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Abstract. Using the linear gyrokinetic code LIGKA, we study the structure of the

continuous spectra Ω(ρ) = ω(ρ) + iγ(ρ) of shear Alfvén waves (SAW) and ion sound

waves (ISW) in a high-beta JT-60U tokamak plasma and look for evidence of Alfvén

acoustic couplings or mode conversion. Here, Ω is the complex local eigenfrequency, ρ

is a radial coordinate, and we consider waves with low toroidal mode number n = 3.

We focus on the frequency range ωBAE . ω . ωTAE between the beta-induced and

toroidicity-induced Alfvén frequency gaps. The real frequencies ω(ρ) of the gyrokinetic

ISW continua are remarkably similar to MHD results. The kinetic damping rates are of

order −γ/ω ∼ 30% for Te/Ti ≈ 1.7, and reduce to 15% when the temperature ratio is

raised to Te/Ti ≈ 4.8. It is shown that SAW and ISW continua can be simultaneously

excited with an antenna and that the global response of the ISWs is significantly

enhanced when the on-axis beta value is raised from β0 = 1.7% to 3.6% while keeping

Te/Ti > 1. In contrast, when the ion temperature is increased such that Te/Ti ≈ 0.4,

ISW branches become undetectable in spite of higher β0. At the same time, a large part

of the SAW continuum is locally destabilized by ion temperature gradients (ITG) and

a set of discrete global modes was found, some of which are weakly damped or unstable

and interpreted as kinetic beta-induced Alfvén eigenmodes (KBAE). It is estimated

that the kinetic damping of such low-n Alfvénic modes contributes much more to the

anomalous bulk ion heating than the excitation of nearby ISW continua, so that Alfvén

acoustic couplings in the frequency band ωBAE . ω . ωTAE are probably irrelevant in

practice.

1. Introduction

1.1. Motivation and goal

The structure of the continuous spectra of magnetohydrodynamic (MHD) waves in

magnetic confinement devices contains information that is valuable for various purposes,

such as MHD spectroscopy and the identification of frequency gaps, discrete modes and

possible resonances with fast ions. Moreover, if one takes into account wave damping

mechanisms, one may use the continuous spectra to study channels via which energy

can be transferred between plasma gradients, collective oscillations and heat.
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In the present work, we are interested in the properties of and couplings between

kinetic Alfvén waves (KAW) and ion sound waves (ISW) in the core of high-temperature

tokamak plasma as used in nuclear fusion research. Such plasmas are characterized by

relatively strong nonuniformities (i.e., spatial and velocity gradients) as well as low

collision rates. The nonuniformities give rise to a large variety of discrete modes and

continuous spectra with a complicated structure. The low collisionality implies that the

decay rates of global wave packets are primarily determined by phase mixing processes

(namely, continuum damping and Landau damping), before the resulting small-scale

structures are dissipated by collisional drag and diffusion.

Although the importance of diamagnetic effects and kinetic compression is well-

recognized, the continuous spectra of KAWs and SAWs are often computed using the

standard single-fluid full MHD equations. This means that the KAW and ISW branches

are idealized, respectively, by ideal shear Alfvén waves (SAW) and slow magnetosonic

(“MHD sound”) waves, which propagate along the magnetic field.

In the present study, we compare MHD wave spectra with those of a gyrokinetic

(GK) model under realistic fusion-relevant tokamak conditions, where the plasma is

strongly shaped and has a beta value well above 1% (ratio of thermal to magnetic

pressure). The ratio of electron to ion temperature, which depends on the plasma

heating scheme and has a strong effect on ISW damping, will be used as a free parameter

and varied in the range 0.4 . Te/Ti . 4.8.

One purpose of this work is to determine whether MHD sound continua can serve

as a convenient albeit approximate measure to classify modes seen in experiments or GK

simulations. The second purpose is to examine whether couplings or mode conversions

between SAWs and MHD sound waves that were seen in recent global MHD simulations

[1] have a counterpart in the GK description. We will then discuss implications for

anomalous heating of bulk ions via Alfvén acoustic couplings as proposed in Ref. [1] and

the role of fast ions. As a preparation, the basic concepts and some related previous

works are reviewed in the following sections.

1.2. Review: Continuous and discrete spectra of MHD waves

If one ignores geometric couplings between different poloidal harmonics for simplicity,

the dispersion relations determining the angular frequencies ωA and ωS for SAW (“A”)

and MHD sound waves (“S”) can be written as

ω2
A ≈ k2‖v

2
A, ω2

S ≈ k2‖v
2
S. (1)

The Alfvén and MHD sound velocities vA(ρ) and vS(ρ) are functions of the normalized

poloidal flux 0 ≤ ψ ≤ 1, whose square root ρ ≡
√
ψ will serve us as a radial coordinate

from the plasma center (ρ = 0) to the edge (ρ = 1). The quantity k‖(ρ) is the wave

number parallel to the unperturbed equilibrium (“eq”) magnetic field Beq = Beqb, and

it is defined via the Fourier transform b ·∇δφ(ρ, ϑ, ζ) ↔ ik‖(ρ)δφm,n(ρ) as

k‖(ρ) ≡
1

R0

(

n− m±

q(ρ)

)

≷ 0; (2)
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Figure 1. Poloidal cross-section of the equilibrium magnetic flux surfaces Ψeq = const.

in a strongly shaped high-beta JT-60U tokamak plasma (left) and the structure of its

MHD wave continua (right). This deuterium plasma has a central toroidal beta value

of β0 ≈ 3.6% and inverse aspect ratio a/R0 ≈ 0.3. The right panel shows the full

MHD continua (thin black) and the SAW continua in the slow-sound approximation

(bold colored) for toroidal mode number n = 3 and specific heat ratio Γ = 5/3. The

poloidal mode numbers of several shear Alfvén (mA) and MHD sound (mS) branches

are indicated.

where q(ρ) is the safety factor, and m and n are the wave numbers of the perturbed

electrostatic (ES) potential δφ(ρ, ϑ, ζ) along the poloidal and toroidal angles ϑ and ζ .

As in Ref. [1], the superscripts on the poloidal mode number m± identify the sign of k‖.

In realistic plasma geometry, the radial structure ω(ρ) of the MHD continua is

more complicated than in Eqs. (1) and (2) because of geometric couplings and effects

of finite compressibility. A good approximation of the SAW continua ωA(ρ) can be

obtained by numerically solving the full set of MHD equations in the so-called “slow

sound approximation” [2]. As an example, the colored bold lines in Fig. 1 show the

SAW continua ωA(ρ) for fluctuations with toroidal mode number n = 3 in a high-beta

JT-60U tokamak plasma consisting primarily of fully ionized deuterium.

Below 40 kHz, one can see the so-called “beta-induced” shear Alfvén frequency gaps

[2], which arise from the combined effects of the geodesic curvature of the magnetic field

and ion compressibility in a finite-beta plasma. The role of curvature is to couple the

pressure fluctuations with the SAW dynamics. Given this coupling, the beta-induced

gaps exist because incompressible SAWs can propagate in a compressible plasma only

when their frequency exceeds a certain threshold. The accumulation points (extrema) at

the bottom of the SAW continua give rise to so-called beta-induced Alfvén eigenmodes

(BAE) [3, 4], so one often speaks of “BAE gaps” for non-zero toroidal mode numbers

n > 0. For n = 0, the beta-induced gap is bounded by the continuum of geodesic

acoustic modes (GAM) [5], so one may also say that the BAE gap represents the up-

shift of the SAW continua by the local GAM frequency.



Gyrokinetic analysis of low-n SAW and ISW spectra in a high-beta tokamak plasma 4

Around 80 kHz, one can see the toroidicity-induced shear Alfvén gaps, which arise

from the linear toroidal coupling between neighboring SAW harmonics (|∆m| = 1) with

opposite signs of k‖. Under certain conditions, there exist discrete standing waves inside

these gaps. These are called toroidicity-induced Alfvén eigenmodes (TAE) [6, 7, 8], so

one often speaks of “TAE gaps”. At higher frequencies, gaps along with corresponding

Alfvén eigenmodes exist due to couplings facilitated by higher-order plasma shape

harmonics, such as ellipticity (|∆m| = 2, here around 130 kHz), triangularity (|∆m| = 3,

here around 200 kHz), and so forth.

Without the slow-sound approximation one obtains the full MHD spectra shown as

thin black lines in Fig. 1, which contain both the SAW and the MHD sound branches.

These continua were computed by applying the numerical method described in Ref. [9]

to the standard single-fluid full MHD equations, where the MHD sound velocity is

v2S = ΓPbulk/(mini). (3)

Here, Pbulk is the thermal pressure of the bulk plasma, mini is the ion mass density, and

the value of the specific heat ratio is chosen to be Γ = 5/3.

Similarly to the SAW branches discussed above, the different poloidal harmonicsm±
S

of MHD sound waves are also subject to mutual geometric couplings due to torodicity

and plasma shaping. In addition, geodesic curvature facilitates coupling between MHD

sound waves and low-frequency branches of SAWs that are modified by finite plasma

compressibility. Here, the latter will be referred to as “compressible SAWs” and they are

highlighted in Fig. 1 by bold dashed lines around 10 kHz and below. The frequency gaps

produced by geodesic Alfvén acoustic couplings between neighboring harmonics mA and

mS = mA±1 can be seen in Fig. 1 around 5–20 kHz. The associated accumulation points

give rise to so-called beta-induced Alfvén acoustic eigenmodes (BAAE) [10, 11, 12], so

one often speaks the “BAAE gaps”.

In MHD, higher-order Alfvén acoustic gaps can also be found at higher frequencies.

In the example shown in Fig. 1, couplings up to third order |∆m| = 3 (for instance at

60 kHz near ρ ≈ 0.3) can be clearly seen due to the relatively large triangularity of the

magnetic surfaces.

1.3. Review: Relation between MHD and GK descriptions

It is important to note that the geometric couplings between SAW and MHD sound wave

branches with |mA −mS| > 1 in Fig. 1 are a consequence of the fact that the linearized

ideal MHD model yields only real eigenfrequencies, which means that pure MHD waves

are not subject to any form of local damping.‡ The spatio-temporal interference between

two different wave branches 1 and 2 can produce a robust gap around radii where ω1 ≈ ω2

only if their growth or damping rates are similar, such that

|γ1 − γ2|/ω ≪ 1. (4)

‡ The so-called “continuum damping” refers only to the loss of coherence in a global wave packet; i.e.,

the rate at which the envelope of a global wave packet decays due to the radial variation of the local

frequencies, dωA/dρ and dωS/dρ.
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In other words, there must be sufficient time for establishing the parallel waveform with

well-defined k‖ before the individual amplitudes of the interfering wave branches deviate

too much. For SAWs and ISWs in the gyrokinetic (GK) description, the condition

in Eq. (4) is usually violated at frequencies near and above the beta-induced gap,

ω & ωBAE, where the SAW and ISW branches tend to have very different damping

rates −γS/ωS ≫ −γA/ωA. This is because of the electron-ion temperature ratio in

tokamaks is usually Te/Ti ∼ 1, which leads to strong ion Landau damping of ISWs. For

the JT-60U scenario studied in the present paper, we will show that the kinetic damping

rates of SAWs and ISWs differ by two orders of magnitude, so that no Alfvén acoustic

gaps can form for branches with ω & ωBAE, where |mA −mS| > 1.

Significant differences between MHD and GK results, at least quantitatively, are

also expected to be found for wave spectra in the low-frequency range ω . ωBAE,

because in our high-beta JT-60U scenario (with β > 1%) the ion diamagnetic frequency

and ion transit frequency are not much smaller than the BAE frequency, so that

ω∗pi . ωti . ωBAE. This means that solutions with mixed or ambiguous polarizations

may arise [13]. One may then say that the continua are shifted in the complex plane by

the combined effects of diamagnetic drifts (pressure gradients), ion temperature gradient

(ITG), as well as resonant and nonresonant compression of thermal ions. Therefore, the

frequency range ω . ωBAE may more accurately be referred to as a “kinetic thermal ion

(KTI) gap” [14]. Note that the kinetic compression is also influenced by the partition

of the plasma pressure among different particle species; namely, electrons, thermal ions,

fast ions and other impurities. For the SAW continua, this means that the width of the

BAE (or KTI) gap is likely to be different between MHD and GK descriptions, and we

will show that this is also the case for the JT-60U scenario considered here.

Apart from these differences, the structure of the SAW continua predicted by MHD

has been qualitatively verified; for instance, by the linear GK code LIGKA [15]. Less

attention has previously been paid to the question of how well MHD sound continua

correspond to the continuous spectra of ISW in the GK picture, especially for the

frequency range ωBAE . ω . ωTAE, which (according to our knowledge) is addressed

here for the first time.

1.4. Review: Alfvén acoustic energy channel in the BAE-TAE frequency range

The frequency band ωBAE . ω . ωTAE has attracted our interest due to observations

of chirping energetic particle modes (EPM [16]) and abrupt large events (ALE) in

beam-driven JT-60U experiments [17], which were then intensively studied numerically

using MHD-kinetic hybrid codes [18, 19, 20] (and references therein). Moreover, just

in that frequency range, recent results of MHD simulations yielded evidence for Alfvén

acoustic couplings [1], which give rise to so-called beta-induced Alfvén continuum modes

(BACM), as shown in Fig. 2. In this example, which is based on a beam-driven JT-

60U tokamak plasma with a high central toroidal beta of β0 = 3.6%, fluctuations with

toroidal mode number n = 3 were examined, and the couplings occurred between SAWs
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Figure 2. Beta-induced Alfvén continuummodes (BACM) with toroidal mode number

n = 3, as found in simulations of the MHD response of a high-beta JT-60U tokamak

plasma [1]. The log-scale color contours represent the amplitude of the radial E ×B

velocity component δur in the frequency-radius plane. Full MHD continua (thin

black) and shear Alfvén continua (bold magenta) from Fig. 1 are superimposed for

comparison. The BACM resulting from the coupling between the poloidal harmonics

mA = 5 and 6 of the shear Alfvén branch with the mS = 2 harmonic of the MHD

sound branch is encircled with a dashed line. See Ref. [1] for further details. The data

plotted here were shown in a somewhat different form in Fig. 2 of Ref. [1]. In the

present paper, the plasma response for this case is studied with a GK model.

with poloidal harmonic mA = 4–6 and MHD sound waves with mS = 1–2.

In this paper, we will demonstrate that similar global excitations of ISW continua

in the frequency band ωBAE . ω . ωTAE can be found in the GK model driven by

an antenna, in spite of the fact that the largely different damping rates (−γA ≪ −γS)
prevent geometric couplings between SAW and ISW continua. The measured fluctuation

amplitudes are then used to estimate the relative importance of Alfvén acoustic

couplings as an energy channel for anomalous heating of thermal ions.

1.5. Outline

The contents of this paper are as follows. In Section 2, we describe the simulation

scenario based on a JT-60U tokamak plasma, revisit the model equations solved by

LIGKA, and provide an itemized list of current limitations and simplifying assumptions.

Section 3 is dedicated to comparisons between the single-fluid full MHD continua

and the kinetic continua computed by LIGKA in the local limit [15]. Previous LIGKA

studies have looked only at unstable and weakly damped solution of the GK dispersion

relation. Thus, ISW continua of long-wavelength modes were inspected only in the

domain of very low frequencies ω < ωBAAE [15, 21]. In the present study, the Nyquist

contour integration [22] in LIGKA is performed with about 1000 times higher resolution

than usual, so that roots of the dispersion relation can be detected even when the

complex frequency plane Ω = ω + iγ is scanned all the way into the strongly damped
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domain, with ratios of growth rates γ to angular frequencies ω ranging as far as

−70% . γ/ω . 70%. In this way, broad-band ISW continua are successfully computed

using LIGKA for the first time. Cases with electron-ion temperature ratios in the range

0.4 . Te/Ti . 4.8 are then analyzed.

In Section 4, we examine the global GK plasma response using LIGKA’s kinetic

antenna model [21, 23] and a vector iteration method [15]. The temperature ratio Te/Ti
and plasma beta are varied systematically, in order to test the responsiveness of the

ISW continua. The results and possible implications for anomalous bulk ion heating are

discussed in Section 5, and a summary and conclusions are given in Section 6.

Note that some of the results presented here are similar to those reported at the

14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

[24]. Some minor quantitative changes are due to a more self-consistent treatment of

sideband couplings in the quasineutrality condition. Moreover, as additional results

became available, some of the interpretations presented here differ from those given in

the proceedings paper [24].

2. Model and methods

2.1. Simulation scenario

The simulation scenario is based on a high-beta JT-60U tokamak plasma (shot E039672

at 4 seconds [25]) that was driven by a pair of tangentially injected negative-ion-based

neutral beams (N-NB). In this work, we focus on the toroidal harmonic n = 3, which has

been intensively studied using MHD and hybrid simulation in Refs. [1, 20, 26, 27, 28, 29].

The simulation setup was described in detail in Ref. [26]. The radial profiles of plasma

parameters used in the gyrokinetic (GK) simulations are shown in Fig. 3. The ratios of

thermal to Alfvén velocities in the reference case are vte0/vA0 ≈ 6.2 and vti0/vA0 ≈ 0.08,

where we use the definition vta ≡
√

2Ta/ma. The subscript a = e, i, ... identifies the

particle species (here, bulk electrons “e” and ions “i”) and “0” refers to the value at

the magnetic axis. The energy of the fast (“f”) N-NB ions in JT-60U was as high as

Ef = 400 keV, which corresponds to a super-Alfvénic velocity ratio of vf0/vA0 = 1.432.

Effects of fast ions will be studied in a separate paper and are ignored here.

Impurities (mostly carbon) are also ignored. Consequently, the ion number density

in Fig. 3(b) will be equated to that of the electrons, ni = ne, in order to satisfy the

quasi-neutrality constraint. The electron and ion temperatures Te and Ti in Fig. 3(c)

will be multiplied by arbitrary scaling factors in order to examine their influence on the

continuous spectra and mode stability. Although this will also change the β(ρ) profile

in Fig. 3(d), we will always fix the equilibrium (“eq”) magnetic flux surface geometry

Ψeq(R,Z) in Fig. 1 and the safety factor profile q(ρ) in Fig. 3(a).
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Figure 3. Plasma profiles for the reference scenario used in this work, which is based

on an N-NB-driven high-beta JT-60U tokamak plasma (shot E039672 at 4 seconds

[25]). Panels (a)–(d) show the radial profiles of the safety factor q(ρ), the number

densities n(ρ) and temperatures T (ρ) of thermal bulk electrons (“e”) and ions (“i”),

the total toroidal beta β(ρ) = 2µ0P/B
2
0 of the entire plasma and that of the fast ion

component (“f”). The bulk plasma profiles are based on experimental measurements.

The fast ion beta profile βf(ρ) in (d) is based on the result of a long-time hybrid

simulation including realistic N-NB ion sources, collisions and MHD activity [20, 30].

In this work, we ignore impurities and fast ions, so that nf = nimp = 0 and ni = ne.

2.2. Gyrokinetic model

The results presented in this paper were obtained with the code LIGKA [15, 31], which

describes all particle species a = e, i, ... using a linear GKmodel. The equations solved by

LIGKA are based on the quasi-neutrality condition 0 =
∑

a eana and parallel Ampère’s

law [∇ × (∇ × A)]‖ = µ0j‖, where ‖ refers to the direction along the equilibrium

component of the magnetic field B = Beq + δB(t). Evaluating the fluctuations of the

number densities δna and current densities δja in terms of the fluctuating components

of the guiding center distribution functions fa = feq,a + δfa, we obtain the linear GK

quasi-neutrality condition

0 =
∑

a

ea

∫

d2v {J0δf}a
︸ ︷︷ ︸

Charge density compression

+mi∇⊥ · ni∇⊥δφ

B2
+

3Pi⊥

4B2Ω2
i

∇4
⊥δΦ

︸ ︷︷ ︸

FLR polarization terms

, (5)

and, from parallel Ampère’s law, the linear GK momentum equation

Inertia (2nd order)
︷ ︸︸ ︷

− ∂

∂t

[

∇ · ∇⊥δφ

v2A

]

+

Field line bending
︷ ︸︸ ︷

B ·∇∇× (∇× δA‖b)

B
+

Current gradient (“kink”)
︷ ︸︸ ︷

(b×∇δA‖) ·∇
µ0j‖
B

(6)

= −
∑

a

µ0

∫

d2v ea {vd ·∇J0δf}a
︸ ︷︷ ︸

Pressure-curvature coupling (“ballooning”)

+
∑

a

[

b×∇

(
βa⊥
2Ωa

)]

·∇∇2
⊥δφ

︸ ︷︷ ︸

Diamagnetic correction for inertia

= +
∑

a

3βa⊥
8Ω2

a

∇4
⊥

∂δφ

∂t
︸ ︷︷ ︸

4th-order inertia (“kinetic Alfvén wave”)

+ B ·∇ 1

B

∑

a

βa
4
∇2

⊥δA‖

︸ ︷︷ ︸

High-beta field line bending correction (negligible)

;
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where βa⊥ = 2µ0Pa⊥/B
2 and where we have omitted the “eq” subscripts on equilibrium

components. For species with an isotropic velocity distribution (P⊥ = P‖), the

diamagnetic correction for inertia (second term on the right-hand side of Eq. (6)) can

be compactly written in terms of the operator

ω̂∗
pa = b× ∇(naTa)

ieaBna

·∇ → ω∗pa ≡
P ′
akϑ

Ωamana

. (7)

In the code, such differential operators are evaluated using the exact metrics, whereas

the discussion of the results is made more intuitive by using a simplified notation, such

as P ′kϑ with kϑ ≈ −m/r and P ′ ≡ dP/dr, where r can be regarded as the volume-

averaged minor radius with r/a ≈ ρ. In the following, we will refer to ω∗pa in Eq. (7)

when we speak of the diamagnetic frequency.

The evolution of the perturbed distribution functions δfa = fa − feq,a written as

δfa = δha +
∂feq,a
∂E

eaJ0(ρk⊥)

[

δφ− δψ − v‖k‖
ω

δψ

]

+
∇feq,a
iωB

· (b×∇)J0δψ (8)

is given by the linear gyrokinetic equation

∂δh

∂t
+ (v‖b+ v̂d) ·∇δh =

[
b×∇feq

eB
·∇− ∂feq

∂E

∂

∂t

]

J0

[

δφ−
(

1− v̂d ·∇
iω

)

δψ

]

. (9)

with the drift velocity v̂d = − b

eB
×

(

mv2‖(b ·∇)b+ µ∇B
)

and the gyro-operator

J0 = J0(ρk⊥). Equations (5)–(9) determine the eigenvalues and eigenfunctions for the

perturbed electrostatic and magnetic potentials, δφ(x) and ∂tδA‖(x) = −b · ∇δψ(x).

The definitions of all quantities and details about the numerical implementation can be

found in Ref. [15].

2.3. Limitations and approximations

For the case studies and extensive scans of the complex frequency plane that were

required for the present study, it is not feasible to use the so-called “full-orbit version” of

LIGKA, which performs phase space integrals along orbits computed by the code HAGIS

[32]. Instead, we employ the “analytical version” of LIGKA, which has been optimized

for speed by replacing numerical solutions with analytical expressions wherever possible.

At present, some effects have not yet been implemented. Below is a list of the current

limitations and simplifying assumptions that were used in the present work:

1. The fast-circulating approximation [15] is used because analytical expressions for

trapped particle effects have not been implemented yet. Their inclusion may alter

the plasma response in the low-frequency domain, ω ∼ ωti ∼ ω∗pi . 0.1·ωA0 [33, 34].

2. Isotropic Maxwellian distributions are used for all species. This is reasonable

for the thermal bulk plasma considered in this paper and allows one to speed

up the calculations by using the standard plasma dispersion function Z(ξ). A

generalization as proposed in Ref. [35] is under consideration.
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3. The transition between the plasma dispersion function Z(ξ) and its large argument

expansion very close to rational surfaces k‖ ≈ 0 can lead to numerical artifacts that

were removed from the plots shown is this paper.

4. Finite-Larmor-radius (FLR) effects other than the diamagnetic correction for the

inertia term are ignored when solving the local dispersion relation, which is then

given by Eq. (20) of Ref. [15], in agreement with Ref. [36]. In the global analysis,

FLR effects of all species are taken into account only up to second order in k⊥̺a,

where ̺a = v⊥/Ωa is the Larmor radius. This approximation may quantitatively

affect the radial structure and propagation properties of kinetic Alfvén waves

(KAW) driven directly by an antenna or indirectly via coupling to antenna-driven

Alfvén eigenmodes.

5. Finite-orbit-width (FOW) effects associated with magnetic drifts across flux

surfaces are not included yet. A model accounting for FOW has recently been

implemented and will be used to study the effect of fast ions in the future.

6. Due to the fast-circulating particle approximation (item 1) geometric coupling in

the kinetic ion (and electron) response is included only up to first order (geodesic).

Thus, ISWs with poloidal mode number m couple only with neighboring harmonics

m± 1 of SAWs or other ISWs. This can be justified as discussed in Section 1.3.

7. Electron Landau damping is [37] underestimated (effectively absent) in regions

away from rational surfaces because only trapped electrons can satisfy k‖v‖ ∼ 1 for

finite k‖, but trapped particle motion is not included (item 1). In contrast, near

rational surfaces, where circulating electrons can satisfy k‖v‖ ∼ 1 due to vanishing

k‖, the electron Landau damping is typically slightly overestimated due to the fast-

circulating approximation (item 1).

8. The leading-order terms of the compressional magnetic response δB‖ (e.g., see

Eq. (48) in Ref. [38]) are known to cancel exactly with the high-beta correction of

the magnetic drift. Apart from this important self-consistent cancellation (which

otherwise cause unphysical instabilities [39]), effects of δB‖ are ignored.

9. A pure Deuterium plasma is considered. Impurities (mostly Carbon) are ignored.

We expect that the results for the local and global response of the thermal bulk plasma

reported in this paper are qualitatively valid and quantitatively accurate to lowest order.

3. Local analysis results: Continuous spectra of SAW and ISW

In this section, we analyze the local response of the thermal bulk plasma in the absence

of fast ions. By ignoring all kinetic effects, it can be demonstrated (e.g., as in Ref. [40])

that the GK system discussed here contains the reduced MHD model [41] as a subset.

Therefore, it is physically meaningful to compare the respective continuous spectra and

identify SAW and ISW branches as we will do in this section. Namely, we analyze the

differences between a simple model of a compressible ideal MHD fluid with a constant

specific heat ratio Γ = 5/3, and a more sophisticated GK model, which includes the
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kinetic responses of thermal electrons and ions, while ignoring nonlocal and polarization

effects associated with FLR and FOW corrections as described in items 4 and 5 of

Section 2.3 above.

In analogy to continuous spectra of MHD waves, the concept of “kinetic continua”

as singular local solutions of the GK equations can be introduced in two ways:

(a) The initial-value approach describes the collapse of the radial mode structure into

a singularity. This can be achieved analytically by examining the properties of

the remaining first-order differential equation that one obtains after setting the

second-order term to zero (as in Appendix B of Ref. [13]).

(b) The eigenvalue approach postulates that a singularity has formed at some infinite

time. Here, one formally lets the width of the radial wavenumber spectrum diverge

(|krL| → ∞, where L is the radial scale length of the background plasma profiles)

for the leading-order solution inside the inertial layer, while assuming at the same

time that kr̺i → 0; i.e., ignoring FLR/FOW polarization effects.

In either case, one assumes that the radial structure possesses two distinct spatial scales,

where the short-scale components represent the various continuous spectra. Thus,

both approaches lead to a unique and physically meaningful definition of the kinetic

continuum in terms of (time-asymptotically) singular plasma oscillations, as in ideal

MHD. This formulation also remains valid when diamagnetic drifts (finite kϑ̺a) are

included by renormalization of the inertia term [13]. While ideal MHD continua capture

only the resonant absorption of SAW and ISW [42, 43], the kinetic continua as defined

above also account for the local kinetic damping or resonant excitation of these waves

(e.g., giving rise to the local limit of Alfvénic ITG modes [44]).

The numerical methods are described in Section 3.1. The continuous spectra in the

reference scenario are examined without and with diamagnetic effects in Sections 3.2

and 3.3. These results are then compared to the situation with increased electron

temperature Te (Section 3.4) and increased ion temperature Ti (Section 3.5). Similarities

and differences in comparison with MHD results are discussed in Section 3.6.

3.1. Local analysis method

As described in Ref. [15], Eqs. (5) and (6) can be solved as a local eigenvalue problem.

Since we ignore FLR effects other than diamagnetic drifts in the local dispersion relation,

the associated discretization of the continuous spectra is absent here. In this limit, the

local continuum solutions can be obtained — as in ideal MHD — by looking for the

nullspace (kernel) of the second-order operator of the combined quasi-neutrality (5)

and GK momentum equation (6). It has been shown [33, 36] that the expression for

the nullspace is a generalization of the dispersion relation derived in Ref. [13], and the

connection to the continuous spectra was discussed at the beginning of Section 3 above.

For each radial location ρ, the eigenvalues in the complex frequency plane Ω = ω+iγ are

determined using Nyquist contour integration. When plotted as a function of the minor

radial coordinate ρ, the sets of points ω(ρ) form the continuous spectra of the kinetic
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plasma response. The values of the local growth rates γ(ρ) are taken as a qualitative

measure for the local damping (γ < 0) or drive (γ > 0) that a global mode with

frequency ωglob will experience at radii where ωglob = ω(ρ).

The poloidal harmonics in the range 1 ≤ m ≤ 13 are included in the calculation.

The Nyquist contour integration was performed using circular contours with radius

δΩNyq = 5×10−4. Such a small radius is needed to find strongly damped ISWs, whereas

marginally stable solutions, such as SAW continua, can be reliably obtained with much

larger contour radii of about δΩNyq/ω ∼ 10%. Each contour is represented by NNyq = 16

samples. Convergence tests with up to NNyq = 64 samples yielded the same physical

roots. The only advantage of increasing NNyq is that the solver yields fewer spurious

solutions. However, most of this “noise” appears at radii where k‖ ≈ 0, so it can be

easily eliminated via post-processing (as will be done here).

In the following, the angular frequency ω and growth rate γ will be normalized

by the on-axis Alfvén frequency ωA0 = vA0/R0 with vA0 = B0/
√
µ0ni0mi. Its value is

2π/ωA0 ≈ 200 kHz for the plasma parameters and profiles of the reference case shown in

Fig. 3. Instead of using γ, we will measure the growth/damping rate using the quantity

γτ = ln

∣
∣
∣
∣

δφ(t+ τ)

δφ(t)

∣
∣
∣
∣

with τ ≡ 2π/ω. (10)

For instance, γτ = −1 means that the fluctuation amplitude is reduced to δφ(t +

τ)/δφ(t) = exp(γτ) ≈ 1/2.7 . 37% during one oscillation period τ . We will search for

roots of the dispersion relation by scanning the complex frequency plane Ω = ω + iγ in

the domain −0.1 ≤ ω ≤ 0.5 and −4.5 ≤ γτ ≤ 4.5.

3.2. Reference scenario without diamagnetic effects

For the purpose of illustration, we begin with results obtained without diamagnetic

effects (ω∗ terms); i.e., pressure gradients are effectively turned off. We consider the

reference scenario with the plasma profiles in Fig. 3, where the ratio of the electron and

ion temperatures at the magnetic axis is Te0/Ti0 ≈ 1.7. Since the contribution of fast

ions is excluded here, the total plasma beta is reduced to about half of its original value,

so we have β0 = 1.7% ≈ βref
0 /2 at the axis.

The results obtained with the local Nyquist analysis can be conveniently visualized

as in Fig. 4. Panel (a) shows the eigenvalues in the complex ω-γ plane, and panel (b)

shows the radial distribution of growth rates γ(ρ). One can identify three domains that

contain solutions that can be classified as (i) SAW, (ii) ISWs, and (iii) higher-order

roots. The GK continuous spectra ω(ρ) of these three classes of solutions are shown in

panels (c-i), (c-ii) and (c-iii) at the bottom of the figure. For comparison, the full MHD

continua ωmhd(ρ) are shown as gray lines. We will use this arrangement throughout this

Section 3.

One can see in Fig. 4(c-i) that the real part ω(ρ) of the continuous spectra of

SAWs are very similar to those of the MHD limit. Figures 4(a) and 4(b) show that the

SAWs labeled (i) are marginally stable. In the vicinity of the toroidicity-induced gap,



Gyrokinetic analysis of low-n SAW and ISW spectra in a high-beta tokamak plasma 13

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

Radius ρ

F
re

q
u

e
n

c
y
 ω

 /
 ω

A
0

−4 −3 −2 −1 0
0

0.1

0.2

0.3

0.4

0.5

Norm. growth rate γτ

F
re

q
u

e
n

c
y
 ω

 /
 ω

A
0

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

Radius ρ

F
re

q
u

e
n

c
y
 ω

 /
 ω

A
0

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

Radius ρ

F
re

q
u

e
n

c
y
 ω

 /
 ω

A
0

0.2 0.4 0.6 0.8

−4

−3

−2

−1

0

Radius ρ

G
ro

w
th

 r
a

te
 γ

τ

U
n
s
t
a
b
l
e

(iii) (ii)

ω
BAE

m
A

−
=5

m
A

+
=4

m
S

−
=7

m
S

−
=6

ω
BAAE

(iii) Higher−order roots

Unstable

(c−i) SAW (c−iii) Higher−order roots

(c) Frequency spectra ω(ρ) for classes (i), (ii), (iii)

(i)

(ii) ISW

Without ω
*

δΩ
Nyq

 = 5×10
−4

N
Nyq

 = 16

m = 1...13

ω
TAE,Uω
TAE,L

cyan: ix = (x > 0.5) & (x < 0.55) & (y < −1.9);
magenta: ix = (x > 0.65) & (x < 0.7) & (y < −2.05);green ISW: ix = (x < 0.2) & (y < 0.08);

green higher: ix = (x < 0.18) & (y < 0.08);

(i) SAW

m
A

+
=5

m
A

−
=6

(c−ii) ISW

m
S

+
=0,1, 2

Reference case

β
0
=1.7%, T

e
/T

i
 ≈ 1.68

ω
ti
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Figure 4. Results of a local analysis for the reference case with Ti = T ref
i , Te = T ref

e

and β0 = 1.7% without diamagnetic effects. Panel (a) shows the eigenvalues in the

complex ω-γ plane, and panel (b) shows the radial distribution of growth rates γ(ρ).

The solutions are classified as (i) SAWs, (ii) ISWs, and (iii) higher-order roots, which

can be roughly separated by imposing thresholds on the damping rate. Here we set the

thresholds at γτ = −1 and −3. The corresponding continuous spectra ω(ρ) are shown

in panels (c-i), (c-ii) and (c-iii). For clarity, different colors are used for eigenvalues

located in four different radial intervals with boundaries at ρ = 0.4, 0.6 and 0.74. For

comparison, the MHD continua ωmhd(ρ) are plotted as gray lines in the bottom panels.

In panels (c-i) and (c-ii), some of the accumulation points of Alfvén acoustic and SAW

spectra are labeled with ωBAAE, ωBAE, ωTAE,L (lower) and ωTAE,U (upper). The

poloidal mode numbers (m), the polarization (A/S), and the sign of k‖ (±) for some

branches are also indicated. The shaded low-frequency band in panel (c-i) indicates

the ion transit frequency ωti(ρ).

0.25 . ω . 0.4, their damping rates are around −γτ ∼ 0.02. At lower frequencies, near

the accumulation points ωBAE ∼ 0.1 of the beta-induced gap, the damping rates of SAWs

increase to values of order −γτ ∼ 0.1. As expected, the size of the beta-induced gap is

proportional to the ion transit frequency ωti(ρ) = vti(ρ)/(q(ρ)R0) with vti ≡
√

2Ti/mi,

which is shown as a shaded region at the bottom of Fig. 4(c-i). Note, however, that

ωBAE/ωti ≈ 2.4 is larger than the well-known estimate
√

7/4 + Te/Ti ≈ 1.9.

The continua of ISWs shown in Fig. 4(c-ii) are also very similar to the results of the

MHD limit; especially, in the frequency band of the beta-induced gap (ω . 0.1). Figures

4(a) and 4(b) show that the ISWs (ii) are subject to strong damping with −γτ ≈ 2.

Low-frequency ISW branches located below the BAAE gap (ωBAAE ∼ 0.05) are indicated

by larger circles. These also include the low-frequency “compressible SAW” branches,

which are subject to very strong damping −γτ > 3 near rational surfaces and in the

plasma center.
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Figure 5. Local analysis results obtained in the reference case with Ti = T ref
i ,

Te = T ref
e and β0 = 1.7%. The shaded low-frequency band in panel (c-ii) indicates

the diamagnetic frequency ω∗pi(ρ). Otherwise arranged as Fig. 4.

Higher-order roots labeled (iii) are also found. They have very large damping rates

−γτ & 3.5 and their continuous spectra are shown in Fig. 4(c-iii). These higher-order

roots arise from the same term as the ISW branches. Mathematically, they can be

traced back to the transcendental nature of the plasma dispersion function and are

usually ignored. However, there have also been attempts to examine their possible role

in other contexts.S Their physical meaning in the present case remains to be clarified.

3.3. Reference scenario with diamagnetic effects: Destabilization of KBM/AITG

Figure 5 shows the results for the reference case obtained with diamagnetic effects

included. The profile of the ion diamagnetic frequency ω∗pi(ρ) . 0.015 defined in

Eq. (7) is shown as a shaded region at the bottom of Fig. 5(c-ii). Since the diamagnetic

frequency is relatively small for the long-wavelength modes considered here (m ∼ 4–

7), there are only small frequency shifts in Figs. 5(c-i) and 5(c-ii), and both the SAW

and ISW continua still agree with the MHD results rather well in the present case.

Figures 5(a) and 5(b) show that the damping rates of both SAW (i) and ISW (ii) still

lie in the domains −γτ . 0.1 and −γτ ∼ 2, respectively. However, there are some

differences worth noting, which are described in the following.

When comparing Fig. 5 with Fig. 4, where diamagnetic effects were ignored, one

S For instance, in a study of energetic-particle driven geodesic acoustic modes (EGAM) in a tokamak

plasma, Girardo et al. [45] have shown that higher-order roots can be selectively excited by carefully

tuning the resonant drive provided by a bump-on-tail velocity distribution.
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can see that the growth rate profiles γ(ρ) in Fig. 5(b) are more nonuniform when ω∗ is

included. Similarly, although to a lesser degree, the spectra ω(ρ) in Fig. 5(c) have also

become somewhat wiggly. These wiggles are due to variations in the radial derivatives

of the experimentally measured profiles for the densities and temperatures, na and

Ta, which enter ω∗pa ∝ m(naTa)
′ with a = e, i. Obviously, this effect increases with

increasing poloidal mode number m. Both γ(ρ) and ω(ρ) would be much smoother if

smoother density and temperature profiles were used.

Low-frequency roots below the BAAE accumulation point, with ω . ωBAAE ∼ 0.05,

are indicated by larger circles in Figs. 4 and Fig. 5. There, one can see the following

differences between the results obtained without and with ω∗. Firstly, the lowest-

frequency portions of the ISW continua with 0 < ω . 0.02 could not be found, although

they can still be found in the negative-frequency domain ω < 0 (not shown here).‖
Secondly, one can see that “compressible SAW” roots in the plasma center and near

the rational surfaces, which were strongly damped in the case without ω∗ in Fig. 4, are

destabilized in the presence of diamagnetic effects in Fig. 5. Since their frequencies are

characterized by ω ∼ ω∗pi, they may be interpreted as the local limit of kinetic ballooning

modes (KBM) that are driven by ion temperature gradients (ITG). In Ref. [44], such

modes were called Alfvénic ITG (AITG) modes. In Fig. 5 and in the following, we label

them “KBM/AITG”, where

• “KBM” identifies the wave branch — namely, low-frequency “compressible SAW”

continua with ω < ωBAAE, which are coupled to ISW branches and modified by

diamagnetic effects;P
• “AITG” identifies the driving mechanism — namely, resonant destabilization via

the pressure-curvature coupling term in the momentum equation (6), where ITG

serves as an energy source.+

Let us emphasize again that the results for this low-frequency domain (ω . ωBAAE)

can be expected to change quantitatively when the presently ignored effects of trapped

particles are taken into account. Furthermore, note that the “KBM/AITG” solutions

near the plasma center (ρ . 0.2) are also affected by the weak and slightly negative

magnetic shear in that region. We have not analyzed the role of this effect, yet.

At higher frequencies, ω & ωBAE, the effect of ω∗ is as follows. The SAW continua

in Fig. 5(c-i) are down-shifted near rational surfaces (where k‖ → 0) and up-shifted

elsewhere as expected [33]. The diamagnetic modification of ISW continua is more

‖ One possible explanation is that these low-frequency continua with 0 < ω . ω∗pi were shifted too

deep into the complex plane (strongly damped), so that the numerical accuracy of our local Nyquist

analysis was insufficient to find them. In any case, a thorough study of this low-frequency domain

would require to take into account trapped particle effects [33, 34].
P Similarly, high-frequency AITG modes appear when the usual (incompressible) SAW continua with

ω > ωBAE are destabilized by ITG, such as the KBAE/AITG modes discussed in Sections 3.5 and 4.2.
+ In contrast, ITG-driven electrostatic (ES) drift waves are excited via the charge density compression

term in the quasi-neutrality condition (5), so that such ESITG modes tend to have lower frequencies

ω ≪ ω∗pi (cf. Figs. 2 and 4 in Ref. [44]).
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Figure 6. Local analysis results obtained with Ti = T ref
i and an increased electron

temperature Te = 2.84× T ref
e , so that β0 = 3.6%. Arranged as Fig. 5.

complicated and most likely case-dependent. Here, all ISW continua above the beta-

induced gap (i.e., far from their respective rational surfaces) are down-shifted by an

amount comparable to ω∗pi.

In the following Sections 3.4 and 3.5, we will investigate how the situation changes

when the ion and electron temperatures Ti and Te are varied.

3.4. Effect of increasing Te: Reduced damping of ISW

In the absence of fast ions, the original value of the plasma beta can be recovered

if we increase the bulk electron temperature relative to its reference (“ref”) value as

Te = 2.84 × T ref
e , which yields β0 = βref

0 = 3.6% at the axis. With a central value of

Te0 ≈ 6.1 keV ≈ 4.8×T ref
i0 , the electron temperature is then nearly 5 times greater than

the ion temperature. Results for this case are shown in Fig. 6.

Overall, one can see in Fig. 6(c-i) and 6(c-ii) that the SAW (i) and ISW continua (ii)

exhibit an increased deviation from the MHD results; in particular, there is a noticeable

downshift around ωTAE,L and an even larger downshift around ωBAE. We have verified

that ion diamagnetic effects cause only a negligible shift of the SAW frequencies in the

present hot electron case, so we conclude that the large downshifts in Fig. 6(c-i) are

mostly due to a change in compressibility.

As expected for an increased temperature ratio Te/Ti, Figs. 6(a) and 6(b) show

that the damping rates of the SAW continua (i) in the BAE frequency range ω ∼ 0.1

are reduced to −γτ . 0.04, and the damping of the ISW continua (ii) are reduced to

−γτ ∼ 0.7.
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Figure 7. Local analysis results obtained with increased ion temperature Ti =

4.1×T ref
i and Te = T ref

e , so that β0 = 3.6%. In panels (a) and (c-ii), the absolute value

of the real frequency |ω| = |Re{Ω}| is plotted in order to show ISW branches with

negative frequencies in the range −0.1 ≤ |ω| ≤ 0 in category (ii). The higher-order

roots (iii) are plotted in light colors in order to distinguish them from ISWs with ω < 0,

which have similar damping rates. Otherwise arranged as Fig. 5.

Note that the wiggles on the ISW continua have become larger due to the higher

value of Te, which results in larger variations in ω∗pe ∝ m(neTe)
′. As mentioned in the

previous Section 3.3, these wiggles would be absent if smoother density and temperature

profiles were used.

3.5. Effect of increasing Ti: Destabilization of KBAE/AITG

Another way to recover the original value of the plasma beta without including fast ions

is to increase the bulk ion temperature to Ti = 4.1×T ref
i , which yields β0 = βref

0 = 3.6%

at the axis. The ion temperature is then more than twice the electron temperature, so

that Te0/Ti0 ≈ 0.4 at the axis. The results obtained in this case are shown in Fig. 7.

Overall, one can see in Fig. 7(c-i) that the SAW continua (i) exhibit an increased

deviation from the MHD results; in particular, upshifts around ωTAE and downshifts

around ωBAE. This can be shown to be due to diamagnetic effects [33].

The KBM/AITG instabilities in the low-frequency domain ω ∼ ω∗pi of Fig. 7(c-ii)

— which were also seen in the reference case in Fig. 5(c-ii) — are further destabilized. In

addition, Figs. 7(a) and 7(b) show that a large part of the SAW continua (i) has become

unstable due to the increased ITG drive. These high-frequency AITG instabilities with

ω & ωBAE are labelled KBAE/AITG in Fig. 7 because we interpret them as the local

limit of kinetic BAEs (KBAE) [44, 46] driven by ITG. In the present case, the largest
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growth rates are reached near the accumulation points ωBAE of the compressibility-

induced gaps. In particular, near the q = 5/3 rational surface at ρ ≈ 0.53, the local

growth rate for roots with ω ∼ 0.13 exceeds γτ ∼ 1.

Away from the rational surfaces (and from the associated KBM/AITG roots),

we do not find any clear trace of ISW branches with positive frequencies ω > 0. In

contrast to Figs. 5 and 6 above, the ISWs in Fig. 7 are not only absent in the frequency

band 0 < ω < ω∗pi (shaded region in Fig. 7(c-ii)) but became undetectable in the

entire positive-frequency plane scanned. However, we were able to find equivalent ISW

branches in the negative frequency domain ω < 0. The results for the frequency range

−0.1 ≤ ω ≤ 0 are included under category (ii) in Fig. 7, where the vertical axis of

panels (a) and (c-ii) now shows the absolute frequency |ω|. The negative-frequency

ISW branches have damping rates that range from relatively low values −γτ ∼ 1 near

rational surfaces (where KBM/AITG roots are found) to very large values −γτ > 3 far

away from rational surfaces. It is possible that the positive-frequency ISWs are damped

even more strongly, so that they could not be detected with the Nyquist integration

contours used.

Interestingly, however, the higher-order roots could still be found in the positive-

frequency plane, as can be seen in Fig. 7(c-iii). Moreover, their damping rates shown

in Figs. 7(a) and 7(b) have surprisingly decreased and are even lower than in the hot

electron case in Fig. 6. This observation remains to be understood, as does the physical

meaning of these higher-order roots.

3.6. Summary and discussion of local analysis results

The main qualitative discrepancy between MHD and GK solutions is that MHD continua

contain many small gaps that are produced by higher-order geometric couplings between

SAW and MHD sound branches with |mA − mS| > 1. Such Alfvén acoustic couplings

occur in ideal MHD because all wave branches have purely real frequencies and no

damping. In contrast, such higher-order geometric couplings are absent for SAWs and

ISWs in the GK description, since SAW tend to be marginally stable and ISW are

strongly damped. Only the low-frequency “BAAE gaps” caused by couplings between

the lowest-order sidebands |mA −mS| = 1 remain intact in the GK description.

The largest quantitative discrepancy between MHD and GK solutions was seen

in the SAW continua near the BAE accumulation points. In the reference case with

Te/Ti = 1.68, the GK value of ωBAE was about 20% below the slow-sound MHD result.

That discrepancy increased to 25–30% when the electron temperature was raised such

that Te/Ti = 4.77. The discrepancy is even larger for the full-MHD value of ωBAE.

Diamagnetic effects seem to be responsible for only a small part of these discrepancies.

For the most part, they can be attributed to differences between the compressibilities

in the MHD and GK descriptions. The use of a frequency-dependent specific heat ratio

Γ(ω) in MHD may allow to match the GK results more closely.

Concerning the growth/damping rates, increasing Te was found to reduce the
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damping of both ISWs and SAWs as expected. The effect of increasing Ti was found

to depend on the proximity to a rational surface (where k‖ → 0). Away from rational

surfaces, increasing Ti had a stabilizing effect — so much that for Te/Ti = 0.41 ISWs

with positive frequencies became undetectable in the domain scanned. Near rational

surfaces, a strongly destabilizing effect was observed due to the increased ITG drive —

at least for Alfvénic branches. The destabilized roots were classified as the local limits

of KBM/AITG modes in the low-frequency domain (ω ∼ ω∗pi) and KBAE/AITG modes

in the high-frequency domain (ωBAE . ω . ωTAE).

In principle, the effects described above are not new and were seen in one form or

another in many previous analytical and numerical studies. The purpose of the present

local analysis was to demonstrate and quantify these effects in a particular case with

realistic geometry and realistic plasma parameters, and to show the consequences of

varying Te and Ti around their reference values.

We can conclude that continuous spectra obtained with the MHD model may

not be sufficiently accurate for the interpretation of modes found in GK simulations

(as presented in Section 4 below) or in extended hybrid simulations that include

kinetic thermal ion effects (as in Ref. [47]). In particular, for resonantly destabilized

Alfvén modes, potentially large discrepancies should be expected in the frequency range

ωBAE . ω . ωTAE. This may have an impact on the interpretation of the modes (e.g.,

gap mode or continuum mode, BAE or KBAE). Moreover, diamagnetic effects are very

complex when included self-consistently along with resonant wave-particle interactions

in a realistic magnetic geometry, so they cannot be simply accounted for with a mere

frequency up-shift as is often done. Caution must also be exercised with high-frequency

Alfvén acoustic couplings found in the MHD limit (as in Ref. [1]) whose GK counterparts

may not exist or they may exist for different physical reasons.

4. Global analysis results: Discrete Alfvén eigenmodes and global

excitations of ISW continua

In this section, we study the global plasma response in the frequency range ωBAE . ω .

ωTAE. For the interpretation of the results, we shall use the continuous spectra obtained

with the GK model in Section 3, since the accuracy of continous spectra obtained from

the MHD model is no sufficient for this purpose.

It should be noted that the second-order differential equation used to calculate

the local kinetic continua in Section 3 above did not contain higher-order FLR terms

that account for effects associated with finite radial wavelengths and are responsible for

local electric fields and nonlocal effects such as radiative damping. Meanwhile, these

polarization effects are present in the global solutions discussed in the following, where

they regularize the otherwise singular solutions near the kinetic continua (e.g., see Fig. 5

in Ref. [21]). In the following, this regularization will be implied when discussing the

interactions of the (regularized) kinetic continua with the antenna field or with antenna-

driven global eigenmodes. Moreover, the radial phase mixing, which is implied by the
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Figure 8. Global structure of an antenna-driven shear Alfvén mode with n = 3 in the

case with increased electron temperature (Te/Ti = 4.77). Panel (a) shows the structure

of the electrostatic (ES) potential fluctuations δφ(R,Z) in the poloidal plane. Panel

(b) shows the location ρdrive and frequency ωdrive of the antenna in comparison with

the GK continua of SAWs (bold) and ISW (thin) obtained with the local analysis

in Section 3.4. Panels (c) and (d) show the radial structure of individual poloidal

harmonics |δφ|m(ρ) obtained with the analytical and full-orbit versions of LIGKA.

radial dependence of the continuous spectra computed in Section 3, will manifest itself

in the following global analysis in the form of continuum damping.

4.1. Methods

For the GK analysis of the global plasma response, we use the kinetic antenna model and

vector iteration method of LIGKA [15]. We employ the “analytical version” of LIGKA as

described in Section 2.3 above, which is sufficient for our purpose. This can be confirmed

in Fig. 8, which shows results for an antenna-driven shear Alfvén mode located slightly

above the lower accumulation point of the TAE gap formed by the toroidal coupling

between m = 5 and m = 6. The result obtained with the analytical version and the

full-orbit version of LIGKA are plotted in Figs. 8(c) and 8(d), respectively.

One can see that the analytical model reproduces the overall mode structure very

well and misses only minor features of the radial sub-structure. Note that the full-

orbit version allows the inclusion of higher-order sideband couplings between poloidal

harmonics of the quasi-neutrality condition. In Fig. 8(d), couplings between m, m± 1

and m ± 2 were included, but it is found (not shown here) that the contribution of

m± 2 is negligibly small. Thus, it is sufficient to retain only the lowest-order sideband

couplings between m and m± 1 as in Fig. 8(c).

The antenna will be used to scan the frequency range 0.01 ≤ ω ≤ 0.4 with a step

size of ∆ω = 10−3. The results presented here were obtained with Nρ = 256 radial grid
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points and poloidal harmonics in the range 1 ≤ m ≤ 9. In the frequency band and

radial domain of interest, no significant changes were seen with higher resolution (512

radial grid points and 13 harmonics).

The amplitudes of the total (volume-integrated) response spectrum will tell us the

frequencies of discrete modes that are supported by the plasma. More subtle features

will be revealed by examining the response of individual poloidal harmonics in the

frequency-radius plane. Note that the presence of the antenna has some influence on

the mode structure. Typically, one will see that the poloidal harmonics that dominate

near the drive radius ρdrive are enhanced and distorted by the antenna.

The results of the antenna excitation can be difficult to interpret when there

are discrete modes embedded in a continuous spectrum. In such instances, a vector

iteration method will be used to single out individual modes. For the KBAE-type modes

examined below, it was sufficient to keep only the three dominant poloidal harmonics.

The solver converged in less than 20 iterations when started with a guess based on the

results of the antenna version.

Both methods yield the complex-valued radial structures of individual poloidal

harmonics in terms of the perturbed electrostatic (ES) and magnetic potentials, δφm(ρ)

and δψm(ρ). The non-ideal (and non-Alfvénic) component associated with kinetic

compression is measured by the parallel ES potential defined as

δΦ‖ ≡ δφ− δψ = k‖δE‖, (11)

where δE‖ is the electric field measured along the magnetic field.

The results reported in this paper were obtained with an antenna driving only

δψ. For modes close to marginal stability (stable or unstable) that have δφ ≈ δψ, the

antenna drive introduces only a relatively small and insignificant amount of spurious

δΦ‖ fluctuations. This can be (and was) verified by comparing the radial structures

and damping/growth rates of the antenna-driven modes with the solutions obtained

with the vector iteration method. In contrast, for strongly damped modes, a large δΦ‖

component is introduced when only δψ (or δφ) is driven, so that the antenna-driven

modes differ from solutions obtained with other methods. In this case the antenna

modes are not eigenmodes of the system.

The antenna modes can be directly excited on both SAW and ISW continua.

However, this means that we will not be able to ascertain whether there are intrinsic

couplings between these two branches. Although it is reasonable to assume that such

couplings do exist (as will be discussed in Section 5 below), we have to assume that

the arbitrary form of the antenna artificially enhances the ratio |δΦ‖|/|δφ|, so that the

Alfvén-to-acoustic mode conversion rates will most likely be overestimated.

In principle, it should be possible to design an antenna model with δφdrive = δψdrive

such that only Alfvénic fluctuations with δΦ‖ ≈ 0 are driven selectively. However, this

is rather difficult to implement because the drive would need to have precisely the form

of the self-consistent frequency-dependent local solution of the coupled quasineutrality

and GK momentum equations and their boundary conditions. Otherwise, it was found
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that excessively large δΦ‖ fluctuations are produced, which entirely obscure the results.

4.2. Discrete spectra of Alfvén eigenmodes: TAEs and KBAEs

Before searching for subtle ISW signals, it is instructive to examine the discrete spectra

of Alfvén eigenmodes in the present configuration, which is the purpose of this section.

As in the local analysis presented in Section 3 above, we will consider three cases

with different temperature ratios; namely, the hot electron case with Te/Ti = 4.77, the

reference case with Te/Ti = 1.68, and a hot ion case with Te/Ti = 0.51 (i.e., with Ti and

β0 somewhat smaller than in Section 3 above). The on-axis beta values lie in the range

1.7% . β0 . 3.6%. We focus on responses with frequencies above the beta-induced gap,

ω & ωBAE ≈ 0.1.

In the hot electron case shown in Fig. 9, we have selected three peaks in the antenna

response amplitude. At the peaks labeled (A) and (B), we find modes with a TAE-like

structure, where neighboring harmonics m and m+1 of the electrostatic (ES) potential

δφm(ρ) have similar amplitudes in the respective gaps. For these modes, the ratio of the

parallel and the total ES potentials is |δΦ‖|/|δφ| ∼ 10% or less in the region away from

the antenna location, which confirms their Alfvénic nature. The third peak labeled (C)

is an antenna mode that forms at the point where the external drive resonates with

the m±
A = 5 branch of the (regularized) SAW continuum. In other words, this is not

an eigenmode of the system and is strongly influenced by the antenna location ρdrive as

one can see by comparing Figs. 9(b) and 9(c). This externally forced mode has a larger

compressional component, with |δΦ‖|/|δφ| ∼ 25%.

In the reference case, results for which are shown in Fig. 10, the TAEs are more

numerous and have higher frequencies due to the lower value of the plasma beta. The

TAEs labeled (E) and (F) in Fig. 10 correspond to modes (A) and (B) in Fig. 9. The

additional TAE labeled (D) in Fig. 10 has formed in the lower part of the gap associated

with the m = 4 and m = 5 harmonics and couples to higher harmonics through all the

outer gaps without intersecting a SAW continuum. Consequently, mode (D) is subject

to very little damping, which is why the associated peak of the antenna response is

very sharp in ω. All three TAEs (D)–(F) have a weak compressional component, with

|δΦ‖|/|δφ| . 6% away from the antenna location.

Next, let us consider cases with high ion temperature. The results of the local

analysis for Ti/Te = 0.41 and β0 = 3.6% in Section 3.5 above (Fig. 7) told us that a large

part of the SAW continua is destabilized by ITG. Indeed, the global analysis of the hot

ion case revealed a set of discrete modes in the frequency range ωBAE . ω . ωTAE, some

of which are unstable. The results were found to be sensitive to the ion temperature,

which was scanned in the range 2.0 ≤ Ti/T
ref
i ≤ 6.4 while fixing Te = T ref

e . The

corresponding temperature ratios were 0.8 ≥ Te/Ti ≥ 0.3. Here, we will only report the

results for one selected example, where Te/Ti = 0.51 with Ti = 3.3× T ref
i .

Figure 11 shows the results obtained with the kinetic antenna model. When the

antenna is applied at ρ = 0.586 (i.e., inside the m = 5, 6 TAE gap), the frequency
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Figure 9. Volume-integrated antenna response amplitude spectra and three discrete

global modes (A)–(C) in the case with high electron temperature, Te/Ti = 4.77. Panel

(a) shows the continuous spectra of SAW and ISW obtained with the local GK analysis

(cf. Fig. 6). Two vertical bars indicate the radii ρdrive = 0.508 and 0.586 where the

antenna is applied. The respective total (volume-integrated) response amplitudes are

shown in panels (b) and (c) as functions of the antenna frequency ωdrive. Three of the

peaks seen in the response spectrum are selected and labeled (A), (B) and (C). Their

frequencies ω(A) = 0.285, ω(B) = 0.254, and ω(C) = 0.15 are indicated as horizontal bars

in (a)–(c), and their radial structures are shown in columns (d) and (e) in terms of the

total electrostatic (ES) potential |δφ|m(ρ) and its parallel (compressional) component

|δΦ‖|m(ρ) defined as δΦ‖ ≡ δφ− δψ = k‖δE‖.
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Figure 10. Volume-integrated antenna response amplitudes and discrete global modes

(D)–(F) in the reference case with Te/Ti = 1.68. Arranged as Fig. 9. The continuous

spectra in panel (a) are from Fig. 5. The selected mode frequencies are ω(D) = 0.327,

ω(E) = 0.305, and ω(F) = 0.262.

spectrum of the volume-integrated response amplitude in Fig. 11(c) shows two broad

overlapping peaks, which we labeled (G) and (H). Based on their radial structures in

Fig. 11(d) and the fact that |δΦ‖|/|δφ| . 5%, these modes are interpreted as TAEs.

There was no distinct phase flip in the antenna response, which indicates that these

TAEs are strongly driven by the exaggerated ITG.

In addition, a sharp narrow spike labeled (I) can be seen at a lower frequency

ω = 0.152. This frequency is located above the BAE accumulation point ωBAE(m =
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Figure 13. Response amplitude spectra in the frequency-radius plane (ω, ρ) for the

poloidal harmonics m = 2–5 (from top to bottom). Results are shown for the reference

case (i) and the hot electron case (ii). The antenna is located at ρ = 0.508 (vertical

dashed line) and drivesm = 1–9. Columns (a) show the fluctuation spectra of the total

ES potential |δφ|m(ω, ρ) and columns (b) show its parallel component |δΦ‖|m(ω, ρ).

The contour plots are overlaid with the continua of SAWs (bold) and ISWs (thin),

which were obtained with the linear GK analysis in Section 3.

5) ≈ 0.128. The corresponding mode structure is dominated by m = 5 and peaks at

ρ ≈ 0.5, between the m±
A = 5 branches of the SAW continuum as shown in Fig. 11(a),

so we interpret this mode as a KBAE [44, 46]. Since this mode is present for both

ρdrive = 0.508 in Fig. 11(b) and ρdrive = 0.586 in Fig. 11(c), we can be certain that this

is not an antenna mode.

Although the amplitude of the antenna response in Figs. 11(b) and 11(c) has a

sharp spike at frequency ω = 0.152, the phase of the antenna response (not shown

here) exhibits a 2π jump at a lower frequency ω = 0.147. This discrepancy hints at

the existence of multiple modes with frequencies near the peak labeled (I) in Fig. 11.

Thus motivated, the vector iteration solver was used to search for global eigenmodes

with frequencies near ω ≈ 0.15. Among many strongly damped solutions, we found two

marginally stable/unstable modes as shown in Fig. 12.

The left column of Fig. 12 shows a weakly damped mode with an even parity at

ω = 0.155, which is similar to the KBAE found with the antenna in Fig. 11(I). The right

column of Fig. 12 shows a weakly unstable mode with an odd parity at ω = 0.150. Both

solutions are dominated by a single poloidal harmonic m = 5 and are located between

the m±
A = 5 branches of the SAW continuum, so we classify them as KBAEs.
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4.3. Excitation of continuous spectra: Radial spreading of KAWs and ISWs and

possibility of Alfvén acoustic mode conversion

In this section, we analyze the responses of individual poloidal harmonics in the

frequency-radius plane. We begin with a comparison between the reference case

(Te/Ti = 1.68, β0 = 1.7%) and the hot electron case (Te/Ti = 4.77, β0 = 3.6%).

Figure 13 summarizes the fluctuation spectra for the poloidal harmonics m = 2, 3, 4

and 5 when the antenna is located near the q = 5/3 rational surface (ρdrive = 0.508) and

drives all nine harmonics (mdrive = 1–9) that are used in the simulation.

When the fluctuations of the total ES potential |δφ|m(ω, ρ) in columns (a) of Fig. 13

have significantly larger amplitudes than its parallel component |δΦ‖|m(ω, ρ), this is

a signature of the discrete Alfvénic modes (or their poloidal sidebands), which were

labelled (A)–(C) in Fig. 9 and (D)–(F) in Fig. 10. Apart from these discrete modes, the

contour plots of the plasma response in Fig. 13 reveal several other interesting features.

One interesting feature can be seen in the structure of the total ES potential

|δφ|m(ω, ρ) in Fig. 13(a) near the m±
A = 5 SAW continua. While the resonant harmonic

m = 5 has a peak, one can see that the amplitudes of nonresonant harmonics — in

particular, m = 2 and m = 3 — exhibit a distinct “dip” around the m±
A = 5 continua.

This feature seems to be related to the radial propagation of KAWs, because such dips

are only seen when the antenna drives the plasma between two SAW branches with

m+
A = m−

A, where KAW are reflected back and forth.∗ We interpret this as a form

of kinetic damping of Alfvénic fluctuations, where the SAW continua (here m±
A = 5)

convert non-resonant Alfvénic fluctuations (herem 6= 5) into compressional fluctuations.

Through subsequent phase mixing (ion Landau damping) and dissipation, that energy

is eventually converted into bulk ion heat.

This conjecture about the occurrence of Alfvén-to-acoustic mode conversion is

partly supported by the fact that the parallel ES potential |δΦ‖|m(ω, ρ) in Fig. 13(b)

shows a relatively strong response just inside the m±
A = 5 SAW continua. Moreover, one

may speculate that these compressional fluctuations may excite resonant ISW continua,

if they happen to exist in the same region of the frequency-radius plane. This condition

is satisfied in the present high-beta scenario, where the m±
A = 5 SAW branches are

intersected♯ bym+
S = 2 and 3 ISW continua, which are indicated by arrows in Fig. 13(b).

Indeed, Fig. 13 shows evidence for such radial spreading as described in the following.††
below.

In the hot electron case (ii) — where ISW damping is weaker (−γτ ∼ 0.7 in Fig. 6)

and β0 = 3.6% is higher — the fluctuation spectrum of |δΦ‖|m in Fig. 13(ii-b) shows

activity that extends over the entire length of the m+
S = 2 ISW continuum branch. An

∗ For instance, the dip disappears when the antenna is applied at ρdrive = 0.39 as in Fig. 14 below.
♯ Here, “intersect” refers only to the real frequency-radius plane, since SAW and ISW continua in the

GK description have very different damping rates, so that they are well-separated in the complex plane.
††However, it remains speculative that this is caused by Alfvén-to-acoustic mode conversion as described

in the previous paragraph because the antenna itself may excite the ISW continua, too, as we will see

in Section 4.4 (Fig. 14)
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Figure 14. Response amplitude spectra in the frequency-radius plane (ω, ρ) for

m = 3. The antenna is located at ρ = 0.391 (vertical dashed line) and drives either all

harmonics m = 1–9 (top) or only m = 5 (bottom). Otherwise, arranged as Fig. 13.

even stronger compressional response is observed for the m = 3 harmonic along the

m+
S = 3 ISW branch, which is almost purely electrostatic here, as one can see from the

fact that |δφ|m=3 ≈ |δΦ‖|m=3. The trend of ISW continua with higher m to respond

with higher amplitudes can also be seen from the spectra for m = 4 and m = 5 in

Fig. 13(ii-b), whose ISW continua lie deep in the beta-induced gap.

In contrast, in the reference case (i) — where ISW continua were found to be

strongly damped (−γτ ∼ 2 in Fig. 5) and the on-axis beta value is only β0 = 1.7%

— the response of the ISW continua is very localized and weak. In Fig. 13(i-b), only

a small amount of radial spreading along the m+
S = 3 ISW branch can be seen in the

|δΦ‖|m fluctuations of the m = 3 harmonic. For m = 2, the ISW continuum response is

invisibly small.

Note that the response amplitude of the m = 3 harmonic in Fig. 13 may also be

strongly affected by the antenna, whose location ρdrive = 0.508 coincides with the radius

where the m+
S = 3 and m−

A = 5 continua intersect. Therefore, it is instructive to change

the position of the antenna, as we will do next.

4.4. Excitation of continuous spectra: Role of the antenna’s position and mode

spectrum

Figure 14 shows results obtained with the antenna shifted inward to ρdrive = 0.391 (near

the accumulation point of the m = 4, 5 TAE gap). In addition to the different antenna

position, Fig. 14 shows how the plasma response changes when the antenna drives only

the mdrive = 5 harmonic (bottom) instead of all nine harmonics mdrive = 1–9 (top).

Here, we focus on the spectra of the m = 3 harmonics and compare again the results

for the reference case (i) and hot electron case (ii).

The results in Fig. 14 clearly demonstrate that the antenna can directly drive the

ISW continua in a region far away from any SAW continuum. Unfortunately, this
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also means that the role of Alfvén-to-acoustic mode conversion for the the excitation

of ISW continua as described in Section 4.3 above remains speculative, because the

antenna itself may excite the ISW continua directly. We can only say with certainty

that Alfvénic and compressional fluctuations are simultaneously excited by the antenna

and that they are able to spread radially along the respective continuous spectra.

In addition, Fig. 14 shows that the poloidal mode numbers do not need to match:

it is even possible for an antenna with mdrive = 5 to excite the m+
S = 3 continuum;

although, the response tends to be more diffuse than in the case where the mdrive = 3

harmonic is part of the antenna field. Note that the amplitude of the m = 3 ISW

fluctuations is about 25/5 = 5 times larger in the hot electron case (ii) than in the

reference case (i) when mdrive = 1-9 (Fig. 14, top). That ratio increases to about

8/0.5 = 16 when only the mdrive = 5 harmonic is driven (Fig. 14, bottom). Clearly, the

different values of Te/Ti and β0 affect how easily the ISWs can be excited, so we shall

now take a closer look at the role of these parameters.

4.5. Excitation of continuous spectra: Roles of the temperature ratio and plasma beta

There are two factors that influence how easy or difficult it is to excite ISW, either by

direct drive or Alfvén acoustic mode conversion:

• the damping rate of ISWs, and

• the coupling strength between fluctuations with different harmonics or different

polarizations.

Of course, these two factors are not completely independent since weaker damping may

facilitate stronger coupling or mode conversion. However, the above distinction may

be useful since some parameters may affect the coupling strength without changing the

damping rates. Candidates that may affect the coupling strength are the value of β, the

poloidal mode number m, and the frequency ω. A well-known parameter controlling

the ISW damping rate is the temperature ratio Te/Ti.

In order to throw more light on the physics of ISW excitation, Fig. 15 shows the

fluctuation spectra of them = 3 harmonic of the parallel ES potential |δΦ‖|m=3|(ω, ρ) for
the four cases summarized in Table 1, where we varied the temperature ratio at constant

beta and vice versa. The “hot bulk” case (iii) has Te/Ti = 1.68 as in the reference case

(i), but beta is increased to β0 = 3.6% as in the hot electron case (ii) by multiplying

both temperatures by 2.155. The “cold ion” case (iv) has a higher temperature ratio

Te/Ti = 4.77 as in the hot electron case (ii), but beta is reduced to β0 = 1.7% as in

the reference case (i) by dividing both temperatures by 2.155. For each case, results

are shown for two antenna locations: (a) ρdrive = 0.391 and (b) ρdrive = 0.508. All nine

poloidal harmonics m = 1–9 are driven.

The results in Fig. 15 show that reducing the ISW damping rate from −γτ ∼ 2 to

0.7 by increasing Te/Ti at constant β0 causes the ISW amplitudes to increase by a factor

of about 1.5–3, depending on the antenna location. In addition, the ISW amplitudes

increase by another factor of about 2 when β0 is doubled at constant Te/Ti.
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Case Te/T
ref
e Ti/T

ref
i Te/Ti β0 −γτ

(i) Reference 1 1 1.68 1.7% 2

(ii) Hot electrons 2.84 1 4.77 3.6% 0.7

(iii) Cold ions 2.84/2.155 1/2.155 4.77 1.7% 0.7

(iv) Hot bulk 2.155 2.155 1.68 3.6% 2

Table 1. Temperature scaling factors, temperature ratios Te/Ti, on-axis beta values

β0 and typical local ISW damping rates −γτ for cases (i)–(iv) in Fig. 15.
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Figure 15. Response amplitude spectra of the parallel ES potential |δΦ‖|m=3 in the

frequency-radius plane (ω, ρ) for the four cases listed in Table 1, where the temperature

ratio is varied at fixed beta and vice versa. The values of the characteristic ISW

damping rate −γτ(ISW) in the local limit are shown for each case. The antenna

drives all harmonics m = 1–9 and is located either at ρ = 0.391 (a) or ρ = 0.508 (b).

Furthermore, one can see that a larger β0 value increases the width of the ISW

response along both the frequency axis and the radial axis. One possible explanation

is that a higher beta facilitates stronger coupling between different poloidal harmonics,

which we already saw in the hot electron case (ii) in Fig. 14, where mdrive = 5 was used

to excite m+
S = 2 ISW continua. Alternatively, it is possible that a higher beta enhances

the radial propagation of KAWs and/or ISWs.

Although not shown here, we have found that both the cold ion case (iii) and the

hot bulk case (iv) exhibit a small but noticeable amount of activity around the m+
S = 2

ISW continuum, whereas no clear response could be identified in the reference case (i),

as we have already pointed out.

The fact that increasing the value of β0 while fixing Te/Ti leads to larger ISW

amplitudes in spite of constant ISW damping rates confirms our initial expectation

that the plasma beta influences the strength of coupling or mode conversion between

SAW/KAW and ISW branches. The implications of these results for the possible role of

Alfvén acoustic couplings for anomalous bulk ion heating are discussed in the following
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Section 5.

5. Discussion: Mechanism for Alfvén acoustic coupling in the BAE-TAE

frequency range and relevance for anomalous ion heating of bulk ions

As we have mentioned in our discussion of the results in Section 4.4, it is difficult to

claim with certainty that Alfvén acoustic couplings occurred in our antenna simulations,

because both branches may be excited by the antenna directly and simultaneously.

Nevertheless, it is reasonable to assume that SAWs in a high-beta tokamak plasma

always contain some compressional components, so we may conjecture that global shear

Alfvén modes will always “couple” to nearby ISW branches and transfer energy to them

via a mode conversion process. In other words, it is conjectured that SAW and ISW

components of a global mode in a high-beta plasma are intrinsically coupled because

they are not perfectly orthogonal functions.

If this is the case, then the amplitude of ISW (“daughter wave”) is not determined

by the growth/damping rate of the local ISW continuum but by the amplitude of the

SAW (“mother wave”). In this way, ISWs with small but possibly significant amplitudes

may always be present when there are fast-ion-driven SAWs. Moreover, the speculative

Alfvén acoustic couplings may be further enhanced when the mode structure is distorted

by FLR and FOW of resonant fast ions. Finally, nearby ISW continua may be excited

and cause a radial spreading of the compressional fluctuations as seen in the hot electron

case, results for which are summarized once more in Figs. 16(b) and 16(c).

In the present work, fast ions were not included, but the ISW excitation process

was simulated using a kinetic antenna model. Based on the results obtained, we assert

that the ISWs are excited by a combination of

• geometric sideband couplings, and

• mode conversion between like harmonics (mA = mS).

The process of how an antenna field or resonantly driven Alfvén mode with mdrive = 5

is thought to drive the m+
S = 3 ISW branch may be illustrated as follows:

Drive−→ mA = 5
Geometry−→ mA = ...

Geometry−→ mA = 3
Conversion

↓
Conversion

↓
Conversion

↓
mS = 5

Geometry−→ mS = ...
Geometry−→ mS = 3

(12)

All poloidal harmonics are geometrically coupled by toroidal curvature (m ± 1) and

by the noncircular shape of the plasma cross-section (m ± 2, 3, ...). Thus, even when

the antenna or the resonant particles drive only the m±
A = 5 SAW branches (e.g., in

the form of a KBAE), the global SAW field will have an mA = 3 component. Due to

kinetic effects (resonant and nonresonant compression) in a high-beta tokamak plasma,

we assume that an Alfvénic fluctuation is always accompanied by some amount of ISWs,

as discussed at the beginning of this section. For instance, mS = 3 will “piggy-back” on

mA = 3. There are many such indirect channels to be integrated, and some are shown in
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Figure 16. Beta-induced Alfvén continuum modes (BACM) were proposed to provide

a new energy channel between fast ions (such as 3.5 MeV alpha particles) and bulk

ions via MHD waves as illustrated in panel (a). Panel (b) shows fluctuation spectra

of the parallel component of the ES potential δΦ‖(ω, ρ) for the hot electron case (ii)

as in Figs. 13–15 above, but with the antenna driving only m = 5 at ρ = 0.5. Results

from this case were used to estimate the relevance of ISWs for anomalous heating in

Section 5.

(12) for mA = 5 → mS = 3. However, due to the large separation between neighboring

ISW branches m+
S and m+

S ±1 both in radius and in frequency, it is reasonable to assume

that their geometric coupling is negligible, so that we only need to consider the following

channel:

Drive−→ mA = 5
Geometry−→ mA = 3

Conversion−→ mS = 3. (13)

One of the original motivations to study Alfvén acoustic couplings in the BAE-TAE

frequency range was that they may contribute to the anomalous heating of bulk ions

as illustrated in Fig. 16(a) with the arrow labeled (ii). However, our results show that

the ISW tend to have very small amplitudes, so their energy transfer rate should be

compared with that of other competing channels. For instance, the kinetic damping of

fast-ion-driven Alfvénic fluctuations [48, 49] (which are thought here to give rise to the

ISW excitations in the first place) also contributes to anomalous bulk ion heating as

illustrated in Fig. 16(a) with the arrow labeled (i). In the following, we estimate the

ratio of the energy transfer rates via channels (ii) versus (i) using results from our GK

analyses presented in Sections 3 and 4 above.

Using the MHD sound wave dispersion relation ω2 = k2‖v
2
S, we compute the energies

WS andWA carried by acoustic and Alfvénic fluctuations with poloidal harmonic m and

frequency ω as follows:

WS,m = |δE‖|2m = |k‖(δφ− δψ)|2m =
ω2
m

v2S
|δφ− δψ|2m, (14)

WA,m = |δE⊥|2m ≈
∣
∣
∣
∣

ω

k‖
δB⊥

∣
∣
∣
∣

2

m

= |δψ′|2m +
m2

r2
|δψ|2m; (15)
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where δψ′ = ∂rδψ. Letting ρ ≈ r/a and noting that v2S/v
2
A = Γβ/2, we obtain

WS,m

WA,m

=
2ε2

Γβ

ω2
m

ω2
A0

|δΦ‖|2m
|δψ′|2m + m2

r2
|δψ|2m

≈ 0.1

β

ω2
m

ω2
A0

|δΦ‖|2m
|δψ′|2m + m2

r2
|δψ|2m

; (16)

where we have substituted a/R0 ≈ 0.3 and Γ = 5/3.

In order to estimate the upper limit for the energy transfer ratio, let us now consider

the hot electron case with Te/Ti = 4.77 and β0 = 3.6%, where ISWs reached the largest

amplitudes among all the cases that we have studied in this paper. We use a case where

the antenna was applied at ρ = 0.5 and drove only the m = 5 harmonic. One may

think of this procedure as a model for a KBAEs or EPMs with dominant harmonic

(m,n) = (5, 3) that excites nearby ISW continua with (m,n) = (2, 3) and (3, 3). The

fluctuation spectra |δΦ‖|(ω, ρ) for m = 2 and m = 3 in this case are shown in Fig. 16.

Substituting the values from the LIGKA simulations into Eq. (16), we obtain

WS,m=2

WA,m=2

∼ 0.1

2%
× 0.242 × 0.3

30 + 15
≈ 2× 10−4; (17)

WS,m=3

WA,m=3

∼ 0.1

2%
× 0.142 × 20

1400 + 100
≈ 1× 10−4; (18)

where we have used β(ρ = 0.5) ≈ 2%, ωm=2 = 0.24 and ωm=3 = 0.14. Next, these two

values are multiplied with the ratioWA,m/WA of the energy contained in the m = 2 and

m = 3 sidebands versus the total energy WA of the antenna-driven Alfvén mode (which

is dominated by m = 5 here). Summation of the results yields

WS

WA

=
WA,m=2

WA

WS,m=2

WA,m=2

+
WA,m=3

WA

WS,m=3

WA,m=3

∼ 45

1× 106
× 2× 10−4 +

1500

8× 106
× 1× 10−4 = 3× 10−8; (19)

Finally, the respective energy transfer rates Ẇ ≈ ∆W/τ = (eγτ −1)W can be computed

using the local damping rates that we found for the SAW and ISW continua in Section 3.

Using the values γAτ = −0.03 and γSτ = −0.7 from Fig. 6, we obtain

ẆS

ẆA

=
(eγSτ − 1)WS

(eγAτ − 1)WA
=

(e−0.7 − 1)

(e−0.03 − 1)
× 3× 10−8 . 10−6. (20)

This rough order-of-magnitude estimate suggests that essentially all the energy that

fast ions transfer to SAWs in the frequency band ωBAE . ω . ωTAE is transferred to

thermal bulk plasma via the kinetic damping of the SAWs; namely, the SAW heating

channel labeled (i) in Fig. 16(a). Only a negligibly small amount of the fluctuation

energy can be transferred via the ISW channel (ii) in Fig. 16(a).

This result is mainly a consequence of two factors. One is the small amplitude

of the sidebands (here WA,m=2,3/WA,m=5 ≪ 1) for modes below the TAE gap. The

other is the small amount of energy carried by compressional perturbations compared

to Alfvénic perturbations, which, in turn, is a consequence of the large radial wave

number of Alfvénic modes in the frequency band ωBAE . ω . ωTAE, which gives

β−1k2‖/(k
2
r + k2ϑ) ≪ 1. Even if one takes into account effects that produce a smoother
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radial structure (e.g., fast ion FOW) and lets k2⊥ → k2ϑ, the result in Eq. (20) increases

by no more than an order of magnitude to ẆS/ẆA . 10−5, which is still insignificantly

small. Although increasing the value of β may increase the amplitude δΦ‖ of the

compressional component, this should also have little influence on the results, since

both quantities enter Eq. (16) as |δΦ‖|2/β.
Therefore, we conclude that the Alfvén acoustic self-heating channel proposed in

Ref. [1] is negligible for realistic tokamak beta values, even when the temperature ratio

is as large as Te/Ti = 4.8, which may be possible in burning fusion plasma.

Of course, there are several uncertainties attached to the above estimates. For

instance, the local damping rates we used may not be accurate to quantify the decay of

global modes. Moreover, the relative amplitudes of SAW and ISW components may be

different in the saturated nonlinear regime. However, due to the smallness of the value

obtained in Eq. (20), we anticipate that the final conclusion is reliable; namely, that

SAW heating channels [48, 49] are by far more important than Alfvén acoustic channels.

6. Summary and conclusions

Using the linear gyrokinetic code LIGKA, we have studied the structure of the

continuous spectra of shear Alfvén waves (SAW) and ion sound waves (ISW) in a high-

beta JT-60U tokamak plasma. Particular attention was paid to the frequency band

ωBAE . ω . ωTAE, since Alfvén acoustic couplings in that frequency band were recently

suggested as a channel for bulk ion heating in high-beta tokamak plasmas [1].

This work was performed in two steps. First, a local analysis was carried out in

Section 3, with the purpose to determine how the continuous spectra of the GK model

differ from the MHD predictions; in particular, with respect to the ISW branches.

Second, using a kinetic antenna model and a vector iteration method, the global plasma

response was examined in Section 4 in search for global ISW signals.

The local analysis performed in Section 3 has shown that the structure of ISW

continua of the GK model and the MHD sound wave continua of the single-fluid full

MHD model are qualitatively similar in the parameter regime Te/Ti & 1, which is typical

for fusion-relevant plasmas. Quantitative differences were discussed and the possibility

of matching the GK results with the MHD model more closely by defining a frequency-

dependent specific heat ratio Γ(ω) was pointed out.

Using a kinetic antenna model, we were able to excite global fluctuations along

ISW continua together with Alfvénic perturbations. A case study has then shown that

the ISW response can be enhanced by increasing the values of the plasma beta or the

temperature ratio Te/Ti. While the temperature ratio influences the ISW damping rates,

the value of beta seems to influence the strength of coupling between the antenna field

and the ISWs. Similarly, beta may also enhance Alfvén acoustic couplings, but this

mechanism remains speculative because we are not able to isolate it from the antenna’s

direct influence on the fields.

Based on the simulation results, we have computed in Section 5 an order-of-
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magnitude estimate for the relative energy transfer rate at which an Alfvén acoustic

channel as proposed in Ref. [1] may contribute to the anomalous heating of bulk ions.

The scenario was set up such as to mimic the excitation of ISWs with poloidal mode

numbers m = 2 and m = 3 — which intersect mA = 5 SAW branches in the real

frequency-radius plane — via EPM- or KBAE-like modes with m = 5 (such as those

found in Section 4.2).

It is estimated that the bulk ion heating rate ẆS due to ISW damping is smaller

than the wave-to-particle energy transfer rate ẆA due to the kinetic damping of SAWs

by 6 orders of magnitude. Although several approximations and simplifications were

made in the calculation, the smallness of the ratio ẆS/ẆA leads us to conclude that

Alfvén acoustic channels in the ωBAE . ω . ωTAE frequency range can be assumed to

be insignificant (practically absent) compared to the anomalous bulk heating provided

by the kinetic damping of fast-ion-driven SAWs [48, 49].

Note that this conclusion applies only for fluctuations with small toroidal mode

numbers n & 1, such as the n = 3 harmonic studied in this paper. The situation for

high-n modes, where nonlinear mode-mode couplings play an important role, will have

to be studied separately.
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