number of prominent peaks: Represents the number of peaks higher than their neighboring peaks
by a threshold (25%). A greater number of prominent peaks indicates higher periodicity.

– Number of weak peaks: Similarly, we calculate the number of peaks smaller than their neighboring
peaks by a threshold (25%). A greater number of weak peaks represents noisy and less periodic motion.

– Height of �rst autocorrelation peak after �rst zero crossing. The height of the �rst peak after a
zerolag provides an estimate of the signal’s periodicity.

• Non-frequency-based features: Apart from the frequency-based features, we also calculate some non-
frequency based features:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 185. Publication date: December 2018.
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– RMS: The root-mean-square amplitude of the signal.
– Span: The span of the motion helps to characterize the intensity of the motion. We use overall span, and
span in both x- and y-axes as features.

– Displacement Vector: Displacement helps us distinguish between exercises and other periodic motions
such as walking. Non-exercise motions (such as walking) often have a higher displacement than exercise
motions. We use the coe�cients of the overall displacement vector, and displacement in both x- and
y-axes, for a total of 9 features.

– Decay: Decay signi�es the loss of intensity over time, a characteristic of exercise motions. We �t a line
to the observed trajectory and use its coe�cients as features.

We �lter motion trajectories to bias our classi�er to minimize false positives, at the cost of lower precision.
This is because when an person is exercising, not all body parts may be involved in the motion. For example, legs
do not move during a bicep curl, so a keypoint on a person’s leg may be inside the bounding box created by an
annotator, but would not be periodic. Similarly, improper form may cause a point to move while performing
an exercise. Thus, not every motion trajectory inside an "exercise" bounding box is indicative of actual exercise
motion. To protect the classi�er from inaccurate training data, we �lter motion trajectories with aggressive
thresholds on frequency-based features. By �ltering, we only provide the strongest and most representative
examples of exercise trajectories to train our classi�er. However, we do not perform any such �ltering while
validating the algorithm.

We use a multilayer perceptron (Scikit-Learn implementation with default hyperparameters) to classify every
5 second window segment of each keypoint trajectory as an exercise or not. The neural network optimizes
the log-loss function using stochastic gradient descent. To smooth the output, we take a majority vote of three
consecutive classi�cations and assign that as the output for each of those three classi�cations. Finally, we combine
all consecutive positive classi�cations to construct a motion trajectory that was predicted as an exercise.

5.2 Clustering Points for Each Exercise

Exercises are often captured by many keypoint motion trajectories. Thus, our next step is to cluster keypoint
motion trajectories into exercise groups. We perform clustering in two steps: (1) use spatio-temporal distribution
of motion trajectories, and (2) use phase-di�erences between motion trajectories (Figure 4).

Given an exercise, the motion trajectories of its encapsulating keypoints will likely be close to one another in
space and time. For space, we bootstrap the clustering algorithm by drawing bounding boxes next to each workout
machine and station. Note, this only needs to happen once at the start of the system deployment (assuming
machine and stations do not move). These boxes are non-overlapping and are representative of the exercise areas
of the gym. Figure 7 shows these bounding boxes and also a distribution of exercises in our dataset.

Apart from spatial distribution, we also investigated the temporal separation between exercises. The exercise
keypoints that overlap temporally as well as spatially are assigned to the same cluster. However, there is still a
chance that exercises that are close to one another and occur together will be wrongly combined. To seperate such
clusters, we also use phase information. For each cluster, we compute a phase-based similarity score between
each trajectory-pair. For a pair of points that are not temporally co-located, the similarity is set to zero, and for
others, the similarity is equal to the phase di�erence. We then threshold the phase di�erence (15 degrees) to
assign a binary similarity score. In the end, we have a complete N × N adjacency matrix, where N denotes the
number of motion trajectory points classi�ed as an exercise. Given such a matrix, we calculate all connected
graphs. Each graph denotes one exercise cluster associated with the nearest bounding box.

At the end of clustering, we combine the trajectories of all keypoints within a cluster to create a representative,
average trajectory for further analysis (Figure 8). More speci�cally, we take the average of all the points within
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Fig. 7. An image of the gym with a distribution of all the exercise motions observed across all videos. The white boxes are

the manually-drawn boxes to aid in clustering.

the cluster, accounting for the duration of each point, and smoothing it with a Hann window (size=1 second).
This trajectory is used in our next process: exercise recognition and repetition count.

5.3 Repetition Count

Once a representative, average trajectory for each cluster is obtained from the previous step, we calculate the
repetition count. To objectively disambiguate actual exercises from warm ups, we disregard any exercises that
have less than �ve repetitions in the ground truth annotations. We train a multilayer perceptron regressor
(Scikit-Learn; default hyperparameters) that uses our frequency-based features for each combined trajectory (as
detailed in section 5.1), and outputs an estimate for the repetition count.

5.4 Exercise Recognition

Similar to repetition count, we leverage the cluster-average trajectory to infer the exercise type. We �rst quantize
the trajectory into �xed-length segments as input to our classi�er. We then run a sliding window (length �ve
seconds, stride of one second) over this motion trajectory. Each window is passed to a multi-layer perceptron
classi�er (Scikit-Learn; default hyperparameters) to predict the exercise label, and we take a probability-based
majority vote over all windows in the trajectory.
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Fig. 8. Individual and combined trajectories for an exercise. The x-axis is frame numbers (15 fps).

6 RESULTS

6.1 Detecting Exercise Trajectories

We �rst report the results for distinguishing keypoint motion trajectories as exercise or non-exercise. For this,
we performed a leave-one-day-out-cross-validation, which yielded a per-day, mean cross-validation exercise
detection accuracy of 99.86%, with a mean false positive rate of 0.001% and precision of 23%. Again, we optimized
our algorithm to reduce false positives at the expense of precision.

6.2 Clustering Points for Each Exercise

There are 597 distinct exercises in our ground truth annotated data. GymCamwas able to accurately track 84.6% of
these exercises. It also had a false positive rate of 13.5%, with most errors due to miscellaneous cyclic non-exercise
motion such as warm-ups, rocking while seated, and walking.

6.3 Repetition Count

Repetition count accuracy helps in objective assessment of the time overlap between a predicted cluster and its
corresponding ground truth match. We used 5-minute folds for cross-validation and achieved an accuracy of ±1.7
for counting repetitions with a standard deviation of 2.64.

6.4 Exercise Recognition

As discussed previously, our data was collected in an uncontrolled environment where participants were not
instructed to perform a speci�c set of exercises, and so the distribution of exercise types was not uniform.
Participants performed numerous atypical exercises and curating a balanced training set of conventional exercises
from our data was challenging. We identi�ed 18 common gym exercises and annotated their instances in our
dataset (Table 1). We decided to disregard warm-up exercises because the annotator labeled many di�erent
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Table 1. Count of di�erent exercise types

Exercise Type Count

Squats 126
Deadlift 124
Benchpress 55
Arm Extension 56
Dumbell Benchpress 51
Shoulder Press 27
Pullups 24
Dumbell raises 18
Pushups 10
Cardio 9
Lat Pulldown 8
Dumbell Flies 8
Lying Dumbell Flies 4
Bicep Curl 3
Dumbell Raises 2
Tricep Extension 2
Dumbell Press 1
Warmup 69

exercises as "warm-up". The remaining 17 exercise types were classi�ed with an accuracy of 80.6% with cross-
validation across 5-minutes folds (Confusion Matrix: Figure 9). The �ve most frequently performed exercise
types constituted roughly 69% of our data. We noticed that a lack of training data caused the less frequently
seen exercises to be misclassi�ed. Thus, if we only focus on the most frequent exercises, GymCam recognition
accuracy increases to 93.6% (Confusion Matrix: Figure 10). Figure 11 shows the average identi�cation accuracy as
the number of recognized exercise types increase. This result indicates that our approach has the potential to
di�erentiate between exercises based on our feature set, but a larger annotated dataset is needed.

7 DISCUSSION AND LIMITATIONS

GymCam provides an end-to-end pipeline to detect, track, and recognize multiple people and exercises in
real-world settings, overcoming issues such as noisy data and visual occlusion. Based on our observations and
experiences from building the system, we now discuss limitations to our approach. Besides completely missing
an exercise, there are two types of major failure modes when an exercise is not recognized properly: (1) two
exercises get clustered as a single exercise; and (2) one exercise gets split into two separate exercises as shown in
Figure 12.

7.1 Reliance on Motion Di�erences for Clustering

When two or more individuals are exercising close to each other, and exhibit similar motion features such as
phase and frequency, the individual exercise motion keypoints for each exercise may get combined into a single
cluster. For example, it may occur during a group workout, when many people are roughly synchronized. Such
cases are unavoidable, and should be expected to occur in uncontrolled environments. A potential solution is
to augment GymCam with depth or body pose information to improve spatial clustering of nearby keypoints.
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Fig. 9. Confusion matrix for exercise identification across 17 exercises.

Fig. 10. Confusion matrix for exercise identification across 5 exercises.

Fig. 11. Plot showing the accuracy of exercise recognition vs. number of exercise types

Additionally, higher framerate cameras could o�er �ner-grained phase information (i.e., at 15 fps, participants
synchronized to within 7̃0 ms are indistinguishable).
Secondly, fatigue or improper exercise form may cause a person to show high variance between repetitions

of the same exercise. Such irregular movements a�ects GymCam’s performance as the algorithm relies on
phase-based similarity of repetitions of the same exercise. In cases with irregular movements, the similarity
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Fig. 12. The blue boxes represent ground truth, and the green boxes represent predicted exercises (clusters) in each image.

Le� enclosed in red: Examples of exercises where one exercise gets broken into two separate clusters. Right enclosed in

green: Examples of exercises where two exercises get combined into a single cluster.

between trajectories decreases, which may introduce clustering errors and cause one exercise to be incorrectly
broken into separate clusters.

7.2 Tracking Irregular Motions

The backbone of our algorithm is e�ective capture of motion trajectories across many keypoints. One of the
most popular approaches to capture motion trajectories is Lucas-Kanade Optical Flow. While highly regarded
and versatile, in our dataset, the algorithm failed to track exercise motion reliably. After investigating many
failure cases, we realized that the algorithm failed to continuously track a keypoint if a person made sudden big
movement, and instead initialized a new keypoint (not necessarily in the same location). Trajectories obtained
from such keypoints do not contain su�cient information to classify repetitive and non-repetitive motions. To
solve this problem, we used a variant of optical �ow that is more resilient to irregular movements [33] and allows
GymCam to classify individual motion trajectories as exercise/non-exercise with high accuracy (acc. = 99.6%).
It highlights two potential points of failure in our approach: (1) choosing relevant keypoints to obtain motion
trajectories in a frame; and (2) successfully capturing motion trajectories for the duration of the exercise.

7.3 User Identification

GymCam detects, recognizes, and tracks the exercise, but does not identify the user. Correlating the information
between two sensors could be used to identify users. For example, Amazon Inc.’s Go Stores7 combine information
from users’ phones, in-store cameras, and on-the-shelf sensors to track shoppers and their purchases. Similarly,
practical deployment of GymCam could combine information from either a camera-based identi�cation system
or correlate data from a user’s wearable device or use some form of manual identi�cation step by the user (e.g.,
using RFIDs [10] or QR codes [34] next to each workout station). It is arguable that relying only on pose-tracking
might help in detecting the exercises as well as identifying the users. However, our pilot experiments showed
that the current state-of-the-art pose tracking approaches were unable to handle the occlusion challenges.

7.4 Viewpoint Invariance

An ideal camera-based system would be viewpoint invariant and not require calibration for every camera
position. Considering GymCam uses some spatial information, it is not entirely viewpoint invariant. For exercise

7http://www.wired.co.uk/article/amazon-go-seattle-uk-store-how-does-work
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recognition, we use a simple bootstrapping and each area where users are likely to exercise is annotated. In
a regular gym, where machines do not change positions, this annotation will be a one-time process. To detect
whether a user is exercising, we only use time- and frequency-based features that do not change with position.
Thus, it can be viewpoint invariant but we have not evaluated it formally.

7.5 Privacy

Using cameras enables accurate exercise tracking that is not limited to certain kinds of motion, but of course also
raises privacy concerns. To mitigate this, the �rst step of our classi�cation pipeline converts the raw video into
optical �ow trajectories. With this processed signal, GymCam can detect exercises, but sensitive user information
is not easily recoverable. Indeed, with on-camera compute power, this could be the only data transmitted from
the device, or perhaps the entire classi�cation pipeline could be run locally.

7.6 Unconstrained Evaluation Environment

The primary insight of our algorithm is the periodicity of repetitions. However, as Morris et al. point out [21],
periodicity is especially hampered during strength-training scenarios. When lifting challenging weights, for
example, users often become fatigued and lose pace. Such issues are uncommon in cases where users participate in
a user study, as the primary goal is not to challenge participants physically. In contrast, we developed and evaluated
GymCam in a truly unconstrained environment, o�ering greater ecological validity and a more strenuous test. In
addition to between-exercise movements and warm-ups, GymCam had to face an extra noise source: moving
objects. For example, some participants in our dataset performed TRX (Total Body Resistance Exercise) workouts
using ropes. In many cases, the suspended ropes kept oscillating after the exercise ended. Considering GymCam
does not detect body pose and treats all repetitive motions equally, these rope oscillations resulted in a few
falsely-recognized exercises.

8 CONCLUSION

With the surge in quanti�ed self and health-focused wearable devices, the interest in exercise tracking is also
rising. While tracking cardio exercises is relatively easy, tracking repetitive strength training exercise is still an
outstanding problem. Most popular solutions involve using motion sensor-equipped wearables, but these devices
are inadequate for capturing a wide range of exercises, especially ones involving other limbs. In this paper, we
presented GymCam, a system that leverages a single camera to track a multitude of simultaneous exercises.
GymCam relies on tracking motion and assumes that most repetitive motion in a gym are exercises in progress.
To develop and evaluate our machine-learning algorithms, we collected data in CMU’s varsity gym for �ve days.
We segmented all concurrently occurring exercises from other activities in the video with an accuracy of 84.6%;
recognized the type of exercise (acc.=92.6%) and counted the number of repetitions (± 1.7 counts). GymCam
advances the �eld of real-time exercise tracking by �lling some crucial gaps, such as tracking whole body motion,
handling occlusion, and enabling single-point sensing for a multitude of users.
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