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Five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence
in a straight, open-field-line geometry have been performed using a full-f discontinu-
ous-Galerkin approach implemented in the Gkeyll code. While various simplifications
have been used for now, such as long-wavelength approximations in the gyrokinetic
Poisson equation and the Hamiltonian, these simulations include the basic elements
of a fusion-device scrape-off layer: localised sources to model plasma outflow from
the core, cross-field turbulent transport, parallel flow along magnetic field lines, and
parallel losses at the limiter or divertor with sheath-model boundary conditions. The
set of sheath-model boundary conditions used in the model allows currents to flow
through the walls. In addition to details of the numerical approach, results from
numerical simulations of turbulence in the Large Plasma Device, a linear device
featuring straight magnetic field lines, are presented.
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1. Introduction

The scrape-off layer (SOL) of a tokamak plasma is a region at the outermost
edge where the plasma flows unconstrained along open magnetic field lines that
intersect the material wall (Stangeby 2000; Stoltzfus-Dueck 2009). The SOL plasma
sets the boundary conditions on the core confined plasma, so the ability to influence
the plasma behaviour in this region and in the pedestal is key to improving overall
reactor performance (Kotschenreuther et al. 1995; Dimits et al. 2000; Shimada
et al. 2007; Zweben et al. 2007; Kinsey et al. 2011). On a basic level, plasma
dynamics in the SOL involve plasma outflow from the core, cross-field turbulent
transport, and parallel losses at the divertor or limiter plates (Mosetto 2014), where
plasma-surface interactions such as recycling and impurity influx can occur. The
balance of these processes is believed to set the SOL width, which affects the
location and strength of heat loads on plasma-facing components (Eich et al. 2013).
The ability to operate future tokamaks like ITER and DEMO with high fusion gain
without the significant erosion and melting of plasma-facing components is a major
challenge that necessitates a thorough understanding of SOL turbulence.
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A popular approach in SOL modelling is to solve simplified transport equations
based on the Braginskii fluid equations. These codes use approximate sheath boundary
conditions in the parallel direction and do not capture plasma turbulence, requiring
the use of ad hoc diffusion terms to model the turbulent transport across the
magnetic field (Rognlien et al. 1994; Schneider et al. 2006). Edge turbulence codes
solving three-dimensional (3D) drift-reduced Braginskii fluid equations have also been
developed (Scott 1997; Xu & Cohen 1998; Naulin, Windisch & Grulke 2008; Ricci,
Rogers & Brunner 2008; Dudson et al. 2009). While Braginskii fluid turbulence
codes are relatively fast and have led to new insights into edge turbulence, they omit
kinetic effects by approximating the plasma as highly collisional, an assumption that
is typically violated in the tokamak SOL. Some codes that can include the SOL
(Ribeiro & Scott 2005; Kervalishvili et al. 2008; Xu et al. 2013) have implemented
gyrofluid models, which are more general and address these issues to some extent by
incorporating finite-Larmor-radius effects and a Landau-damping model (Dorland &
Hammett 1993; Snyder, Hammett & Dorland 1997), but they can only approximate
certain nonlinear effects, such as the treatment of energetic tails, which are important
for sheath physics. For these reasons, there are efforts to develop first-principles
gyrokinetic codes for edge turbulence simulation (Chang et al. 2009; Dorf et al. 2016;
Korpilo et al. 2016). Unlike Braginskii fluid approaches, gyrokinetic approaches use
equations that are valid across a wide range of collisionality regimes, even if the
collisional mean free path is not small compared to the parallel scale length or if
the ion-drift-orbit excursions are not small compared to radial-gradient length scales
(Goldston 2012). Gyrokinetic simulations, however, are much more computationally
expensive than their fluid counterparts, so both approaches can be useful.

Continuum methods are Eulerian approaches to solve a kinetic equation (e.g. the
5D gyrokinetic equation) by discretizing the equation on a phase-space mesh. The
other main class of algorithms used for plasma simulation is the particle-in-cell
(PIC) method, which is essentially a Monte Carlo sampling technique that uses
macroparticles to integrate along the characteristic phase-space trajectories of many
gyrocentres without the need for a velocity-space grid (Krommes 2012). Each
method has advantages, disadvantages, and challenges, and it is important to explore
both approaches as independent cross-checks against each other and to guide the
development of future gyrokinetic edge turbulence codes. Gyrokinetic PIC codes that
include a scrape-off-layer region have been developed with various capabilities and
are being extended (Korpilo et al. 2016; Ku et al. 2016), while gyrokinetic continuum
codes for edge simulation are less mature.

The edge region is challenging to simulate for a number of reasons, including the
need to handle large-amplitude fluctuations while avoiding negative overshoots, open
and closed field lines with a separatrix and X-point (which can cause difficulties
with coordinates), fully electromagnetic fluctuations near the beta limit, a wide
range of space and time scales, a wide range of collisionality regimes, sheath
boundary conditions, plasma–wall interactions, atomic physics, and the existence of
high-frequency electrostatic shear Alfvén modes (Lee 1987; Belli & Hammett 2005)
or sheath-interaction modes that one does not want to artificially excite. Sophisticated
gyrokinetic codes for the core region of tokamaks have been developed and are
highly successful, but major extensions to them or new codes are required to handle
the additional challenges of the edge region.

Many of the existing core gyrokinetic codes assume small-amplitude fluctuations.
Spectral techniques are commonly used in some directions, which can have problems
with Gibbs phenomena that result in negative overshoots. Most algorithms used in
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magnetic fusion research are designed for cases in which viscous or dissipative scales
are fully resolved and do not use limiters, and thus can have problems with small
negative oscillations. Negative densities may cause various unphysical problems in the
solution (for example, a negative density in the tail of the electron distribution function
can reverse the slope of the sheath current versus sheath potential relation). Some
finite-difference algorithms make it easier to calculate derivatives across the separatrix
with field-aligned coordinates, but may have problems with particle conservation, and
small imbalances in electron and ion gyrocentre densities may drive large electric
fields.

Gkeyll is a plasma simulation code that implements several fluid and kinetic
models using a variety of grid-based numerical algorithms. Recently, Gkeyll has
been used for fluid studies of magnetic reconnection (Ng et al. 2015; Wang et al.

2015) and kinetic and multi-fluid sheath modelling (Cagas et al. 2017). The work
presented here focuses on our efforts to implement gyrokinetic continuum algorithms
in Gkeyll to investigate edge and SOL turbulence. Previously, we investigated the
use of gyrokinetic continuum algorithms in a 1D1V (1 dimension in physical space,
1 dimension in velocity space) SOL with logical-sheath boundary conditions (Parker
et al. 1993) (using one and later two velocity dimensions) with encouraging results
(Shi, Hakim & Hammett 2015).

We are developing Gkeyll with a number of algorithmic choices to try to better
handle some of the numerical challenges of the edge region. In the course of
developing the code, we ran into and fixed problems related to some of the above
challenges. Gkeyll at present uses a long-wavelength, full-f (full distribution function)
gyrokinetic formulation with a linearised polarisation term in the gyrokinetic Poisson
equation. The gyrokinetic model is implemented using a discontinuous Galerkin (DG)
algorithm that conserves not only particles but also energy (in the continuous time
or implicit limit) for Hamiltonian terms (Liu & Shu 2000), even if limiters (LeVeque
2002; Dumbser et al. 2008; Durran 2010) are applied to the fluxes at cell boundaries.
Limiters on boundary fluxes can only ensure positivity of cell averages (Zhang & Shu
2010) and we implement other limiters with correction steps to preserve positivity
everywhere within a cell.

In this paper, we detail our numerical approach and present results from gyrokinetic
continuum simulations of electrostatic plasma turbulence in the Large Plasma Device
(LAPD) at UCLA (Gekelman et al. 1991, 2016) using kinetic electrons with a reduced
mass ratio and a single kinetic ion species. The LAPD is a linear device that creates
a plasma column in a straight, open-field-line configuration. Despite its relatively low
plasma temperature, the LAPD contains the basic elements of a SOL in a simplified
(no X-point geometry, straight magnetic field lines, etc.), well-diagnosed setting,
making this device a useful benchmark of edge gyrokinetic algorithms. The LAPD
plasma’s relatively high collisionality also facilitates comparisons with Braginskii
fluid codes, and good agreement between the two approaches is expected.

Our work is a gyrokinetic extension of fluid simulations of Rogers & Ricci
(2010) and Popovich et al. (2010a), and in particular we follow much of the same
simulation set-up as in Rogers & Ricci (2010). To our knowledge, these are the first
5D gyrokinetic continuum simulations on open field lines including interactions with
sheath losses and are also the first 5D gyrokinetic simulations including a sheath
model of a basic laboratory plasma experiment. We have also performed simulations
of simple magnetised tori, in which the magnetic field lines are helical and the
magnetic curvature drift is present, but we defer discussion of those results to a
future publication.
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2. Model

Several versions of full-f gyrokinetic equations have been derived with various
formulations, ordering assumptions, and levels of accuracy (Sugama 2000; Brizard
& Hahm 2007; Hahm, Wang & Madsen 2009; Parra & Calvo 2011; Dimits 2012;
Parra et al. 2014; McMillan & Sharma 2016), and can generically be written in
the form of an evolution equation for the guiding centre distribution function,
with a Poisson bracket for the phase-space velocities and expressions for the
Lagrangian/Hamiltonian, coupled to field equations to determine the potentials. Here,
we solve a long-wavelength limit of electrostatic full-f gyrokinetic equations with a
linearised polarisation term for simplicity, as summarised by Idomura et al. (2009).
As the code is further developed, it can be extended to more accurate and more
general equations, though they will still have this generic structure.

The fundamental assumption of standard gyrokinetics is that there is a coordinate
system in which things change slowly compared to the gyrofrequency. In some
gyrokinetic derivations, the ordering assumptions are written in a more restrictive
form requiring that the fluctuation amplitudes must be small. But as discussed in
various places (such as Hahm et al. 2009; Dimits 2012; McMillan & Sharma 2016),
more general derivations that are appropriate for the edge region of fusion devices
are possible, such as using a small vorticity ordering (McMillan & Sharma 2016),
which allows large flows and large-amplitude fluctuations at long wavelengths.

We solve a full-f gyrokinetic equation written in the conservative form (Sugama
2000; Brizard & Hahm 2007; Idomura et al. 2009)

∂J fs

∂t
+ ∇ · (J Ṙfs)+

∂

∂v‖
(J v̇‖fs)=JC[ fs] +J Ss, (2.1)

where fs = fs(R, v‖, µ, t) is the gyrocentre distribution function for species s, J = B∗
‖ is

the Jacobian of the gyrocentre coordinates, B∗
‖ = b · B∗, B∗ = B + (Bv‖/Ωs)∇ × b, C[ fs]

represents the effects of collisions, Ωs = qsB/mi, and Ss = Ss(R, v‖, µ, t) represents
plasma sources (e.g. neutral ionisation or core plasma outflow). In a straight-field-line
geometry, B∗

‖ simplifies to B. The phase-space advection velocities are defined as Ṙ =
{R,H} and v̇‖ = {v‖,H}, where the gyrokinetic Poisson bracket is

{F,G} = B∗

msB
∗
‖

·

(

∇F
∂G

∂v‖
− ∂F

∂v‖
∇G

)

− 1

qsB
∗
‖
b · ∇F × ∇G. (2.2)

The gyrocentre Hamiltonian is

Hs = 1
2 msv

2
‖ +µB + qs〈φ〉α, (2.3)

where 〈φ〉α is the gyro-averaged potential. In this paper, we consider a long-
wavelength limit of the gyrokinetic system and neglect gyroaveraging in the
Hamiltonian to take 〈φ〉α = φ. This system has similarities to some versions of drift
kinetics (and is sometimes referred to as the drift-kinetic limit of gyrokinetics (Cohen
& Xu 2008; Dorf et al. 2016)), but is unlike versions that include the polarisation
drift in the kinetic equation or determine the potential from some other equation. In a
straight-magnetic-field-line geometry, (2.1)–(2.3) reduce to the description of parallel
streaming, an E × B drift and acceleration along the field line due to E‖ (see (4.4)).
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The potential is solved for using the long-wavelength gyrokinetic Poisson equation
with a linearised ion polarisation density

−∇⊥ ·

(

n
g

i0q2
i ρ

2
s0

Te0
∇⊥φ

)

= σg = qin
g
i (R)− ene(R), (2.4)

where ρs0 = cs0/Ωi, cs0 =√
Te0/mi, and n

g

i0 is the background ion guiding centre density
that we will take to be a constant in space and in time. Gyroaveraging in the guiding
centre densities is neglected in this long-wavelength limit. The replacement of n

g
i (R)

by n
g

i0 on the left-hand side of (2.4) is analogous to the Boussinesq approximation
employed in some Braginskii fluid codes (Angus & Umansky 2014; Dudson et al.
2015; Halpern et al. 2016). We note that the use of a linearised ion polarisation charge
density is formally valid when ion density fluctuations are small.

Note that (2.4) is a statement of quasineutrality, where the right-hand side is the
guiding-centre component of the charge density σg, and the left-hand side is the
negative of the ion polarisation charge density, −σpol (due to the plasma response to
a cross-field electric field), so this equation is equivalent to 0 = σ = σg + σpol. Since
this paper focuses on simulations of a linear device, the calculations are done in
a Cartesian geometry with x and y being used as coordinates perpendicular to the
magnetic field, which lies solely in the z direction. Therefore, ∇⊥ = x̂∂x + ŷ∂y.

At present, electron–electron and ion–ion collisions are implemented using a
Lenard–Bernstein model collision operator (Lenard & Bernstein 1958)

Css[ fs] = νss

∂

∂v
·

[

(v − us)fs + v2
t,ss

∂fs

∂v

]

= νss

∂

∂v‖

[

(v‖ − u‖,s)fs + v2
t,ss

∂fs

∂v‖

]

+ νss

∂

∂µ

[

2µfs + 2
msv

2
t,ss

B
µ
∂fs

∂µ

]

, (2.5)

where standard expressions are used for collision frequency νss (Huba 2013, p. 37),
nsv

2
t,ss =

∫

d3v (v − us)
2fs/3, and nsu‖,s =

∫

d3v v‖fs. This collision operator relaxes to a
local Maxwellian, contains pitch-angle scattering, and conserves number, momentum,
and energy. Note that the collision frequency is independent of velocity; the v−3

dependence of the collision frequency expected for Coulomb collisions is neglected.
This collision operator is long wavelength and ignores finite-gyroradius corrections,
which lead to classical cross-field diffusion. This model operator represents many
of the key features of the full operator, including velocity-space diffusion that
preferentially damps small velocity-space scales. Collisions with neutrals are neglected
at present.

For simplicity, we also use a Lenard–Bernstein collision operator to model electron-
ion collisions, rather than an operator that only causes pitch-angle scattering:

Cei[ fe] = νei

∂

∂v‖

[

(v‖ − u‖,i)fe + v2
t,ei

∂fe

∂v‖

]

+ νei

∂

∂µ

[

2µfe + 2
mev

2
t,ei

B
µ
∂fe

∂µ

]

, (2.6)

where νei = νee/1.96 is used in the simulations and nev
2
t,ei =

∫

d3v (v − ui)
2fe/3. The

coefficients are chosen so that the electrons relax to become isotropic in the frame
of the mean ion velocity, and conserves energy while losing mean momentum to the
ions. Because electron–electron collisions cause both pitch-angle scattering and energy
diffusion, we set νei to a smaller value than νee. The corresponding small change in
the ion velocity is neglected, leading to a small O(me/mi) violation of momentum
conservation. The very slow energy exchange due to the Cie operator is also neglected.

https://doi.org/10.1017/S002237781700037X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781700037X


6 E. L. Shi, G. W. Hammett, T. Stoltzfus-Dueck and A. Hakim

2.1. Numerical algorithms

An energy-conserving (in the continuous-time limit) discontinuous Galerkin algorithm
(Liu & Shu 2000) is used to discretise the equations in space. Although Liu & Shu
(2000) presented their algorithm for the two-dimensional incompressible Euler and
Navier–Stokes equations, we recognised the general applicability of their algorithm
for Hamiltonian systems. Upwind interface fluxes are used in (2.1) (interface flux
terms appear after integrating by parts the product of (2.1) and a test function). This
algorithm requires that the Hamiltonian be represented on a continuous subset of
the basis set used to represent the distribution function. Therefore, the distribution
function is represented using discontinuous (C−1) polynomials, while the electrostatic
potential is represented using continuous (C0) polynomials (equivalent to continuous
finite elements).

Liu & Shu (2000) presented their algorithm for 2D incompressible Euler equations
in a vorticity-streamfunction form: ∂ρ(x, y, t)/∂t +∇ · (uρ)=0, with the streamfunction
ψ given by ∇2ψ = ρ and the velocity u = ∇

⊥ψ = (−∂yψ, ∂xψ). They showed
analytically that the DG spatial discretisation of these equations conserves energy
if the basis functions for ψ are in a continuous subspace of the basis functions
used for the vorticity ρ. (In their numerical tests, they do not use basis sets that
satisfy these properties.) This problem can also be written in a Hamiltonian form
∂ρ/∂t = −{ψ, ρ}, where ψ is the Hamiltonian and the Poisson bracket in this case
is {ψ, ρ} = ∂xψ∂yρ − ∂yψ∂xρ. All of the steps of their proof can be generalised for
general Hamiltonian systems.

Following a standard finite-element approach, in order to satisfy continuity
constraints on the potential, we project the gyrokinetic Poisson equation onto the
space of basis functions for the potential, yielding a single non-local 3D solve to
find the potential. There are ways to instead do a set of independent 2D solves,
followed by a local self-adjoint smoothing/interpolation operation, but we have not
yet implemented this approach. Although a non-local solve in three dimensions is
required for the potential, the 5D gyrokinetic equation itself can be solved in a
highly local manner. Second-order derivatives, which are present in the collision
operator, are calculated using the recovery-based discontinuous Galerkin method (van
Leer & Nomura 2005), which has the desirable property of producing symmetric
solutions. The collision operator is constructed to numerically conserve number and
energy, while momentum was found to be conserved to a relative error of ∼10−6

over a 10 µs period in a spatially 0D test. Time stepping is performed using an
explicit third-order strong-stability-preserving Runge–Kutta algorithm (Gottlieb, Shu
& Tadmor 2001). We use rectangular meshes with uniform cell spacing, but we note
that the DG algorithms used are also applicable to non-uniform and non-rectangular
meshes.

For simplicity, we use nodal, linear basis functions to approximate the solution in
each element. This leads to 32 degrees of freedom per cell in the 5D phase-space
mesh (8 degrees of freedom in the 3D configuration-space mesh). With the 32
degrees of freedom specified in a cell, the value of f can be computed anywhere
within the cell without additional approximation. The choice of a linear-polynomial
basis set means that v2

‖ , which appears in the Hamiltonian (2.3), cannot be exactly
represented. We therefore approximate v2

‖ in the linear basis set by requiring that the
piecewise-linear approximation equal v2

‖ at the DG nodes. These nodes are located
on the vertices of uniform rectangular cells, so the nodes of cell j either have
v‖ = vc,j − 1v‖/2 or v‖ = vc,j + 1v‖/2, where vc,j is the v‖ coordinate of the centre
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of cell j. By approximating v2
‖ in such a manner, v2

‖ will vary linearly in cell j

from (vc,j −1v‖/2)2 to (vc,j +1v‖/2)2. Note that the approximated v2
‖ is continuous

across elements, as required for numerical energy conservation, and its first derivative
is discontinuous across elements, i.e. ∂v‖H = vc,j. Integration is performed using
Legendre–Gauss quadrature, ensuring that the number of quadrature points used is
sufficient to evaluate every required integral exactly.

2.1.1. Positivity of the distribution function

We found it necessary to adjust the distribution function of each species at every
time step so that fs >0 at every node to avoid stability issues. After much investigation,
the main source of negativity in the distribution function appears to be the collision
operator at locations where the perpendicular temperature of the distribution function
is close to the lowest perpendicular temperature that can be represented on the grid.

If one considers a velocity-space grid made of uniform cells with widths 1v‖ and
1µ in the parallel and perpendicular coordinates, the minimum temperatures for a
realizable distribution are computed by assuming that the distribution function is non-
zero at the node located at (v‖ = 0, µ= 0) and 0 at all other nodes. Using piecewise-
linear basis functions,

T‖,min = m

6

(

1v‖
)2

(2.7)

T⊥,min = B

3
1µ (2.8)

Tmin = 1
3(T‖,min + 2T⊥,min). (2.9)

Typical values of 1v‖ and 1µ for a uniformly spaced grid that contains a few
vt =

√
T/m can result in T‖,min < T⊥,min. A situation can occur in which the collision

operator will try to relax the T⊥ at a location to a value below T⊥,min, resulting in
negative-valued regions appearing in the distribution function.

This positivity issue can altogether be avoided by choosing a velocity-space grid
that has T‖,min = T⊥,min = Tmin, either by increasing the resolution in µ relative to the
resolution in v‖, using a non-uniformly spaced grid in µ, using non-polynomial basis
functions (Yuan & Shu 2006) that guarantee the positivity of the distribution function,
or using

√
µ as a coordinate instead of µ. For now, we use a simpler correction

procedure described in this section, which has a philosophy similar to the correction
operator used by Taitano et al. (2015). The magnitude of the correction operator scales
with the truncation error of the method, and so it vanishes as the grid is refined and
does not affect the order of accuracy of the algorithm while making the simulation
more robust on coarse grids by preserving key conservation laws.

For use in these initial simulations, we developed a relatively simple positivity-
adjustment procedure to eliminate the negative-valued nodes of the distribution
functions, while keeping the number density and thermal energy unchanged. First,
the number density, parallel energy, perpendicular energy, and parallel momentum
for each species are computed. Next, all negative-valued nodes of the distribution
functions are set to zero, resulting in changes to the thermal energy and density at
locations where the distribution functions have been modified. To compensate for the
increased density, the distribution function is scaled uniformly in velocity space at
each configuration-space node to restore the original density.

The remaining task is to modify the distribution function so that no additional
energy is added through the positivity-adjustment procedure. To remove parallel
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thermal energy
∫

d3vmsv
2
‖ fs/2 added through the positivity-adjustment procedure, we

use a numerical drag term of the form

∂f

∂t
= ∂

∂v‖
[αcorr,v‖(v‖ − u‖)f ], (2.10)

where αcorr,v‖ is a small numerical correction drag rate that is chosen each time step to
remove the extra parallel energy added. To guarantee that the numerical drag term will
not cause any nodes to go negative, this operator is implemented in a finite-volume
sense, adjusting the mean values:

f̄ n+1
j − f̄ n

j

1t
= αcorr,v‖

1v‖
((v‖ − u‖)j+1/2 f̂ n

j+1/2 − (v‖ − u‖)j−1/2 f̂ n
j−1/2), (2.11)

where the interface flux f̂ n
j+1/2 = g(f̄ n

j , f̄ n
j+1) is chosen in an upwind sense according

to the sign of v‖ − u‖ and f̄j denotes the cell-averaged value of fj. To ensure that
the parallel drag term does not modify the perpendicular energy

∫

d3v (1/2)msv
2
⊥ fs,

this operator is applied at fixed (R, µ). In our tests, we found that αcorr,v‖ cannot be
generally chosen to restore the parallel thermal energy at every position-space node,
since there is a limit on how large αcorr,v‖ can be while keeping f̄j > 0 in every cell.
Instead, we choose αcorr,v‖ to restore the cell-averaged parallel energy

W̄‖,j =
∫ xj+1x/2

xj−1x/2
dx

∫ yj+1y/2

yj−1y/2
dy

∫ zj+1z/2

zj−1z/2
dz

∫

d3v
1

2
msv

2
‖ fs, (2.12)

which results in some position-space diffusion of energy.
We employ a similar procedure to remove the unphysical perpendicular energy

added through positivity:
∂f

∂t
= ∂

∂µ
(2αcorr,µµf ). (2.13)

Here, the factor αcorr,µ is chosen to restore the cell-averaged perpendicular energy.
Similarly, this operation modifies the perpendicular energy without changing the
parallel energy. Generally speaking, all of the parallel energy added through positivity
can usually be removed through the numerical drag operator while a small amount
(< 10 %) of perpendicular energy added through positivity remains even after applying
the numerical drag operator, a consequence from the choice of a uniformly spaced
grid in µ (energy is typically added in the distribution function tails, so a uniformly
spaced energy grid will be more constrained than a quadratically spaced energy
grid in removing energy added through positivity using a numerical drag operator).
We observe that much of the extra energy added through the positivity-adjustment
procedure are in cells located in the outer region r> 0.4 m and near the boundaries
in the parallel direction where much of it may be quickly lost in the outflows through
the sheaths, so we think the extra energy added will not have a significant impact
on the turbulence characteristics in the main part of the simulation. (Our present
model for the physical source is uniform in z, but there may be a localised source
from recycling near the real end plates, which may offset the need for the numerical
positivity source there.)
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3. Sheath boundary conditions

Debye sheaths form at the plasma–material interface, such as where open magnetic
field lines intersect a divertor or limiter. The sheath width is of order the Debye length
and forms on a time scale of order the plasma period, which are both very disparate
scales compared to the turbulence scales of interest in gyrokinetics, so it is natural
and desirable to treat the sheath through model boundary conditions to avoid the need
to directly resolve it. For example, the Debye length in LAPD is (∼10−5 m), which
is very small compared to the gyroradius (∼10−2 m) and even smaller compared to
the parallel scales of the turbulence (∼10 m). The plasma frequency is ∼1011 s−1,
which is much larger compared to the ion gyrofrequency (∼106 s−1), and even larger
than the turbulence frequencies of interest (ω∗ ∼ 104 s−1 at kθρs0 ∼ 0.3). Furthermore,
the quasineutrality and low-frequency assumptions of gyrokinetics break down in the
sheath, so gyrokinetic models cannot directly handle sheaths. There is also a transition
region between the collisional upstream region and the collisionless sheath, with a
width of order the mean free path. This region not resolved in the present simulations.

We use (2.4) to solve for the potential φ(x, y, z) everywhere in the simulation
domain. The sheath potential φsh(x, y) on each boundary in z (where the field lines
intersect the wall) is obtained by simply evaluating φ on that boundary, so at the
lower boundary, φsh(x, y) = φ(x, y, −Lz/2). The wall is taken to be just outside the
simulation domain and the wall potential φw is 0 for a grounded wall. Outgoing
particles with (1/2)msv

2
‖ < −qs(φsh − φw) are reflected (e.g. when φsh is positive,

some electrons will be reflected), while the rest of the outgoing particles leave the
simulation domain. This procedure is analogous to how some fluid codes determine φ
everywhere (including the sheath potential) from the fluid vorticity equation and then
use the sheath potential to set the boundary condition on the parallel electron velocity
(sometimes called a conducting-wall boundary condition) (Xu & Cohen 1998; Rogers
& Ricci 2010; Friedman et al. 2013).

Note that our present sheath model for electrons is different than the logical sheath
model (Parker et al. 1993), which determines the sheath potential each time step by
requiring that the electron flux match the ion flux at each point on the wall so there is
no current to the wall (this might be considered a model for an insulating wall). In the
present conducting wall approach, the sheath potential is determined by other effects
(the gyrokinetic Poisson equation or the related fluid vorticity equation), and then used
to determine what fraction of electrons are reflected and thus the resulting currents to
the wall. If one starts with an initial condition where σg = 0 in (2.4) so φ = 0, then
electrons will rapidly leave the plasma, causing the guiding centre charge σg to rise
to be positive, and thus the sheath potential will quickly rise to reflect most of the
electrons and bring the sheath currents down to a much smaller level while allowing
the sheath currents to self-consistently fluctuate in interactions with the turbulence.
Currents are allowed to flow in and out of the wall, with current paths closing through
the wall.

In the code, this reflection procedure is applied at each node on the upper and
lower surfaces in z at the end of the simulation domain z = ±Lz/2 (adjacent to
the end plates), where the reflected distribution function fR(R, v‖, µ) is set in ghost
cells. Let us consider a case in which φsh − φw is positive on a node in the upper z
boundary, so low-energy outgoing electrons with 0 < v‖ < vcut,e =

√
2e(φsh − φw)/me

are reflected with velocity −v‖ and all outgoing ions leave the simulation domain.
Since the distribution function is discretised on a phase-space grid, each cell is
associated with a range of parallel velocities vc,j −1v‖/2< v‖ < vc,j +1v‖/2, where
vc,j is the v‖ coordinate of the centre of cell j and 1v‖ is the width of cell j in the v‖
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direction. For cells whose parallel velocity extents do not bound vcut,e, the reflection
procedure is straightforward: find the corresponding ghost cell j′ with vc,j′ = −vc,j and
copy the solution after reflection about the v‖ axis.

In the cells whose parallel velocity extents bound vcut,e, the distribution function
copied into the corresponding ghost cell needs to be both reflected about the v‖ axis
and scaled by a factor so that the net outward flux has the correct value based on the
reflection of outgoing particles with v‖<vcut,e. Due to the numerical representation of
the distribution function, which is a local polynomial expansion in each configuration-
space cell, it is not possible to represent a reflected distribution function that is zero
for all v‖ < −vcut,e unless vcut,e happens to lie on the boundary between two cells.
Therefore, the reflected distribution function in the cutoff cell is scaled by the fraction

c =

∫ vcut,e

vj−1v/2
dv‖

∫ µmax

0
dµv‖fe

∫ vj+1v‖/2

vj−1v‖/2
dv‖

∫ µmax

0
dµv‖fe

, (3.1)

although this is just one of many choices in modifying the reflected distribution
function so that the net outward flux has the correct value.

So far, we have only described the boundary condition for the electrons. The
boundary condition we use for ions is the same as the one used in the logical sheath
model (Parker et al. 1993) (a variant of which is used in the XGC gyrokinetic PIC
codes (Churchill et al. 2016)): the ions just pass out freely at whatever velocity they
have been accelerated to by the potential drop from the upstream source region to
the sheath entrance. (This is for a normal positive sheath. In the unusual situation
that the sheath potential were to go negative, then some ions would be reflected.)
The only boundary condition that the sheath model imposes on the ions is that
there are no incoming ions, i.e. at the incoming lower-sheath boundary we have
the boundary condition that fi(x, y, z = −Lz/2, v‖, µ) = 0 for all v‖ > 0. While this
leads to a well-posed set of boundary conditions, and appears to work well and give
physically reasonable results for the simulations carried out in this paper, it might
need improvements in some parameter regimes.

3.1. Future considerations for sheath models

Sheaths have long been studied in plasma physics, including kinetic effects and angled
magnetic fields, and there is a vast literature on them. The standard treatments look at
steady-state results in one dimension, in which the potential is determined by solving
the Poisson equation along a field line (for the case here in which the magnetic field
is perpendicular to the surface), but for gyrokinetic turbulence, we need to consider
time-varying fluctuations in which the sheath region needs to couple to an upstream
gyrokinetic region where the potential is determined in 2D planes perpendicular to the
magnetic field by solving the gyrokinetic quasineutrality equation (2.4). The details of
how this matching or coupling is carried out may depend on the particular numerical
algorithm used and how it represents electric fields near a boundary.

There are a range of possible sheath models of different levels of complexity
and accuracy that could be considered in future work. The present model does
not guarantee that the Bohm sheath criterion is met, which requires that the ion
outflow velocity exceed the sound speed, u‖i > cs, for a steady-state sheath and in the
sheath-entrance region. However, the present simulations start at a low density and
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ramp up the density to an approximate steady state over a period of a few sound
transit times, and during this phase, the pressure and potential drop from the central
source region to the edges is large enough to accelerate ions to near-sonic velocities,
with u‖i/cs ≈ 0.9–1.1, where cs =

√
(Te + (5/3)Ti)/mi. (As we will see in figure 3,

the potential drop from the centre of the simulation to the edge in z is larger than
the electron temperature near the edge.)

There could be other cases where the acceleration of ions in the upstream region
is not strong enough to enforce the Bohm sheath criterion for a steady-state result.
In such a case, some kind of rarefaction fan may propagate from near the sheath,
accelerating ions back up to a sonic level. This situation is very similar to the
Riemann problem for the expansion of a gas into a vacuum (Munz 1994) or into a
perfectly absorbing surface, which leads to a rarefaction wave that always maintains
u‖i > cs at the boundary (but also modifies the density and temperature at the outflow
boundary because of the rarefaction in the expanding flow). A Riemann solver has
been implemented in the two-fluid version of Gkeyll for 1D simulations that resolve
the sheath (Cagas et al. 2017), and the results were compared with a fully kinetic
solver. Exact and approximate Riemann solvers are often used in computational fluid
dynamics to determine upwind fluxes at an interface (LeVeque 2002; Durran 2010).
It could be useful to work out a kinetic analogue of this process, or a kinetic model
based on the approximate fluid result, but those are beyond the scope of this paper.

There is ongoing research to develop improved sheath models for fluid codes. In
some past fluid simulations of LAPD, the parallel ion dynamics were neglected and
modelled by sink terms to maintain a desired steady state on average (Popovich
et al. 2010b; Friedman et al. 2012, 2013). Rogers and Ricci included parallel ion
dynamics in their fluid simulations (Ricci & Rogers 2010; Rogers & Ricci 2010)
and imposed the boundary condition u‖i = cs, thus avoiding the problem of u‖i < cs.
This could be generalised to allow u‖i > cs at the boundary to handle cases in which
turbulent fluctuations or other effects give more upstream acceleration (Togo et al.

2016; Dudson & Leddy 2017). Loizu et al. (2012) carried out a kinetic study to
develop improved sheath-model boundary conditions for fluid codes that include
various effects (including the magnetic pre-sheath (Chodura 1982) in an oblique
magnetic field and the breakdown of the ion drift approximation) that have been
incorporated into later versions of the GBS code (Halpern et al. 2016).

4. Simulations of LAPD

We selected the parameters for our simulations of a LAPD-like helium plasma based
on those used by Rogers & Ricci (2010) in a previous Braginskii-fluid-based study,
with some modifications for use in a kinetic model: Te0 = 6 eV, Ti0 = 1 eV, mi =
3.973mp (mp is the proton mass), B = 0.0398 T, and n0 = 2 × 1018 m−3. As done by
Rogers & Ricci (2010), we have also used a reduced mass ratio of me/mi = 1/400,
which allows for larger time steps to be taken but weakens the adiabatic electron
response. These parameters are for a fairly collisional case with a mean free path
vt,e/νee ∼ 10−2 m, and the assumption that the collision frequency is small compared to
the gyrofrequency is sometimes marginal. We have reduced the collision frequency by
a factor of 10 for these simulations, which increases the minimum stable explicit time
step size while keeping the collisional mean free path small compared to the parallel
length of the simulation box. We plan to implement an implicit or super-time-stepping
algorithm for the collision operator to be able to take much larger time steps with
the physical collision frequency. The rectangular simulation box (an approximation to
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Coordinate Number of cells Minimum Maximum

x 36 −50ρs0 50ρs0

y 36 −50ρs0 50ρs0

z 10 −Lz/2 Lz/2
v‖ 10 −4

√

Ts,grid/ms 4
√

Ts,grid/ms

µ 5 0 0.75
msv

2
‖,max

2B0

TABLE 1. Parameters for the phase-space grid used in the LAPD simulations. The
temperatures appearing in the velocity-space extents are Ti,grid = 1 eV and Te,grid = 3 eV.
Piecewise linear basis functions are used, resulting in 32 degrees of freedom per cell.

the cylindrical LAPD plasma) has perpendicular lengths L⊥ = Lx = Ly = 100ρs0 and
parallel length Lz = 18 m, where ρs0 = cs0/Ωi and cs0 = √

Te0/mi. The grid parameters
are summarised in table 1, with 32 degrees of freedom stored in each cell. With
these parameters, Te,min = 0.9067 eV, T‖e,min = 0.32 eV, and T⊥e,min = 1.2 eV. For time
stepping, the Courant number is set to 0.1. These simulations were run with 648
cores, taking several wall-clock days to reach a quasisteady state. This case has a very
high collision frequency and the time step is limited by the present explicit algorithm
for collisions. An implicit algorithm for collisions is expected to reduce the cost of
these simulations by a large factor. The underlying kinetic solver parallelises well in
multiple dimensions and the execution time is approximately linear in the number of
cells.

Although we expect the quasisteady state of the system to be insensitive to the
choice of initial conditions, we found that it was important to start the simulation
with a non-uniform density profile to avoid exciting large transient potentials that
resulted in extremely small restrictions being imposed on the time step. Because the
boundary conditions force φ to a constant on the side walls (see § 4.1), electrons
near the domain boundaries in x and y are quickly lost at thermal speeds from the
simulation box. We believe that this large momentary imbalance in the electron and
ion densities is the source of this stability issue.

The initial density profile for both ions and electrons is chosen to be n0A(r; cedge =
1/20), where r =

√

x2 + y2 and A(r; cedge) is a function that falls from the peak value
of 1 at r = 0 to a constant value cedge for r> L⊥/2:

A(r; cedge)=







(1 − cedge)

(

1 − r2

(L⊥/2)2

)3

+ cedge, r< L⊥/2

cedge, else.
(4.1)

The initial electron temperature profile has the form 5.7A(r; cedge = 1/5) eV, while
the initial ion temperature profile is a uniform 1 eV. Both electrons and ions are
initialised as non-drifting Maxwellians, although future runs could be initialised with
a specified non-zero mean velocity as a function of the parallel coordinate computed
from simplified 1D models (Shi et al. 2015) to reach a quasisteady state more quickly.

The electron and ion sources have the form

Ss = 1.08
n0cs0

Lz

{

0.01 + 0.99

[

1

2
− 1

2
tanh

(

r − rs

Ls

)]}

FM,s(v‖, µ; Ts), (4.2)
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FIGURE 1. A plot of the LAPD-simulation plasma density source (in m−3 s−1) in the x–z
plane at y = 0. Annotations indicate the direction of the magnetic field, side-wall boundary
conditions, and sheath-model boundary condition locations.

where rs = 20ρs0 = 0.25 m, Ls = 0.5ρs0 = 0.625 cm, and FM,s(v‖, µ; Ts) is a normalised
non-drifting Maxwellian distribution for species s with temperature Ts. Figure 1 shows
the simulation geometry and plasma density source in the x–z plane at y = 0. The
ion source has a uniform temperature of 1 eV, while the electron source has a
temperature profile given by 6.8A(r; cedge = 1/2.5) eV. Unlike the sources used by
Rogers & Ricci (2010), the sources we use model the neutrals as being ionised at
zero mean velocity. In the fluid equations of Rogers & Ricci (2010), a zero-velocity
plasma source would give rise to an additional term −SnV‖i/n on the right-hand side
of the ∂tV‖i equation, which is kept in the more general equations of Wersal & Ricci
(2015). In our simulations, electrons and ions are also sourced in the r > rs region
at 1/100th the amplitude of the central source rate to avoid potential issues arising
from zero-density regions. While there are no primary electrons in the r > rs region
in the actual LAPD device, Carter & Maggs (2009) have discussed the possibility
of ionisation in this region from rotation-heated bulk electrons. Note that (4.2) does
not represent the only source of energy in the system, as the positivity-adjustment
procedure also results in some energy being added to the particles at large r and near
the sheath entrances, as discussed in § 2.1.1.

4.1. Boundary conditions and energy balance

Dirichlet boundary conditions φ = 0 are used on the x and y boundaries for the
potential solve (taking the side walls to be grounded to the φw = 0 end plates), while
no boundary condition is required in z because (2.4) contains no z derivatives. The
distribution function uses zero-flux boundary conditions in x, y, v‖, and µ, which
amounts to zeroing out the interface flux evaluated on a boundary where zero-flux
boundary conditions are to be applied. This ensures that particles are not lost through
the domain boundaries in x, y, v‖, and µ. It should be noted that zero-flux boundary
conditions on the x and y boundaries are a result of the choice of a constant φ on the
side-wall boundaries, so the E × B velocity at these boundaries is parallel to the wall.
Sheath-model boundary conditions, discussed in the previous section, are applied on
the upper and lower boundaries in the z direction.

To demonstrate how the choice of φ = 0 affects the energy balance in our long-
wavelength gyrokinetic system with a linearised polarisation term in the gyrokinetic
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Poisson equation, we define the plasma thermal energy as

WK =
∫

d3x
∑

s

∫

d3v fsH0, (4.3)

where H0 = (1/2)mv2
‖ + µB. Neglecting sources and collisions for simplicity, the

gyrokinetic equation in a straight, constant magnetic field can be written as

∂fs

∂t
+ ∂

∂z

(

v‖fs

)

+ ∇ · (vEfs)+
∂

∂v‖

(

qs

ms

E‖fs

)

= 0, (4.4)

where E‖ = −b · ∇〈φ〉 and vE = b × ∇〈φ〉/B.
Multiplying (4.4) by H0 and integrating over phase space,

∂WK

∂t
= −

∫

dx dy
∑

s

∫

d3vH0v‖fs

∣

∣

∣

∣

∣

zupper

zlower

+
∫

d3x
∑

s

∫

d3v v‖fsqsE‖

= −
∫

dx dy
∑

s

∫

d3vH0v‖fs

∣

∣

∣

∣

∣

zupper

zlower

+
∫

d3x j‖E‖, (4.5)

where we have used the fact that the normal component of vE vanishes on the side
walls (since φ is a constant on the side walls) and zero-flux boundary conditions on fs

in v‖. The first term on the right-hand side is the parallel heat flux out to the sheaths
and the second term is the parallel acceleration by the electric field, which mediates
the transfer of energy between thermal and field energies in this model (this term
appears with the opposite sign in the equation for the evolution of E × B energy).

To calculate the field energy evolution, we take the time derivative of the
gyrokinetic Poisson equation (2.4),

− ∇⊥ ·

(

ǫ∇⊥
∂φ

∂t

)

=
∑

s

qs

∫

d3v
∂fs

∂t

= −
∑

s

qs

∫

d3v

[

∂

∂z

(

v‖fs

)

+ ∇ · (vEfs)

]

= −∂j‖

∂z
− ∇ · (vEσg), (4.6)

where ǫ = n
g

i0e2ρ2
s0/Te0.

Next, we multiply (4.6) by φ and integrate over space:

−
∫

d3xφ∇⊥ ·

(

ǫ∇⊥
∂φ

∂t

)

= −
∫

d3xφ

[

∂j‖

∂z
+ ∇ · (vEσg)

]

−
∫

dS⊥ · φǫ∇⊥
∂φ

∂t
+ 1

2

∫

d3x ǫ
∂ (∇⊥φ)

2

∂t
= −

∫

dx dyφj‖

∣

∣

∣

∣

zupper

zlower

+
∫

d3x
∂φ

∂z
j‖

−
∫

dS⊥ · φvEσg

+
∫

d3x ∇φ · vEσg. (4.7)
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The integral involving
∫

dS⊥ on the right-hand side is zero because vE has no normal
component on the side walls. By assuming that φ = 0 on the side walls, the term on
the left-hand side involving

∫

dS⊥φ is also zero and we have

∂Wφ

∂t
= ∂

∂t

(

1

2

∫

d3x ǫ (∇⊥φ)
2

)

= −
∫

dx dyφj‖

∣

∣

∣

∣

zupper

zlower

−
∫

d3x j‖E‖. (4.8)

If the wall is biased instead of grounded, as done in a set of experiments by Carter
& Maggs (2009), one must retain the first term on the left-hand side of (4.7) in
energy-balance considerations. The second term on the right-hand side of (4.8) is
equal and opposite to the second term on the right-hand side of (4.5), and so cancels
when the two equations are added together. The total energy is the sum of the kinetic
energy Wk and the field energy Wφ . Substituting the definition of ǫ, this field energy
can be written as Wφ =

∫

d3x n
g

i0miv
2
E/2, indicating that it can be interpreted as the

kinetic energy associated with the E × B motion. (The n
g

i0 factor can be generalised
to the full density n

g
i (R, t) as described in § 2, with an additional contribution to the

Hamiltonian.) The first term on the right-hand side of (4.8) corresponds to work done
on particles as they are accelerated through the sheath. The φ in this boundary term is
the potential at the z boundaries of the simulation domain, where the sheath entrances
are. When j‖ = 0 at the sheath entrance, then the energy lost by electrons as they
drop through the sheath is exactly offset by the energy gained by ions as they drop
through the sheath. If more electrons than ions are leaving through the sheath, then
the net energy lost in the unresolved sheath region contributes to an increase in the
field energy.

There is also room for improvements in the side-wall boundary conditions.
Identifying the left-hand side of (4.6) as −∂σpol/∂t = ∇ · jpol, and integrating over all
space,

∫

d3x ∇ · jpol =
∫

dS · jpol

=
∫

dS⊥ · ǫ
∂E⊥

∂t
, (4.9)

so we see that there is an ion polarisation current into the side wall when the electric
field pointing into the side wall is increasing in time, which is physically reasonable.
However, if the sign of the electric-field time derivative reverses, it is not possible to
pull ions out of the side wall (where they are trapped by quantum effects, or return as
neutrals), and a boundary layer might form near the side walls. In fusion devices, it is
rare for the magnetic field to be exactly parallel to the wall, so it could be appropriate
to use a model of the Chodura magnetic pre-sheath (Chodura 1982). Geraldini, Parra
& Militello (2017) also recently studied a gyrokinetic approach to the magnetic pre-
sheath.

The inclusion of charge-neutral source terms and number-conserving collision
operators to the above analysis does not result in additional sources of E × B energy,
since they lead to the addition of terms to the right-hand side of (4.8) of the form

−
∫

d3xφ
∑

s

qs

∫

d3v Ss(R, v, t)= 0. (4.10)
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(a) (b) (c)

FIGURE 2. Snapshots of the (a) total electron density (in 1018 m−3), (b) electron
temperature (in eV) and (c) electrostatic potential (in V) from a 5D gyrokinetic simulation
of a turbulent LAPD plasma. The plots are made in centre of the box at z = 0 m. In this
simulation, a continuous source of plasma concentrated inside rs = 0.25 m is transported
radially outward by the turbulence as it flows at near-sonic speeds along the magnetic field
lines to the end plates, where losses are mediated by sheath-model boundary conditions.
The plots are made in a plane perpendicular to the magnetic field in the middle of the
device after a few ion transit times.

4.2. Results

In this section we present results from various quantities derived from our gyrokinetic
simulation. Our goal here is not to argue that our simulations are a faithful model
of the LAPD plasma, but instead to demonstrate the ability to carry out gyrokinetic
continuum simulations of open-field-line plasmas in a numerically stable way and
to demonstrate a reasonable level of qualitative agreement by making contact with
turbulence measurements from the real LAPD device and previous Braginskii fluid
simulations (Ricci & Rogers 2010; Friedman et al. 2012; Fisher et al. 2015), since we
have used similar plasma parameters and geometry. Starting from the initial conditions
described in § 4, the electron and ion distributions evolve for a few ion sound transit
times (τs ∼ (Lz/2)/cs ≈ 1.1 ms using Te = 3 eV) until a quasisteady state is reached,
during which the total number of particles of each species remains approximately
constant.

As seen in LAPD experiments (Schaffner et al. 2012, 2013), we observe a weak
spontaneous rotation in the ion-diamagnetic-drift direction. Figure 2 shows snapshots
in the perpendicular plane of the total electron density, electron temperature, and
electrostatic potential after a few ion transit times, which are qualitatively similar to
the snapshots presented from Braginskii fluid simulations of LAPD (Rogers & Ricci
2010; Fisher et al. 2015).

Figure 2(c) shows that a boundary layer with a width of order the sound gyroradius
forms in the potential near the side walls, where the potential drops to match the
boundary conditions φ = 0 on the side walls. This means that a normal sheath at the
ends in z with φs ∼ 3Te cannot occur very close to the side walls. However, one can
still eventually get a quasisteady state with the electron flux, ∼nevte exp(−eφs/Te), of
order the ion flux because the electron density becomes very small near the side walls
and the electrons become colder there. Figure 3 shows the same fields as in figure 2,
but the plots are made in the y = 0 plane to show the parallel structure.

Figure 4 shows the time-averaged radial profile of ne, Te, and φ computed by
averaging the data in the region −4 m < z < 4 m. We focus on this region since
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(a)

(b)

(c)

FIGURE 3. Snapshots of the (a) total electron density (in 1018 m−3), (b) electron
temperature (in eV) and (c) electrostatic potential (in V) from a 5D gyrokinetic simulation
of a turbulent LAPD plasma. The plots are made in the x − z plane at y = 0 m after a
few ion transit times.

it is similar to the region in which probe measurements are taken in the LAPD,
and there is little parallel variation in this region. Particle transport in the radial
direction is especially evident in figure 4 from the broadening in the ne profile.
In figure 4, the electron temperature drops off at mid-radii but is rather flat at
large r. To understand this, note that there is a 2.72 eV residual electron source at
large r (see (4.2)), and that the observed temperature is close to the limit of the
coldest temperature that can be represented on the grid when collisions dominate
and the distribution function is isotropic, so Te,min ∼ T⊥e,min = 1.2 eV. Our choice of
velocity-space grid is a compromise between resolving low energies and the need to
go up to significantly higher energies than the temperature of the source (which has
a maximum temperature of 6.7 eV) to represent the tail. This will be improved in
future work using a non-uniformly spaced velocity grid or exponential basis functions,
which can represent a range of electron energies much more efficiently. We do not
expect the non-vanishing Te at large r to affect the results significantly because both
ne and the ne fluctuation level are small at large r.

Electron density fluctuation profiles have also been measured in LAPD (Carter &
Maggs 2009; Friedman et al. 2012). We define the density fluctuation as ñe(x, y, z, t)=
ne(x, y, z, t) − n̄e(x, y, z), where n̄(x, y, z) is computed by averaging the electron
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(a) (b) (c)

FIGURE 4. Plots of the average (a) electron density, (b) electron temperature and potential
(c) profiles as a function of radius. The fields are time averaged over several ion transit
times after the simulation has reached a quasisteady state, restricted to −4 m < z< 4 m,
evaluated at eight equally spaced points in each cell and then binned by radius. The
shaded region in (a) illustrates the extent of the strong plasma source.

density using a 1 µs sampling interval over a period of 1 ms. The density fluctuation
level is normalised to the peak amplitude of n̄e at r = 0 (as done in Friedman et al.
2012) and binned by radius in order to calculate the root mean square (r.m.s.) density
fluctuation level as a function of radius, which is shown in figure 5(a). Figure 5(b)
shows the power spectral density of electron density fluctuations, which is computed
by averaging the power spectra at each node in the region 25 cm < r < 30 cm and
−4 m < z<4 m. Similar to measurements made on LAPD, we find that the turbulence
has a broadband spectra.

The coherence spectrum and cross-phase spectrum between electron density
fluctuations ñe and azimuthal electric field fluctuations Ẽθ have also been of interest
in previous LAPD studies for their potential role in turbulent-particle-flux suppression
by applied flow shear (Carter & Maggs 2009; Schaffner et al. 2012, 2013). The
cross-power spectrum PnE( f ) is first computed at each node as:

PnE( f )= n̂∗
e Êθ , (4.11)

where n̂e(R, f ) and Êθ(R, f ) are the Fourier transforms of the time series of Ẽθ(R, t)
and ñe(R, t). The cross-power spectrum is then spatially averaged, and the cross-phase
is computed as

θ( f )= Im log(〈PnE( f )〉), (4.12)

where 〈. . .〉 denotes a spatial average in the region 25 cm < r < 30 cm and −4 m
< z< 4 m. The coherence spectrum is defined as (Powers 1974)

|γnE( f )| = |〈PnE( f )〉|
〈Pnn( f )〉1/2〈PEE( f )〉1/2

, (4.13)

where Pnn and PEE are the real-valued power spectra of ñe and Ẽθ , respectively.
Figure 6 shows the coherence and cross-phase spectra computed from our simulation,
which are similar to the spectra measured in LAPD (see Carter & Maggs 2009,
p. 7) at frequencies below 10 kHz, where the fluctuation levels are the strongest as
indicated in figure 5(b).
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(a) (b)

FIGURE 5. Density fluctuation statistics computed from a 5D gyrokinetic simulation
of a turbulent LAPD plasma. (a) Shows the normalised r.m.s. density fluctuation level
(normalizing to a constant n̄max = 3.6117 × 1018 m−3) as a function of radius and (b)
shows the density fluctuation power spectral density. These plots are in good qualitative
agreement with LAPD measurements (Carter & Maggs 2009; Friedman et al. 2012). The
shaded region in (a) illustrates the extent of the strong plasma source.

(a) (b)

FIGURE 6. Spectra of the (a) coherence and (b) cosine of the cross-phase between
electron density and azimuthal electric field fluctuations.

The probability density function (PDF) of density fluctuations in LAPD has also
been of interest. Carter (2006) focused on the intermittency of the density fluctuation
PDF measured at various radial locations. As shown in figure 7, we observe similar
trends in our simulations, in which we have measured the PDF at three radial locations
(using 1r = 0.5 cm wide radial intervals) in the region −4 m < z < 4 m. We find
a negatively skewed PDF inside the strong-source region, a symmetric and Gaussian
PDF at the location of peak fluctuation amplitude, and a positively skewed PDF in
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(a) (b) (c)

FIGURE 7. Density fluctuation amplitude PDF (in red and normalised to n̄max = 3.6117 ×
1018 m−3) at three radial locations in the region −4 m < z< 4 m: (a) inside the strong-
source region at r = 19 cm, (b) at the location of peak fluctuation amplitude at r = 24 cm
and (c) in the weak-source region at r = 31 cm. Gaussian PDFs are shown in blue for
comparison. Also indicated on each plot is the skewness γ1 = E[ñ3

e]/σ 3 and the kurtosis
γ2 = E[ñ4

e]/σ 4, where σ is the standard deviation of ñe and E[. . .] denotes the expected
value.

(a) (b)

FIGURE 8. (a) The r.m.s. current fluctuation amplitude at the sheath entrances as a
function of radius, normalised to the on-axis peak value of jsat = qincs ≈ 1300 A m−2.
(b) Trace of power sources, loss and error diagnostics over a 0.1 ms simulation period.
The power error, which is defined in (4.20) and arises from the temporal discretisation,
fluctuates in amplitude between 1–6 W.

the weak-source region. The PDF in the weak-source region has a particularly strong
enhancement of large-amplitude positive-density-fluctuation events.

Figure 8(a) shows the r.m.s. current fluctuation level as a function of radius,
measured at the sheath entrances. The current fluctuation amplitude has been
normalised to the on-axis peak value of jsat = qincs ≈ 1300 A m−2. Not shown is the
mean total current at the sheath entrance, which has a peak value of approximately
100 A m−2. The observed behaviour is significantly different from the j‖ = 0 condition
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that would be imposed by logical-sheath boundary conditions, and future work can
investigate the impact of j‖ = 0 versus j‖ 6= 0 boundary conditions. Thakur et al. (2013)
investigated the use of both conducting and insulating endplates on the controlled
shear de-correlation experiment (CSDX), observing several changes in the turbulence
characteristics.

Finally, we have investigated the energy-conservation properties of our model. As
discussed in § 2.1, the spatial discretisation exactly conserves energy, but the SSP-RK3
time integrator introduces energy conservation errors. Therefore, it is interesting to
quantify the energy non-conservation that results from the temporal discretisation. The
evolution of total energy W = Wk + Wφ (with perfect spatial and temporal energy
conservation) can be obtained by adding together (4.5) and (4.8):

∂W

∂t
= −Ploss + Psource, (4.14)

Ploss = −
∫

dx dy
∑

s

∫

d3vHsv‖fs

∣

∣

∣

∣

∣

zupper

zlower

, (4.15)

Psource =
∫

d3x
∑

s

∫

d3vHsSs =
∫

d3x
∑

s

∫

d3vH0Ss, (4.16)

where we have assumed a charge-neutral source for the second equality in (4.16).
Although we also have a non-negligible source of energy from the positivity-
adjustment procedure, this source of energy can also be measured and accounted
for using diagnostics, i.e. by computing the total energy before and after the
positivity-adjustment procedure, which is applied to the distribution functions at
the end of each intermediate Runge–Kutta stage. By taking into account the details
of the multi-stage SSP-RK3 time integrator, we can derive a simple expression for
the expected change in the total energy of the system after a total time step of size
1t that involves a combination of power loss and source terms from each substage.

For clarity, the SSP-RK3 algorithm to advance an equation of the form ∂t f = ξ( f , φ)

from f (tn) = f n to f (tn+1), where tn+1 = tn + 1t, is written as (Peterson & Hammett
2013)

f ∗ = f n +1tξ( f n, φn), (4.17a)

f ′ = 3
4 f n + 1

4 [ f ∗ +1tξ( f ∗, φ∗)], (4.17b)

f n+1 = 1
3 f n + 2

3 [ f ′ +1tξ( f ′, φ′)]. (4.17c)

The positivity-adjustment procedure is applied to f ∗, f ′, and f n+1 before it is used
in the ξ( f , φ) operator of the subsequent stage, so we denote the extra energy added
to the electrons and ions at the end of each substage as W∗

pos, W ′
pos, and Wn+1

pos . The
SSP-RK3 algorithm (4.17) can be combined as

f n+1 = f n +1t
(

1
6ξ( f n, φn)+ 1

6ξ( f ′, φ′)+ 2
3ξ( f ∗, φ∗)

)

. (4.18)

Using (4.14), we notice that the energy change associated with a term like ξ( f n, φn)

is
∫

d3x
∑

s

∫

d3vHn
s ξ( f n

s , φ
n) = −Pn

loss + Pn
source, (4.19)

https://doi.org/10.1017/S002237781700037X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781700037X


22 E. L. Shi, G. W. Hammett, T. Stoltzfus-Dueck and A. Hakim

where the superscript n on Ploss and Psource indicates that (4.15) and (4.16) are to be
evaluated with Hn and f n. By multiplying (4.18) by Hn+1, integrating over phase space,
and summing over both species, the energy change in the system after the total time
step can be written as

Ptotal = Wn+1 − Wn

1t
=
(

1

6
Pn

loss + 1

6
P∗

loss + 2

3
P′

loss

)

+
(

1

6
Pn

source + 1

6
P∗

source + 2

3
P′

source

)

+ 1

1t

(

1

6
W∗

pos + 2

3
W ′

pos + Wn+1
pos

)

+ Perr, (4.20)

Wn =
∫

d3x

∫

d3v

(

Hn − 1

2
qsφ

n

)

f n, (4.21)

Wn+1 =
∫

d3x

∫

d3v

(

Hn+1 − 1

2
qsφ

n+1

)

f n+1, (4.22)

where Perr is a measure of the energy conservation error ∝(∂tW)
4(1t)3 resulting from

the temporal discretisation scheme. While it has a complicated expression, it can be
tracked in the code by measuring all the other terms in (4.20) using diagnostics.

Figure 8(b) shows the traces of the terms appearing in the power balance (4.20) over
a 0.1 ms period of the simulation in a quasisteady turbulent state, or approximately
2 × 104 time steps. Also plotted in figure 8(b) is Perr, which is found to vary in
magnitude between 1–6 W, so the energy conservation error introduced by the time
discretisation is extremely low.

5. Conclusions

We have presented results from the first 5D gyrokinetic continuum simulations
of turbulence in an open-field-line plasma. The simulations were performed using a
version of the Gkeyll code that employs an energy-conserving discontinuous Galerkin
algorithm. We found it important to include self-species collisions in the electrons
to avoid driving high-frequency instabilities in our simulations. Our gyrokinetic
simulations are generally in good qualitative agreement with previous Braginskii fluid
simulations of LAPD and with experimental data.

We use sheath-model boundary conditions for electrons that are a kinetic extension
of the sheath model used in past fluid simulations, which allow self-consistent currents
to fluctuate in and out of the wall. In this approach, the sheath potential is determined
from the gyrokinetic Poisson equation (analogous to how the vorticity equation is
used in the fluid approach of Rogers & Ricci (2010)). The ion boundary conditions
used at present are the same as for the logical sheath model, in which ions flow out
at whatever velocity they have been accelerated to at the sheath edge. This works
well for the time period of this LAPD simulation. As discussed in § 3, future work
is planned to consider improved models of a kinetic sheath, including the role of
rarefaction dynamics near the sheath that may modify the outflowing distribution
function and the effective outflow Mach number.

A number of possible modifications to the simulations could allow closer
quantitative modelling of the LAPD experiment. In the real LAPD experiment, a
cathode–anode discharge emits an energetic 40–60 eV electron beam that ionises the
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background gas along the length of the device (Carter & Maggs 2009; Gekelman
et al. 2016), creating the bulk plasma source that we have directly modelled in our
simulations. At present, we are ignoring the current from these energetic electrons
and modelling the anode as a regular conducting end plate. Because the anode in
the actual device is a semi-transparent mesh, there is finite pressure on the other
side of the anode from the main plasma that can act to slow down ion outflows
and thus relax the Bohm sheath criterion. Since our simulations are kinetic, future
work could include the non-Maxwellian high-energy electrons and a model of the
ionisation process instead of using explicit source terms. We have also performed
simulations of turbulence suppression experiments (Schaffner et al. 2012, 2013; Fisher
& Rogers 2017) on LAPD using a biasable limiter to control flow shear, and these
results will be presented in a future publication. Future work will also investigate
the primary mechanism driving the cross-field transport observed in our simulations
(such as linear drift-wave, nonlinear, or Kelvin–Helmholtz instabilities) by analysing
the energy dynamics of the system (Friedman et al. 2012, 2013) and through the use
of presence/absence tests (Rogers & Ricci 2010; Fisher et al. 2015).

We plan several improvements to our numerical algorithms. The time step
restriction in our LAPD simulations is currently set by the electron–electron collision
frequency. A super-time-stepping method, such as the Runge–Kutta–Legendre method
(Meyer, Balsara & Aslam 2014), or implicit method could significantly alleviate
this restriction. The use of non-polynomial basis functions (Yuan & Shu 2006) for
efficient velocity-space discretisation is expected to reduce the computational cost
of these simulations (by allowing for a coarser velocity-space grid) and to preserve
the positivity of the distribution function. Future studies will also implement the
full nonlinear ion polarisation density in gyrokinetic Poisson equation (2.4), which is
related to removing the Boussinesq approximation in fluid models (Dudson et al. 2015;
Halpern et al. 2016). This modification requires replacing n

g

i0 in (2.4) with the full
n

g
i (R, t) and retaining a corresponding second-order contribution to the Hamiltonian

(2.3) necessary for energy conservation (Scott & Smirnov 2010; Krommes 2012,
2013).

Although the results presented here are a major milestone in our efforts towards
developing a gyrokinetic continuum code to study tokamak edge turbulence, many
physical effects remain to be added to the code, such as realistic tokamak magnetic
geometry (including both open and closed-magnetic-field-line regions, a separatrix,
and the X-point), full Landau collisions, finite-Larmor-radius effects, electromagnetic
effects, and interactions with neutrals and other atomics physics.
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