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Ahstract
A new scheme for particle simulation hased on the pyrophasc-averaged
Viasov equation has heen developed. 1t 1s sultable for studying low-frequency
micraoinstabilities and the associated anomalous transport {n maguetically
confined plasags, The scheme retains the gyroradius effects hut not the
gyromotion; 1t 1s, therefore, far more efficient and versatile than the
conventional ones. Furthermore, the reduced Vlasov equati{on s also amenable

to analytical studies.
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1. Introductlon

fyrokinetic approach has been widely used In recent wears far studylng
Taw=frequency mifcroinstabilities In a magpnetically confined rlasma since {its
fnceptinn more than a decade apn.ls’ Tt employs the pyrokinetic erdering that
the characteristic frequencles of the waves and pyroradil are <mal' campared
the gvrnfrequencies and unperturned scale lenpths, rtespectively, and
neriarhed  parallel scale lengths are of the order of wuapertur»si scale
tenpths. Such en nrdering enahles one to he rtd of the explicit depe-~dence on
the phase angle of the Vlasov equatfon through gyrophasc-averaging while
regaining the gyroradius effects to the arbitrary value of the pyraradius over
the perpendicular scale length. Finite pyroradfus effects, as we knrow, are
~isential  for many mlcroinstabilitles of Interest (n magnetic carffnement
devices such as tokamaks . Contrary to the o.iginal approach, rqtt03 has
rerently developed a gyrokinetic techninue which first transforms the particle
varfahles ©9 (v guidine cventer variables 1in rhe Vlnsov equition hefors
cerferming the pyrophase-averaping . The purpose of 1t is t. ohtain fiafte
wyeoratiuys effrects v 3 more convenient manner for arhi'rary maeneisc
fiplds. As ft turns out, this technlque of gyvroklnelic ~hanze o° varlahles
alsn rerovides a stareing point for the development of the partfeis simulation
srbama reported here.

Particle code simulation has long been recognized as a -tceful toal for
understanding nonlinear plasma hehavior and has contributed slgnificantly in
this regard over the years. 1In the area of microinstabilicties tn rokamaks,
the excitation nf the convective cells due te unstahble drift waves® and the
magnetic ffeld line reconnection causad hy shear~Alfven uavesS are just two

examples. However, not unlike other numerical schemes, particle code
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simulation also has its share of limitations. For conventfonal codes which
operate on the first principles of Newtonian dynamics, the time step for
particle pushing is limited by the highest characteristic fregquency {n the
plasma, which can be several orders of magnitude larger than the frequency of
interest. Tt 1g, therefore, rather {nefficlent, {f possible at all, to
simulate low~frequency phenomena with such a code. Efforts have heen made in
the past to eliminate high frequency osci{llations in the slmulatlon plasma.
For example, drift-kinetic approximacton for electrons has heen made {n the
codes used for the investigations in Refs. & and 5.6,7,8 However, the Tawer
hybrid oscillation, which represents the highest Ffrequency in the plasma for
such cases, {s still much Targer than the frequency of Iinterest. In this
paper, we will present a particle simulatfon scheme which keeps fin{te
gyvraoradius effects that are vital to the physfes at hand, but, at the same
tfme, eliminates the oscfllations assoclated with partiele pvromorion.
Henceforth, particie pushing can he accomplished (n the time scale nf the low-
frequency microinstah{lftfes. The dcheme 1is, therefore, most suitahle for the
simulation of rokamak plasmas.

Recently, long-time~step particle simulation has also heen tackled on a
different front. Several implicit schemes have heen developed, in which the
high-frequency aosc{llattans are filtered cut through numerical
methods.?>10,11 They represent a basic difference in philosophy than the
scheme discussed in this paper as well as those In Refs. 6 znd R, tn which the
elimination of high-frequency oscillatiens is contfingent upon the underlying
physice. Although the fmplicit schemes are more general {n nature, their
applicahility to two and three-dimensional tokamak plasmas has yet to he
demonstrated.

In the present paper, the focus is on the development of an electrostatic
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particle simulation scheme in the slab geometry. The scheme 1s accurate
linearly for arhitrary values of kipl’ where Y 1= the fon geyroradius.
Nonlinearly, 1t 1is wvalld for klpi < 1. The two-and-onc-half-dimenglional

"K,Y,Vx,vy,vz) simulation results from the present scheme agree very well In

every aspect of the iInstability with those obtalned earller using particle

fons and nuiding center electrons.”-” n

addition to the wuss fF Youge:
time-steps for particle pushing, the scheme also can afford to use fewer
particles to study weaker instahiliries because the numerical nnise assnciated
uwith the particle gyration fts no longer a prohlem. Therefore, [t represents ¢
tremendous saving 1in computing resources. Since the procedures descrihed here
is rather general, they can he used easlly to chtaln the electrnsratic and
electromagnetics (low- A) versions of the scheme in the tnroidal geometry. In
view of the recent development of the multfple-scale particle simulatinn
model,"" 'n which the plasma equltbrium scale lengths arn separated from the
perturhatlaon scale lenpgths, (t 15 now possihle to simulare fully tnree-
dimenstonal steady-state plasma turbulence 1In the torofdal eroratre with t'e
present generatior o' computers. This paper represeats the Fir 1 step toward
that direction.

The paper 1s orpanized as follows. 1In Sec. TI, the hasic formulation of
the pyrokinetic equattion In general gcometry Is presented.  ‘the procedures for
the development nf electrostatlic particle simulation schems 1In the slab
spnmetry {9 dlscussed In detetl 1a Sec. TIl. The particle pushing algorithm
and  the simulation results are given in Sec. V¥V, togerher with thelr

comparlsons with previous particle code results. Conclusions and

recommendat ions for future work are given In Sec. V.
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11. Basic Formulation

let uws first apply Catto's gyrokinetic change of variables’

frem x, v to R , u, v,, ¢ to the Vlasov equation in general geometry,
x b
3 F “4y,8F 3 F
setintas— 1 5u- 953
3 dv
vv e [( E)_ar+apar+ 1aF ,203F,
3 x D 5 [+ % Q o] X 3 v“ 3 x 3 ¢
q “1dF,20F 8""1aF
= - St N — = ~Lor =
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n vl

where F(R, u, v 4, t) 18 cthe distribution Ffunction, E(x) 1s the perturhed
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electric fileld, B{x) = |B] and E {x) = B/B where B 1s the total magnetic
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For a low-f (= plasma pressure/magnetic pressure) plasma, the electric field

1s glven by
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where & (x) 1s the electrostatic potential and 5"(5) is the parallel vectrr
potential. Invoking the gyrokinetie ordering of o7 ~ ¢ /L - », o1
L~ L' where ¢ 1s a smallness parameter, , the gyroradius, T. the equilthriuw:
scale lenpth and L, the perturbed parallel scale lenpth, one can wriiv Adnwr

the lowest srder equation of Eq. (1) as

M'y
]
H
>
-

Here the perturbed fields are also consfdered to be O(g). With
(€3]

F=¢F¢++gld) ,

where f is the solution of Eq. (3) and {is {ndependent of phase ¢, Fq. (1) to

the next order reduces to

. v h
A f - - o f 2 g™ nf
R e = O o -2 ]
75__{+[—l1+|n Y 1 AR M[B m B I
ffHD\ ?"E+5“_h_f+ﬁv':\f1 qr-t;a_f_:f\ (5)
tyoe X AT Tx3u t"‘x_*v” MmN ATy ’ :
Kote that the relations of
As A (i
N R =%
which {s correct to the order e, and
o2 _ . T (7)




have bheen uged In arrivipg at Eq. (5). By assuming that all the field
quantities are independeat of ¢ and by taking the gyrophase average of Fq.

(5}, we then recover the usual drift-kinetic equation

o £ g5 E ?f q h1af R
srtlururd=ol gl +rgl blgy=0, (83
where
QE VZ \Iz
1 - T I e L
PR o | = — « +
% Hf‘l (gxlae-bxlg(b-g3lb*y 55]
2
v v -
1 ] __ L 3B
a““ﬁfi'z‘{“' T &5y

are the curvature and VB drifts and the parallel acceleraifon, respectively.
The parallel drift s Ignored in Eg. (8) because it is higher order In 5,1 and
f v oo dufdx) do = 0. It should he mentioned here that, topether with Fg.

{2} and
2
u o= v1/23 = constant,
Eq. (%) can be used for particle pushing for electroms for a low-f plasma in
the general pgeometry. 1If we now assume that £ {s the part of the distribution

function which can be described by the drift-kinetic equation, Eq. (5) then

indicates that g = (q/m) (&/B) (3 f/0 p) which gives
= q®adf
F=f+ "B (3

Subsituting Eq. (9) into Fq. (1), and using again Egqs. (4) and (1) together
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we can write the gyrokinetic equation as
MR +quE]-BF+qE-GBF
Y Yy T/~ AR m~ <3 v,
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- 2 2
P B LI S Gy
TH m a?a(b

The last term 1in FEq. (11) can he eliminated through pgyrophase-averaglng.
Thus, this equation, which is the reduced form of Eq. (1), 15 amenable to the
development of pyrokinetic particle simulation schemes for electrostatic as
well as finfte-f plasmas. 1In the following sectlons, our focus will be on the
development of an electrostatic particle simulatfon scheme Ln the siab

peometry. More general cases using Eq. (11) will be reported later.

TTI. EKlectrostatfc Gyrokinetics in Slabh

The pyrophase-averaged electrostatic gyrokinetic equation fn the slab
peometry can he ohtained from Eq. (11) by neglectine the geometric terms, and

it takes the form

3 <F> LB _q 1038, 5 BFy g n8 £AF o t2
RO » sl AR R n b I s SdE e » T 5 xR

A



vhere < > = (2n)‘1 J/ﬂ dé. Lat the electrostatic potential be

&0 = T oAl exp(ik o x) = T 8 (exp(ik ¢+ R - 1k < 0., (m
k k

- ~

~

and lis gyrophase average hecomes

<& D

W

kv
> o= T os k) I (== Vexp(ik  R) (14)

Ha

{n which

< expi+ ik » >=1 )
P(+ ik * p) o fkv /o}

{s used, and J 15 the Bessel function. From Eg. (9), the gyrophase-averaged

Alstribution can be expressed as

e P
(F)=f+iﬁn—ﬁ_u. N (15
lsing the relation
@ klvl kiv1
[ v - - = T 3 f A
<exp [ 1{k" +%k") +p 1> I, f = I = cos nf
n=e
(LE)
where 9§ = cos-lfgl . El /kl kl], the coupling term becomes
B <& >1 8 <® )1
G = -
@3> <@ )o <@ )o + 2 R 3R s an

~1 ~1

where only the first two leading term In Eg. (16} are kept and
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With the use of Eqs. (14) - (18), Eq. (12) reduces to

bt
A SF> a3 q12P2 “;_a<F>_qh‘ s < a<E>
L3 - ¥F wmUBIR o~ a_B“ Ebf T3
ERE a<m>12”;‘a e
m "FR | FE, X~ AR m®BA
& ? ~
-ann e S O B A S S 10y
m R ?qu— ~av" mB A
Assuming 7 Is Maxwellian i{n v , we found from Fq. (15}
_<CF>
f = T=47% > 7T (20
3]
and
q *fF __q “F> (21
m [N,

SR B T Al

Mote that A<h \0/%u= N.  Suhstituting Fg. (?1) tatn Fg. (10}, we obtal=

ACE> A CF> ql A ~ o <F>
T T ?S'R—'—Fn"ﬁ(m"(*)o"p AR
Ry N R

JOU——— T L R



&b, > (2
- 192 ! ila@)c’xﬂ‘a +6<>°-1:—-—|<F>a_,.l{ -0,
prrovrayse L iLES SRR D N 5V, )
° (22)
where
a<m> |2
T=1_T??F>_‘(T‘_<?T\>_TTT ‘(T‘RL_"‘ :

This equation, which is tctally independent of », describes the evolution of
the guiding center distribution <K> in terms of the gyrophase-averaged field
quantities. The original distribution function F in Eq. (9) 1s related to <F>

through Eqs. (15%) and (21) as

. ~ <F> _ .
F = <F> T_&?E"TT (® <m>) (273)

The next step 1s to transform the ffeld quantittes from the guiding
canter coordinates R batk to the particle coordinates This tra~sformation

X
can he accomplished by performing the {ntegration OF./” .ﬁ f viav, on EqQs -

(27 and (27) and assuming

<> = (R, 34)

—

Ty O fm(vl) ,

where fr s Maxwellian in v, and homogeneous spatially. The nultiple-scale
particle simulation model,la witich 1s the extension of the present scheme, has

to he used to handle cases Invelving the perpendicular temperature gradient,
le., £ = fm(g, vl). It is straightforward te tarry out the integration for
terms in FEqs. (22) and (23) involving neither <% )0 nor €& >1- For those

with <& >o only, the integration yields
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B o = (1) 1, (B2 foRlexp(ik « x) (25)

¥
k

where v, = (T/m)lf? is the thermal velocity, and

-h 1 * 2, 9, 2, KV
kal = - - A
o(DY = I (he 2 cr’ expl vl/2vt1 I f 5= vidv, (?R)
t
32 2 2.2,.2
where b = ‘kl Py = klvt/O. , 10 1s the Bessel function. The {ntegrativn

of @ >o < >o and <& )l(th >1 can be carried out using Eg. (16), in which

agaln only the two leadling terms are kept, and the Integrals of

® v2 Ty kv
1 ! 2, 1Yy 2 N
= [ expl — ) I, ( 5— ) I ( 5 ) vldvl
v, © th

n n
&, n 8T (b7 L .on 2" (b
ST L L w. N NP YN S

a=o  n! a(b*)" at a(b™"
(27)
1 = vz kiv k'v kv kTv
1 1%1 V1 V1 1Yl
= ; exp(—F\Jof 5 \Jlf 7)-—1.10( 5 ]Jlr = \vldvl
t Tt
-1 M7l L3 ol 232 L3 oy V21 ey L, on
1nd
© k!'v k"v
2
L1 e~y (52 2 (F R vav, s ghr e, (29)
v [o]
t
2 2 W22

where b' =kl Py and b" = kJ. Py Congsequently, the integration of Fq- (22)

in 4 and v, gives
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5 F 2F _q1,8 ~g\ 2 3F _a,8 -z3y.5003F _,
FEt W Cax om0 aE 0 *2raETalEye® )t hayy ’
(30
where
DZ
~ qPr|an {z ~
“1’*1'-1‘?\-{1 /e
and the integration of Eq. (73) 1in 4 and v, us well as in v, ylelds
I | _ q q.2 2 ho 2
[Fidy =n -3 (» -8 QA +3 B 0+ @R g L a (30
where
o«
n= [ F (x, Vo t) dvn . (32)

—a

Since the difference between the particle coordinates = and the gulding—center
coordinates R vanishes after two  gyrophase-~averaging pIroCeSSes, the
independent wvarfiables 1in Eq. (30) are now X, vy, te The potentials
A (x) and L) (x) are defized by Egs. (13} and (25), respectively. Tt should he

pointed out heve that the terms of the orders of (kipg‘z (¢n/ T\ and

fkio§1 (qf/T13 have bheen neglected in obraining Eqs. (30) and (31). Thus, the

term % & 1n Fq. (31) is accurate only to ki pz . From %gs. (31) and (32),

Poisson's equation can then be written as

2 2
PL _2 e®

2 ™M
-V 12f-] = - lme(ni - ne),

2 ~
ve - kpi ﬁ;‘[[® = ¢) -

(33)

where subscripts 1 and e denote species, kgi= hr ezno/Ti and n, 18 the spatial

o
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average ~f ny. Here electron gyrorad’us effects are asgumed te he zw.dl and
neglected.

Tt 1s Interesting to observe that the gyrokinetic equation, Fg. ¢30), in
essence 1s a drift-kinetie -quation with a gyrophase-averaged field 3 ¥, and
the second term on the left-hand side of Eq. (33) accounts for the
.slarfzation ecffects. Furchermcre, B, which 15 related ~o the phase-averaped
quantity <F> in Eq. (24), 1s now the gulding-center distribution and n {s the
gulding-center density. Thus, the actual number density assoctared with the
original distrihution F consists of two parts, l.e., the puidin, ~center number
density ant the density due to polarization effects, as shown in Fq. (31).
Fquations (30), (32} and (33) form a convenient set of equations that can he
ugsed for the partfzle pushing. Moreover, since these equations are gimply the
usual gyrokinetic-Poisson system casting in a different form, they can also bhe
used far analyrical purposes. Contrary to the usual gyrokinetic formulation,
the present scheme retains the gyroradius effects without the subsidjary
ardering of the distribution functlon F. These equations are correct linearly

far arbitrary values of kLDt and nonlinearly for k < 1. The inclusion of

1P

the gyroradius effects te the next order, i.e., (k%pf)z (qm/T)Z, can easily be

accomplished hy retaining the correspending terms In Bys. (27) ~ (29) in the
derivation. Since the resulting formulation {s somevhat tedious, we pref=t
not to Aiscuss it at the present tine. The extension of the present gscheme to
incIude terms of the order of (kipg) (qf‘b/T)3 and beyond requires the rechnique
describel in Ref. 14.

The definit{ion of actual numher density, Fg. (1), in the absence of the

partuthed fields needs Furcher discussion. tet’s define

ntx) = [ ¥ dy
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and

&(k) = lT’f F exp(~ikex) dx dyv .
L

Since Jacobifan, J(x,v/R,v), fs unity in the slab peometry, the latter can he

wrltten as

n(k) = Lo [ F exp(= 1keR) e p(+ 1ke) dR dy . (14)
L

From Eq. (23), F = <{F> when & = <¢>o = 0. Suhsituting Fg. (24) into Eq. {34)

and carrying out the Integration 1n v, we abtain

- 1 “iD?
nCk) = =5 [ exp(- ~o=) exp(- 1keR) dR , 3%
L
where
2 2 2

17 V]
-y [ exp (- — ) Jo {
v, © v

klvl\ vdv = exp [ - klpt A
© P B T

has tbeen wused, and n(R) = [ F dv" is gulding center number density.
For kipt < < 1 where kl describes the equilibrium varfation, Eq. (35) gives

Ao 1 2 2 é
n(x) =n+yo V0. (36)

Hence, the actual number density asscciated with the distribution function F
should include the contribution from equilibrium density gradient. ([For cases
with a temperature gradient, t.e., for tm(E’vL}’ the countribution

is (1/2) Vipin.] Accordingly, the ion guiding center number density nj on the
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right-hand aide of Poisson's equation, Eq. (33), should bhe rteplaced

by ;i(ﬁ) in Eg. (36), and becomes

RHS of Eq. (33) = - 4n efn, +,t, pi vf ng? - n,). (31
Here niq represent the part of the fon guiding center number density when the
perturhed fields are absent, whereas ny 1s the total number densiey. The
contribution of this additional term is usually very small ant has bheen
neplected in most analytical gtudies. However, for some cases in the particle
simulation, 1lte presence cannot be I{gnored because of the large density

gradient used and the houndary conditions imposed for Polsson's equatfon.

IV rfyrouinenic Simulation Code and Results

As we rnave mentioned earlier, the resulting gyrokinetic equation, Eq.
(30), resemhles closely the usual drift-kinetic equation. Using the
distrihution fuaction ¥ in its discrete form,

N
Flx,v ,t) = 7 5lx - x.(6)] &v, - v (8)] 383
~ =1~ A1 [ "
where N 1g the total pumber of particles of the porticular apecica in the

system, we ohtain from Eq. (30) the equations of motion for the i-th particle:

1 _q1 d(ad) Yy

AT N Twe T fxt x b (19)
g q ARy “

aE- mT o ot " '
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which ave glmply the characteristica of Eq. (3Q). They are the basic
equatfons for our particle purhing and can be solved numerically using the
usual predictor-corrector fialte-difference scheme.® In the code, the {ions
are pushed with a modified potentfal of o , defined ir Egqs. (25) and (30),
while the electrons are acted upon by the ovriginal potential 4. Since the
particle gyration has been eliminated from the equaticns of motion, longer
time-steps corresponding to the frequency of ini2rest may be used In Fqs.
(39). The additionai constraint of kvtAt < 1 ordinarily does not pose any
provlem for our nurposes. At every time step thce number density is calcriated

hy

6(x ~ x, ()] (40)

and 1s substituted {into Poisson's equation, Hkqs. (33) and (37), to
determine ®. The modified Poisson's equation without the a? term is in the
form of an iuhouogeneous Fredholm equation of the second kind 1n the
Foui fer k-space, and it can he solved readily using the method of successive
approximatto.‘s,ls with the constralnt that number dens’ 'y assoclated with the
polarization effects is conserved. The small nonlinear term can he included
perturhatively. The datermination of n?q in Fg. (37) 1s somewhat difficult
due to particle diffusion during the course of the simulation. Howevew, it
can Fe approximated by taking the mean of the spatial averages of elect' on and

ion number densities in the homogeneous directions, i.e.,

- +
ny =<ng o >hr:nmo./2 g

This ambigulity can be removed in the multiple scale particle simuration
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model.lt'

The gyrokinetic particle simulation scheme has heen implemented in a two-
and-one-hali dimensional (x»Y-"'x"’y""z) code 1n  the sglah gerometrv. To
simpl1fy 1ts algorithm we have dropped all of the nonlineav o oas

fh ®, f.e., % =1 in Fq. (?9) and o: vi »?

=N in Fy. (3. The gimulatinn
plasma 1Is bounded by two conducting walls in the x direction where che
potential ™ vanishes and the simple reflecting conditfon 1s imposed for the
partictes hitting the wall. The periodic conditian 1s used for both the waves

and the particles fn the y direction. The magnetic field is in the » -z plane

where Bz > ‘ﬂy.

In the case of sheear, By is a functlon of x. The
inhomogeneity exists only 1in the x directlon with a constant v 7= - 0o'/r).
0 cases, one with shear and the other without, have heen studied using the
code. The results agree very well in every aspect of the Instabilityv with
those obtained from the code which uses exart dvnamics for rhe {ons and

puiding center approximation for the olectrong.”

E:ise 1

This 1s a ahearless case. Il'sing the erfd aize A as a haal~ unft, the

aimulatinn parameters are
L <L = 64A x V2A, n_ = 1R/A7, m /m_ = 1PAT7 |
Yy 0 1 e

Te/Ti =9, wce/wpe =1n, Xne//\ = 1.5, particle size/A = 1.5

Blez 0.0n57, p, /A = 2.14, kpy = n.15,

1

k,p

yPq = N.42Pm, w*/wpe = 0.00315m, where m = G, + 1, % 2, ...
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The simulatlon kas heen carried out with mpeﬂt = R0 using the gyrokinetic
code. The time evolution of eb/Té for the most unstable m = 1 mode measured
at the middle of the plasma 1in % and the corresponding frequency spectra are
shown in Fig. 1.1%  Simulation results from the previous code® with wpeAt = 15
are shown In Fig. 2. The apreement between the two 1s excellent in terms of
the 1linear frequency aud growth rate, the saturation amplitude and the
nonlinear frequency shift. The nigher saturation amplitude in the gyrokinetlc
code is probably caused by the ahseace af wnonlinear 2 terms. As we can see,
the simulatifon plasma {8 much quleter iIn the pgyrokinetic cade hecause of the
el{minatfon of the ion gyromotion. Thus, we can afford to use fewer particles
and milder density gradient in the simulation. It should also he mentioaed
here that the ohserved linear properties of the instability agree with the

cheory.lz

The nonlinear saturation and the frequency shift are mainly the
result of the mode coupling processes.l’ The effect of n?q in Eq. (37) on the

instability 1s insignificant In thls case.

Case 7

In this case, shear 1s included and the magnetic fleld {s descrihed hy

B=RB(z+yx/l) ,
where L; 15 the shear scale length. The rational surface x = 0 s locaved at
the left-hand boundary of the system. Therefore, we only allow odd medes 1in

the simulation. The other parameters are

2
Lx x Ly = B4A x 3247, n,= 1.6/A7, mifme = 100,

A



2n

Te/* =1, w e/mpe =10, A /A = 2.5, particle size/p = 1,5 ,

"1 c De

= 2. - . =0, L = 54
pifb. 2.5, <0, nilln 0.175, Ls Ln 56,

k = 0.5, w*/w . = T.00875m, where m = 0, + 1, + 2, ...

y °1
The time sterp in the gyrokinetic code is wpe At = 40, and the tarm assoctated
with n®? in Eg. (57} 1s also included. TFigure 3 shows the results for the

most unstable m = 1 mode where the tine evolution of ecblTe at x/4 = 25 and the

mode structure for w/uw* + 0.7 are given. The corresponding results from the -

previous code with mpeAt = 4 are shown iIn Fig. 4. In hoth cases a band-pass
Filter with the width of w* has been applied to eliminate the numerical notse
in e»sf're. The mode structnres are ohtained through the use of the two-point~

spatial correlation fumction. 13

tgaln, the two results are very similar. The
nature of the iInstability, which 1s not a hona flide eigenmode, has bheen
discussed 1in Ref.13. When the term {Involving n';q s nor fncluded 1in the
nyrokinetic simulation, somewhat different results have been ohtained. In
this case, the frequency 1s lower, w/u* = 0.5, and the saturation amplitude 1s
also lower, e"./Te = 4%. Apparently, the ambipolar potentia' arising from n‘;q
has played a part in the instabi{lity.

From the two cases studled here, one can conclude that the gyroklnetic
code can indeed reproduce all the relevant physica In drift fnstabiliries with
congiderable saving In computing resources. The time-steps used in these two
codes show a gain of a factor of 5 ~ 1M Compared with the conventional codes
where &xact dynamlcs 1s preserved for hoth electrons and iong and the time-
step 18 limited by mpe < N.2, the pain can he as high as 2 ~ 3 orderg of

magnitude. Moreover, the simulation plasma 1s much qufeter which makes the

interpretation and the underastanding of the results much easier.
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Concluaions

We have presented in this paper a new scheme Ior particle simulation
based on the gyrokinetric approach. A 2-1/2-dimenaional electrostatic code in
the slab geometry utilizing the scheme has given satlsfactory vesults. There
are numerous advantages iIn using this code for studying microlnstabilities -
long iime-step being one of them. In conjunction with the multiple-scale
model,lh the code can be uset to study the phencmena associated with steady
state drift turbulence such as anopalous particle and energy diffusion. Its
extenslon to a fully 3 :.imensional code similar to those in Ref. 7 should be
straightforward. The procadures given In Sec. IIT also serve as a gulde for
the development 5f comparable schemes for simulating electrostavic
and low-R plasmas 1n the toroidal geometry. The assumption, that the
distribution function is Maxvellian in vl leading to Fgs. (30) and (33), can
prohahly he remaved by per forming the second gyrophase-averaging
numerically, Such a scheme has yet to be devised. Better still, 1f one could
ohtain an efficient particle simulatfon scheme based on Eqs. (11) or (12)
alone without the prior gyrophase-averaging processes, arbitrary values

of kip1 could then be preserved in the nonlinear dynamics.
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Figure Captions

Fig. 1. Time evaluatioa of er“SlTe for the m = 1 mode and rhe
frequency spectrum (measured at the middle of the system i=

gyrokinetic code.

Fle. 7. Time evolution of efh/'re for m = 1 mode and the
frequency spectrum {measuvred at the middle of the system ir

previous code.

Fig. 13. Time evolutiou of eﬂ‘w'Te for the m = 1 mode at x/; =

corrosponding

x) uszing =hs

correspondin?

*Y using the

75 and the

corresponding mode structure for w/w* = N.7 using the gyrokinetic code.

Fig. 4. Time evolution of et’l‘t/Te for m = 1 mode at x/p =

25 and the

corresponding mode structure for w/w* = 0.7 using the previocus code.
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