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The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the
particles’ dynamics, as well as the self-consistent behavior of the electromagnetic fields. The
gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell’s equations,
for the electromagnetic fields, are both derived from the variational principle for the Lagrangian
consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian
formulation, the energy conservation property for the total nonlinear gyrokinetic system of
equations is directly shown from Noether’s theorem. This formulation can be utilized in order to
derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for
fluctuations with arbitrary frequencies. Simplified gyrokinetic systems of equations with the
conserved energy are obtained from the Lagrangian with the small electron gyroradii,
quasineutrality, and linear polarization—magnetization approximation20@ American Institute

of Physics[S1070-664X00)02502-7

I. INTRODUCTION electromagnetic fields are treated. Instead, the conserved
o . . quantity is the total energy of the system, which is given by
The gyrokinetic theory” is a basic framework to de-  ihe sym of the kinetic energy of the particles and the energy

scribe microinstabilities, turbulence, and resultant anomalougs ihe electromagnetic fields. However, the proof of the total
transport observed in magnetically confined plasmas. Basigerqy conservatidfi is not trivial in the conventional for-

equations for the gyrokinetic theory are the gyrokinetic €04Ua(ation, where only the particle dynamics are described by

tions for the particle distribution functions and Maxwell's {1 Hamiltonian or Lagrangian. Then, it seems natural that

equations for the electromagnetic fields. The gyrokinetiGne formulation should be extended in order to derive gov-
theory treats the fluctuations with perpendicular wavelengthgming equations for both the particles and the electromag-

on the order of the gyroradiysand frequencies on the order e fields from the first principle. The purpose of the

of the diamagnetic frequenay, ~(p/L)(, and it employs  hresent work is to present such an extended formulation of
the ratiop/L as the perturbation expansion parameter, where, gyrokinetic theory.

L is the equilibrium gradient scale length afiis the gy- In this paper, the gyrokinetic equation for the particle

rofrequency. _ o ~distribution function and the gyrokinetic Maxwell’s equa-
Two types of methods to derive the gyrokinetic equationgjons for the electromagnetic fields are both derived from the
are known. One of them is the recursive techniffavhich 4 iational principle using the Lagrangian, which consists of
is also used for derivation of the drift kinetic equatiithe ¢ parts of the particles, fields, and their interaction. This
recursive !”neltq;)d is combined with the ballooning yeneralized Lagrangian includes the single-particle Lagrang-
representation,** and yields the gyrokinetic equation, in 4y a5 5 part, which has been used for the conventional La-
which the distribution function is separated into equilibrium grangian derivation of the gyrokinetic equation. Since all the

and perturbed parts. Another modern derivation is based %Boverning equations for the system are derived from the gen-

the Hamiltonian and Lagrangian formulatiochS The result- ¢ 5176 Lagrangian, we can directly show the conservation

ant gyrokinetic equation describes the total distribution func¢ ihe total energy of the system with the help of Noether's

tion as an invariant along the particle motion. This formula-iaoremt’ This seems to be the most natural and easiest way

tion was first utilized by Littlejohn to derive the equation for prove the energy conservation. The Lagrangian formula-
- . _15 . . . .
the guiding center motiofr.”There, the motion equation is tjon given in this work uses the technique of the classical

derived from the gyrophase-independent Hamiltonian, which;g g theory"18and is closely related to several works on the
automatically ensures the conservation of the phase spacgiational (or action principle for the Viasov—Maxwell
volume and the magnetic moment even in the approximatgquationsl_g—zsm these works, especially, Ye and Kaufrian
expressions obtained by truncating the perturbation expanteated the Viasov—Maxwell system with high-frequency
sion up to the finite order. Also, the Hamiltonian is regardedq,c(ations and derived similar equations to those which are

as the conserved energy for the particle in the static electrQyarived here. However. in Ye and Kaufm&ithe governing

magnetic fields. _ o equations for low-frequency gyrokinetic fluctuations are not
In the gyrokinetic theory, the particle Hamiltonidor oy jicitly given, and the resultant equations for high-
the particle energyis not an invariant since the fluctuating frequency electromagnetic fluctuations are expressed in
terms of the Fourier transform in space and time, which are
3Electronic mail: sugama@nifs.ac.jp not suitable for simulating the time evolution of the electro-
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magnetic fields. The gyrokinetic system of equations ob+rom é&l/6x,= 6l/6v,=0, we obtain the nonrelativistic

tained here are represented in real space and time, and alslewton’s particle motion equations

their simplified versions in several limiting cases are shown

in detail, which are considered to be significantly useful for 3 —v_ = my,=e,

numerical simulations of gyrokinetic turbulence in magneti-

cally confined systems like tokamaks and stellarators. where E= —V¢—c 19A/st and B=VXA. Equation ()
The variationalor action principle to yield the govern-  yatermines the functional forms 0f4(Xo, Vo, to;t) and

ing equations for the system considered here is written in th@a(xo,Vo,to;t)- Once that they are obtained, the distribution

E(xg,t)+ %vax B(xg,t) |, (6)

well-known form function f,, for the timet is given by
)
5|E5ft Ldt=0, .Y fa(x,v,t)=f d3x0j d3ve 83 X— Xa(Xg,Vo,to:t)]
1
where | is called the action integral and represents the X 8 [V—V4(Xg,Vo,to:1) 1fa(Xo0.Vo,to).  (7)

variation. The end points for the integral with respect to th
timet are fixed tot; andt,. The Lagrangian, to describe the
Vlasov—Poisson—Ampe system, is written as

eThen, we find from Eqgs(6) and (7) that the distribution
function f, satisfies the Vlasov equation

d € 1 d
L= f dsxof Pvof a(Xo.Vo o) E+V~V+ E[E(x,tH va B(x,t)] 2y fa(x,v,t)=0.
a 8
X La[Xa(X0,Vo,to;t),Va(Xo,Vo,to;t), The Coulomb gauge conditioi- A=0 is derived from

Sl16N=0. From 41/ 6¢=0 and 61/ SA=0, we obtain Pois-

Xa(Xo,Vo,tost) ]+ Ly @ sons equation

Here, the single-particle Lagrangidan for speciesa is de-

fined by V2h(x,t)=—47Y, e, | faxv,t)d3
a
La(Xa Va5 ( N t)) '
Xa,Va,Xa) =| Mva+ —A(Xg,t) |- X
a\la a a a‘a I a a 5_471_2 eana (9)
a
1 2
- Ema|Va| +ea¢’(xa,t) and
_ : 1
=Pa'Xa—Ha, @ v2A(xb) - SN
where p, and H, represents the canonical momentum and
Hamiltonian for a single particle, respectively, ang __4_77 3 =_4_7T.
=dx,/dt. The field partL; of the Lagrangian in Eq(l) is c g €a | falx,v,Ovd™v= c b (10

defined b
Y respectively, wheren, andj represent the particle number

1 density for species and the current density, respectively.
L= fvds)(EfE 8w Jvd3x( VOO = [ VXA The current densityor any vector fielgl can be written ag
=j_+j7, Wherej =—(4m) WV d3'(V'-j)/|x—x'| and
jr=(47) VX (VX [d3' j/|x—x'|) represent the trans-
verse (or solenoidal and longitudinal (or irrotationa),

L i . respectively’* Then, the transverse part of H40) is written
which is slightly different from the one found in standard .4 Ampee’s law

text books”*® in that 9A/dt is not contained in Eq(4).
Consequently, the variational principle yields Amge law
instead of Maxwell's equation with the displacement current.
It implies that, in the present work as well as in the conven-

tional gyrokinetic theory, we do not treat the electromagneticWe can see that is unnecessary for determining the distri-

waves with the speed of light. Alsa¥ - A is included in Eq. bution function and the electromagnetic fields. Thus, Egs.
(4) in order to derive the Coulomkor transversegauge (&) (9), and(11) [instead of Eq(10)] are regarded as the
condition V- A=0. The variational fieldh plays the role of ~9OVerning equations for the Vlasov—Poisson—Anapsys-
the Lagrange undetermined multipliers. In Edl), tgm. Using the longitudinal part of EQlQ), Poisson s equa-
f.(Xo,Vo.to) is the distribution function at an arbitrarily 10N [Ed.(9)], and the charge conservation law obtained from
specified initial timety, X4(Xg,Vo,to;t) andva(Xg,Vo,to;t) t_he VIa.so_v equationEq. (8)]’1[ can b? shown thgt—?)\
represents the position and velocity, respectively, of the par— ~47L=JEL/dt, where E, =—V¢ is the longitudinal
ticle at the timet, which satisfy the initial conditions part of the electric field. Then, it is confirmed that the field
’ equationg Egs. (9)—(11)] are the same as those in the Dar-
Xa(X0:Vo,toito) =Xo, Va(Xg,Vo,toito)=Vop. (5)  win model® It is shown from Noether's theorerisee Ap-

+ %)\(x,t)VA(x,t)), (4)

) 41
\Y A(th):_TJT- (11
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pendiy¥ that the governing equatiof&gs.(8), (9), and(11)] Following Brizard’s terminology,we refer to the single-
conserve the total energy, which is written as particle phase-space variables defined from the equilibrium
and perturbed fields as the guiding-center and gyrocenter co-

Ema|v|2+ e d(x,t)|—Lg ordinates, respectively. The gyrocenter coordinates are used

2 as independent variables of the particle distribution function

1 in the gyrokinetic Vlasov equation. First, we consider the

:2 J d3xJ d3vfa(x,v,t)§m‘,ﬂ|v|2 perturbation_ expansion of t_he single-particle Lagrangian in
a order to define these coordinates.

Eror= 2, f d3x f d3vf (x,v,t)
a

1 A. Perturbation expansion of the single-particle
+ ﬁf d3X(|V b(x,1)|2+ |V XA(X,1)[?), (12 | agrangian
where the Poisson equatipig. (9)] is also used. In the gyrokinetic system, the electromagnetic fields and

In Sec. Il, the gyrocenter coordinates are introduced tdhe corresponding scalar and vector potentials are assumed to
represent the total Lagrangian in E@), from which the consist of the equilibrium and perturbation parts,
gyrokinetic Vlasov—Poisson—Ampes equations are de- B B
rived based on the conventional low-frequency assumption E=Eo(x) +AB (1), B=Bo(x) +ABy(X,1),
‘”<f9- Here@ is the characteristic fluctuation frquenpy and d=do(X)+AP(X,1), A=Ag(X)+AA(X,1).
Q) is the particle gyrofrequency. Also, the gyrokinetic ver-
sion of the rigorously conserved total energy is shown therelHere, A represents the order of the perturbation amplitude,
The linear gyrokinetic theory, which can describe fluc-which is used as an expansion parameter in the gyrokinetic
tuations with arbitrary frequencies includiag~ (), was pre-  theory. The canonical momentum of a single particle for spe-
sented by Chen and T$&7’ based on the recursive method. ciesa is written as
Also, recently, the Lagrangian formulation of the linear gy- o o
qulnetlc theo_ry forzsa_lgtgltrary—frequency fI_uctuatlons was Pa=M,Va+ _a( Ao+ AA)=myV,0+ -a Ao, (14)
given by H. Qinet al. In Sec. lll, we derive the nonlin- c c

ear gyrokinetic system of equations W'th thg rlgorqusly Cor]'wherer andA,; are evaluated at the positio x, , and the
served total energy for the fluctuations with arbitrary fre-

e i o oy o pice vty s et o
fluctuations was also treated by Ye and Kaufriaiow- Pa

_1 . .oype .
- . S Vao=m, “(Pa—€sAg/c). The (solenoidal equilibrium
ever, they treated the high freq_uenc_y fluctuations Separate@urrentjo is related t0A, by V2Ay= —(4m/c)jo, where
from the low-frequency fluctuations in the frequency—wave—V

. : : -Ap=0 is assumed. In the present work, we assume that
number representation, while the resultant equations shown L ) N
) ) the equilibrium EXB drift velocity is O(evy), where e
here describe the low-frequency and high-frequency fluctua- . . . ;
. ) . . ~plL is the drift ordering parameter ang is the thermal
tions simultaneously in real space and time.

Several limiting cases, in which the gyrokinetic equa—velomty' Then, we pugo= =0 and consideg, and ¢,

. L : . o include the fluctuation part as well as the equilibrium part
tions are simplified, are considered in Sec. IV. The Smalt:orresponding to theO(evy) EXB drift velocity. This

electron gyroradius limit, the quasineutrality, and the IInearcauses no inconsistency in the results derived in this work.

polarization-magnetization approximation are treated as ex-= - .
A L . The guiding-center and gyrocenter theories for the case of
amples. The simplified gyrokinetic system of equations ar

) . . . : he O(vy) EXB drift velocity are found in Refs. 14 and
shown in detail, which can describe the high-frequency elec: . . .

. . . . ~732-36. The extension of the general Lagrangian formulation
trostatic plasma fluctuationgsuch as the ion Bernstein

. . g in the present work to this largex B case is possible al-
waves in the uniform magnetic field. though it is not treated here for simplicityHere, we also
Finally, conclusions are given in Sec. V. The Appendix g b : .

gives brief explanation of the variational principle and Noe_neglgct the induction f.|eld— Ao/, since 't. isO(e ). ac
ther's theorem for systems including field variables cording to the conventional transport ordering and its effect
' on the fluctuation dynamics is negligible.

Using Eqgs.(13) and(14), the single-particle Lagrangian

(13

Il. LAGRANGIAN FORMULATION FOR THE, defined in Eq.(3) is rewritten as

GYROKINETIC VLASOV-POISSON-AMPE RE

SYSTEM La=LaotALa+A%Lo, (15)
with

In this section, the gyrokinetic Vlasov equation, Pois-
son’s equation, and Ampe's law are all derived by the La- e 1
grangian formulation based on the conventional gyrokinetic L o= ( MaVaot+ —aAO) “Xa— Ema|va0|25pa->'<a— Hao,
low-frequency @<() assumption. Thus, by applying ¢ (16)
Noether's theorem to the Lagrangian for the whole system,
the total energy conservation for the gyrokinetic system can 1
be proved more directly and easily than in the conventional La1= _ea( b1~ EVaO’Al) =—eqha=—Hay, 17
gyrokinetic works, where only the gyrokinetic Vlasov equa-
tion is derived from the single-particle Lagrangfaf:*® and
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efz‘ 2 gao(xa!ua Ma) = %ma|va0(za)|2
Lax=— 2ma02|A1| =—Hgp, (18)
_ 1 2
wherel,, andH,, (n=0,1,2) denote thath order single- ZMaUat #aBo(Xa) @9
particle Lagrangian and Hamiltonian i for speciesa, re- and
spectively. By using/,o as the zeroth-order variable instead m.c
of v,, all the perturbation parts of the Lagrangian given by  AX(X5,Ua,1a) =Ag(Xa) + € 2 U,b(X,)
Egs.(17) and(18) are confined in the Hamiltonian part, and €a
they do not depend or,. This enables the variable trans- 2ma02
formation from the guiding-center to gyrocenter coordinates —€ —earMaW(Xa), (26)

to be symplectic, as shown later. The velocity variahlgis .
not used in Brizard’s formulatiohwhere the symplectic part respectively, where

of the Lagrangian is also perturbed. Therefore, definitions of |, > y_j bX.) =124 B(X)/m. 17 sin&. e (X
the gyrocenter coordinates given in Sec. Il C take slightly a0(Za) = Uab(Xa) ~[21aBo(Xa)/ma] L sinéa e(Xa)

different forms from those in Brizar?j.VeIocity variables +c0Sé, 6(X,) ] (27
similar tov, are also employed by Hahet al® and by Ye and
and Kaufmarf®
W(Xa) = [Vel(xa)] : ez(xa)
+ 3b(Xa)b(Xa) - [VXb(Xa)]. (28)

B. Guiding-center coordinates

The single-particle guiding-center coordinates,
=(ZYi-1.. 6 (Xaq,Ua,1a,&,) for speciesa are defined by

taking account of the equilibrium electromagnetic fields.

First, we consider the preliminary transformation

(XaiVaO)‘)Za:(Zia)i:l,...ﬁ:(XaiVaOH1Ma019a)- (19
Here,v,q, mao, andé, are defined by
2
MaVaoL
Vaoi=Vao b, a0= ZBaO (20
and
Vao1 = Va0~ Vag/D= —Vao, (SN0, €+ C0SH, &), (22)

respectively, where ¢ ,e,,b=B;/B;) are unit vectors
which form a right-handed orthogonal systenxat

In order to remove the gyrophase dependence from the
equilibrium partL 5o of the single-particle Lagrangian given
by Eq. (16), we introduce the guiding-center transformation

of the phase-space coordinates

Z3=(Xa Va0 1Ma0,0a) —Za=(Xa,Ua,1a,a), (22

This guiding-center transformation is the near-identity Lie

transformt43?

Xa=Xa— €PagT O( 52)1
Ma=MaoT O(€), &= 0,1+ 0O(e),

wherep,o=bXv,,/Q, andQ,=e,By/(m,c). Detailed ex-
pressions for th€(e) andO(e?) terms are found in Ref. 14.
In terms of the guiding-center coordinates, (U, ,ua,&a),
the Lagrangiarl o is written as

Ua=Vao+0O(e),
(23

— —l% * v
Lao=¢€ CAa(Xaanyﬂa)'Xa

me . —
te e Hafa—Hao(Xa,Uga,ma). (24)
a

Here, the definitions oﬁao and A are written, up to the
third lowest order ine, by

The single-particle Lagrangian in E¢24) determines the
symplectic structure, which is represented by the differential
two-form w, and the Hamiltonian flow in the single-particle
phase space®*’ Taking the inverse of the matrixaf;)

with wj; being the components of the symplectic struciuye

the Poisson brackets for pairs of the guiding-center coordi-
nates are obtained. Consequently, the nonvanishing Poisson
brackets are given by

c
{Xa. Xat=€e—1bxl, (29)
are €283
B*
(X, Ugl=—2—, (30)
e m, ;n
{Xaéa} C  hxw (31
H] :G_ 1
ara e.B3
U Baw 32
{ a:ga}__maB;Hi ( )
e
_ -1
{€amat=¢€ m.c’ (33
where
B§EVXA§, B;HEB;-b, (34

andl=e;e; +e,6,+ bb represents the unit dyadic. The quan-
tities in the right-hand sides of Eg9)—(32) are evaluated
at Z,=(X4,Ua,1a,€2), and V=0/0X, in Eq. (34). It
should be noted that the Poisson bradket} written here is
relevant to the symplectic structure in the particle phase
space only. The notatigh , -} does not represent the Poisson
bracket in the phase space for the total system, which re-
quires to treat the electromagnetic fields as part of the phase-
space coordinates.

We find from Eqs.(24), (25), and(29)—(33) that, in the
guiding-center coordinatesZ,=(X,,U,,ua,¢.), depen-
dence on the gyrophasg disappears from the equilibrium

part of the single-particle Lagrangian,, Hamiltonianﬁao,
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and the Poisson brackets. Therefore, if there are no perturbed __ 2

electromagnetic fields, the gyromotion is completely decou-  Haa(Xa,Ug fta,t) = 2<|A Xa+€pa t)]? Ve,
pled from the equations of motion, and the magnetic moment

M IS a constant of motion. However, for the turbulent sys- €1 ~ — o~ — B
tem, the gyrophase dependence appears through the pertur- — 5 ({Sa(Zat), ¥a(Za DD,
bation part of the Lagrangian, which is removed by transfor-
mation from the guiding-center to gyrocenter coordinates, as (39

shown in the next subsection. respEctiver, where ;a:pao(za) _ b()?a) XVaO(Za)/

0,(Xy). Here, the gyrophase-average and gyrophase-

dependent parts of an arbitrary periodic gyrophase function
C. Gyrocenter coordinates Q(Ea) are defined by

As mentioned at the end of Sec. II. A, owing to the use
of v4o, the perturbations given by Eqd.7) and(18) change _ §a _ — ~ _
only the Hamiltonian part of the single-particle Lagrangian, (Qe= fﬁﬁQ(ga) and Q=Q—(Q)¢,
although the other paitor the symplectic partis not per- o
turbed. As shown in Eq24), the symplectic part of ., has  respectively. The Poisson bracké®,Z'} for the gyrocenter
already taken a desired form in the guiding-center coordicoordinates have the same forms as those for the guiding-
nates, which gives the gyrophase-independent Poisson brackenter coordinates, which are given by E@9)—(33) with
etsin Eqs(2_9)_—(33). Then, by the gyrocenter_transformation Z.=(X4,U,, pa,&,) replaced byza:(iayaavﬁa £).
from the guiding-center to gyrocenter coordinates The relations of the gyrocenter coordinateg

_ > _ /Y 7 — F —(Xa,Ua,,ua,ga) to the guiding-center coordinates,

Za=(Xa,Ua,ma,€a) —Za=(Xa,Ua 1, €a), (39 =(X,,U,, s, E,) are written as
we remove the gyrophase dependence of the perturbed __ _
Hamiltonian without changing the symplectic structure or the ~ Za=Za+A{S.1(Z4,1),Z5} + O(A?). (41)
form of the Poisson brackets for the guiding-center coordi-
nates. ThIS is done by the symplectic Lier canonical Here, the first-order generating funct|8g|1 is determined as
transform! which is associated with appropriate generatingthe solution of
functions [see Eq.(41)]. The resultant expression for the _
smgle part|cle Lagranglan in terms of the gyrocenter coordi 3Sa1(za,t)

natesza_(za)lzl,...ﬁ_ (Xaan:Ma-ga) is given by ot
Ly=Loo+ AL +A%L +{81(Z4 1), Hao(Xa U o D} =€aa(Zo 1), (42)

= € . ~ Using the conventional gyrokinetic assumption that
- A (Xa,Ua,,ua) Xa Q_talot=0(e), and neglecting hlgher order termsdnEg.
(42) reduces toe 10,9S,,/dé,=e, ., the solution of

(40)

meC_ — — — —
+Ee_aﬁa§a_Ha(XaaUaaﬁaat)a (36) WhICh IS glven by
a
where A%(X,,Ua,ma) is given by Eq. (26) with Sa(Za)=¢ flﬁa(za,t )dé., (43)
(Xa,Ua,12) replaced by K,,U, 7zz), and the gyrophase- 2aXa)

2
independent Hamiltonian is written up €@(A°) as where the integral constant is determined from the condition

ﬁa()?algaiﬁa!t):ﬁaO+Aﬁa1+A2ﬁa2- 37) (~Sa1>§a= 0. [The case, in which the fluctuation frequencies
are allowed to be on the order of the gyrofrequency, is con-
The zeroth-order Hamiltoniaf ,o(X,,U,,%a,t) is given  sidered in the next sectignThen, we find from Eqgs(41)
by Eq.(25) with (X,,U,,xa) replaced by K,,U,, 1a), and  and (43) that X,=X,+ O(A€,A?). Following Brizard? for

the first and second-order Hamiltonians are written as the particle positiork, as the argument of the perturbation
o fields, we putx,=X,+ep, by neglecting O(Ae,A?, €?)
Ha1(Xa,Ua,ia,t) terms. This approximation has already been used to evaluate
— the fluctuationsp, andA; at the positiorx, in Eqgs.(38) and
=ea(Yha(Z,1))¢, (39).

1
=€y d’l(x +6Paat) Vao(za) Al(x +6Paat)> )
éa D. Gyrokinetic Vlasov—Poisson—Ampe re system
38
38 Substituting Eq(36) into Eq.(2), the Lagrangian for the

and gyrokinetic Vlasov—Poisson—Ampe system is given by
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L= J'd ZoD (Zo)F (Zo,to)
X Lol Za(Zo to:1), Za(Zo to;1) ]

1
+a- fvd3x< A2V ¢1(x)|?

—|VX[Ag(X)+AAL(X,1)]|2+A %)\(x,t)V AL(x) |,

(44)

where Zo—(XO,Uo,/.Lo,go) and fd ZO f\/d XO
X[ dUOIOd,uOfO”ng The functional form of the single-
particle Lagrang|an_ for speciesa is defined by Eq(36).
Here, D,(Z,)=B ||(ZO)/ma is the JacobianF,(Z.t,) de-
notes the distribution function for speciasat an arbitrarily
specified initial timety, andZ,(Zy,tg;t) represents the gy-
rocenter coordinates of the particle at the timevhich sat-
isfy the initial condition

ZA(Zo toite)=Z,.

Then, the distribution functioﬁa(Zt) for the timet is de-
termined by

(45)

DuZIFUZ) = [ 20D ZoF uZot) FIZ

_Z_a(Z),to;t)]a (46)

where  6%(Z—Z4)= 8(X—Xa) (U= Ua) 8(i—pa) 8L €
—&,(mod 27) ].
T_he gyrocenter motion equations are obtained fro
ol16Z2,=0 as
dz, - — _
gt~ 1ZaHa(Za b)), (47)
which are rewritten as
dX, _ e, aW,(Z,
= — (Ua+A—a# BX
dt al My 9U,
Ha —
+ecbX| —VBy+AVWVY(Z,) (48
ea
dU, BX _
— =~ —ar [MaVBotAe,VW(Z,)], (49
dt BaH
dua
W_O’ (50)
and
dé, Q dX, A €2 aW,(Z,
ea_fa )y o, 2 &% MWalZa) (51
dt € dt e m,c  dug

where the effects of the fluctuating electromagnetic fields aréespectively,

included in the potential’, defined by

Gyrokinetic field theory 471

a(Za) <¢a(z t)>§a+A 2<|Al(x +6Pavt)| >§

1 . - . —
— 5{{8a(Za.1). Va(Za ,t)})EJ- (52
Here, the Poisson brackets in E¢®9)—(33) and the single-
particle Hamiltonian defined by Eq&37)—(39) and (25) are
used.

Since Eqs(48)—(50) are independent of the gyrophase
ga, it is easily found thatxa(Zo,to,t) Ua(Zo,tO,t) and
,ua(ZO tg;t) are independent of the initial gyrophaﬁe The
JacobianD, is also gyrophase-independent. Then, we find
from Eq.(46) that, if F, is initially gyrophase-independent, it
is gyrophase-independent at any time. Hereafter, we assume
without loss of generality tha, is gyrophase-independent,
dF4(Z,1)/9£=0. We also obtain the gyrocenter phase-space
conservation law

J -
—[Da(2){Z,Ha(Z,)}]1=0.
9z

(53

From Egs.(46) and (47), we have the gyrokinetic Vlasov
equation in the conservation form

J _ _
E[Da(Z)Fa(Zat)]

+ D DFZDZA(Z )0, (54)

which is rewritten with the help of Eq53) in the convection

mform

Fa(Z,1)=0. (55)

d d
—+{z Ha(Z, )} —
at 97|

The Coulomb gauge conditiovi- A;=0 is derived from
S6l16N=0. Fromél/ 5¢,= 61/ 5A1=0, the gyrokinetic Pois-
son’s equation and the gyrokinetic Ampé&s law are ob-
tained as

AV2pi(x,t)=—4m>, e, | d°ZD,(Z)

X 8 X+ €pao(Z) —XI[Fa(Z,1)
+A{S,(Z,1),Fa(Z,1)}]

=—47), eNga (56)
and
) 4 i
AV Al(Xrt):_T[(]G)T(Xat)_JO(th)]r (57)
where  jo=—(cl4m)V?A,, fdéz

= [yd3XJ* . dUS5duf2dé, and
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_ FIYZ,t)=FA(Z,t) + A{S,1(Z,1),FA(Z,1)} + O(A?). Thus,
eaf d°ZD,(Z) %[ X+ €pan(Z) —X] the right-hand sides of Eqg56) and (58) represent the
velocity-space integrals ¢3¢ andv,F2°, respectively, with

o O(A?) terms neglected. Then, we find that the gyrocenter
Fa(Z,t) motion equation$Egs.(48)—(51)] with Eq. (52) are accurate
up to O(A?) while the gyrokinetic Poisson—Ampe equa-
tions [Egs. (56) and (57)] are accurate up t@(A). This

(58) combination of unbalanced orders of accuracy is a direct

result of the variational principle based on the Lagrangian

Here,ng, andjs represent the gyrokinetic expressions of the(44) and is necessary for the existence of the invariant total
density and current, respectively, angg)q=(4m) 1V energy. Thus, the orders of accuracy for all the governing
X (VX [d®" jg/|x—x'|) represents the transverse part of equations are determined more systematically in the present
jc. In the same way as in Eq11), the longitudinal part formulation based on the Lagrangian for the whole system
Va=47(jg), is suppressed in Eq57) since\ is unneces- than in the conventional gyrokinetic theories based only on
sary for determining the distribution function and the elec-the single-particle Lagrangian.

tromagnetic fields. It should be noted that the distribution  Applying the Noether's theorem to the Lagrangian in
function F2¢ in the guiding-center coordinates is related to Eq. (44) [see Eq(A18) in the Appendi% and using Eq(56),

the distribution functior, in the gyrocenter coordinates by the conserved total energy is given by

io

— e — — _
Vao(Z)— A —= Ay (X+ €pao(Z),1)
m,C

a

+AVao(Z2){Sa(Z,1),Fa(Z,0)} .

L a(Za\Za 1)

Eemt=§ f d%Z D o(Zo)F a(Zo,to) Za-
9Z,

=> f d°Z Do(Z)Fa(Z,H)HA(Z,t) — L

o = = (1 — e — — — P e
=3 [ 7D DFAZ | S| Voo Z) A ALK+ epaolZ0) SRR RCARTACAN
a 2 My ZQa(X
1(f — — — 1
__z[f(VO'Al)adfv(VO'Al)a] )"‘_f dX(A?|V A(x,)[2+ VX [Ag(x) + AAL(X,1)]]?), (59
C 8w Jv

where (1) a= d1(X+ €pao(Z),t) and (o-A1)a=Vo(Z) - AL(X+ epao(Z),t). The total energyEg o in Eq. (59) contains the
O(A?) terms rewritten by

1
le)dg(m)] H( A0, (Vg A g]

=%A[ $aa(Z,0,(Br)at - (vO Vo-Apa

e2

20,(X)

:A2{§a1<2t>, 2e0) 2D | %(VO-Aﬂa]
2e IE c
—_— 1
=A [ S.a(Z,Y), (Vo Apat 2[ S.(Z,Y), ma|Vao(Z)|2” (60)

which coincide with the residual terms occurring in representing the particle kinetic energy in the gyrocenter coaZdinates
associated with the generating functi®g,.®’ The energy related to the ion polarization—magnetization is shown to be
included in these terms. The conservation of the total enés8yis a direct result of the Noether’s theorem applied to the
Lagrangian(44) while, in the conventional single-particle Lagrangi@n Hamiltonian gyrokinetic theories, it is more trouble-
some to prove the energy conservation directly from the gyrokinetic Vlasov equation and the Poissore-aguagions.
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I1l. GYROKINETIC THEORY FOR ARBITRARY real space and time, which is more suitable for simulating
FREQUENCIES turbulence in magnetically confined plasmas.
In this section, the gyrokinetic theory for arbitrary fluc-  For the case of arbitrary fluctuation frequencies, @)

tuation frequencies is presented. The gyrokinetic system df no longer valid, since the time derivative term in E4R)
equations derived here are applicable even for studying highean not be neglected. Then, the generating funcBgnis
frequency fluctuations in the gyrofrequency range. Similamot determined by the fluctuation fielt, at the instant time
high-frequency r\%/éasov—Maxwell equations were derived by, , + 11 e5 the form of the time integral @,. If S,; in the
e anql Kaufmart. However, they treated the low-frequency agrangianL is regarded as the time integral of the fluctua-
and high-frequency cases separately, and represented the~ _ 2 . L
. . ion field, the action integrdl contains the double time inte-
fluctuating fields in the frequency-wave number space to de- : L Lo .
rive the high-frequency wave equatioftiey did not show gral ano_l the conventional varlat|o~nal prmmpl_e is not appli-
the low-frequency wave equations explicjtiyrhus, it is dif- ~ cable directly. Instead, we rega®,, as an independent
ficult to obtain the conventional low-frequency gyrokinetic variational field and utilize the method of Lagrange undeter-
Maxwell (or Poisson_Ambe) equa‘[ions from their h|gh_ mined multipliers to derive EC(42) as a result of the varia-
frequency wave equations. The arbitrary-frequency gyrokitional principle.
netic Vlasov—Poisson—Ampe equations obtained in this Now, let us write the total Lagrangian for the gyrokinetic
section can easily reproduce the results in the previous sedlasov—Poisson—-Ampe system with arbitrary-frequency

tion in the low-frequency limit, and they are represented influctuations as

L=§ f d8Z Da(Zo)F a(Zo to)Lal Za(Zo toit), Za( Zo  tos ) 1]

1
+—fd3x
8w Jv

+§ f d°Z, D (Zo)Fa(Zoto) f d5ZA o[ Z;Xa(Zo,t0;1),Ua(Zo, toi ) 2a(Zo, to;t);t]

2
A2V 1 (X,0)|2—= |V X[Ag(X) +AAL(X,1) |2+ A =N (X,1)V-A(X,1)
C

[ 5 Qa(f)a)~ o
X —+ —_ Sal(Z,t)—ea¢a(Z,t) ’ (61)
at € ¢
|
wherel [Z,,Z,,t] is the single-particle Lagrangian defined [ 5 (_(X) 4 o
by Eq. (36). It should be noted that the Lagrangian in Eq.| —+ — | Aa(Z; X, Ua, pa;t)
(61) contains the constraint part given by, o € 9
:EafEGEODi(ZO)Fa(ZO1t0)fdﬁz(£c)a_ ﬂith _(Lc)a e. _ _ .
:Aa[Z;Ea WUa,uast][(aldt+ E_lgag()a_/ag)éal(zrt) == §<{¢a(za ,t),é\?'(xa—X)é(Ua— U)
—e,.(Z,1)]. Here,S,; and A,(Z;X,,U,, 1a:t) are re-
garded as new independent variational fields for the varia- X 8(uy— ) 8 €4~ E(mod 2m) 1}z )¢, (63

tional principle sl = 5f:iLdt=0. The fieldA , plays the role
of Lagrange undetermined multipliers. Then, frafty 6A 5
=0, the constraint 01$,; is obtained as

We find from comparison between Eq$2) and (63) that
A, can be given by

Ao(Z;: X5, Uq st
= - 3({Sau(Za 1), 83 (Xa— X)

X 8(Ua—U) 8(1a— m) 8 €2~ £(mod 2m) 117 ).,
(64)

J QuX) a>~ — ~ =
—+ — Sal(znt):eawa(znt): (62)
at € ¢

which corresponds to E¢42) with the time derivative term  where{-,-}7_represents the Poisson bracket for functions of

retained but highee order terms neglected. Fros1/6S,;  the phase-space coordinas (not of Z).
=0, we have The same form of motion equations as E¢&7) are
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obtained fromsl/5Z,=0, and the same form of the gyroki- 9\ven by the gyrokinetic Viasov equatig&q. (55)], the gy-
netic Vlasov equation as E5) is derived. Also, the same okinetic Poisson’s equatidiEq. (56)], the gyrokinetic Am-
form of gyrokinetic Poisson’s equation and Ames law as ~ Pe&e’s law [Eq. (57)], and the generating-function equation
Egs. (56) and (57) are derived fromsl/8¢,=0 and [Eq.(62)].

Sl15A,1=0, respectively, with the help of E¢64). Then, the The conserved total energy derived from the total La-
gyrokinetic theory for the arbitrary-frequency fluctuations isgrangian in Eq(61) is written as

Loa| |

— e 0lW(ZaZad) -
EGtot:Ea fdGZO Da(Zo)Fa(Zo,to) Za-quf d®zs,,

9z, 4S,;

f

=> f d°Z Do (Z)F4(Z,t)

a§a1<Zt>]

ﬁa(zat) - %[gal(zt),

2

= dGZ_Da@Fa(Zt)(%ma

a

_ e _ _
vao<2>—A—acA1(xa+epa,t>

a

Q) BuZ) 0 — ]

+A2[§a1(zt),

_(VO'Al)a
2€ I€ C
1
b | AT B0 VXA + 3 AT, (69
mJV
|
where Eqgs(56) and(62) are also used. B. Small electron gyroradii

When the electron gyroradii are negligibly small com-
pared to the fluctuation scale lengths, we can put

IV. LIMITING CASES pe—0. (66)

In this section, we consider several limiting cases, in . - .
Then, the particle, guiding-center, and gyrocenter variables

which the gyrokinetic system of equations presented in thz r electrons are reqarded valent t h ;
foregoing sections can be simplified. It is emphasized her or electrons are regarded as equivaient to eac other,

that all simplifications or approximations should be done on~Ze=Ze- The single-electron Lagrangian is given by
the level of the original total Lagrangian. Once a simplified
total Lagrangian is specified, a simplified gyrokinetic system
of equations with the invariant total energy are straightfor-
wardly derived from it. Therefore, in this section, we mainly — _ _
show the ways of simplifying the total Lagrangian rather —He(Xe,Uepte), (67)
than the resultant simplified gyrokinetic system of equations.

These simplified system of equations, which retain the rigorWhere

ous energy conservation, are considered to be useful for nu-

e — _ = mC_ -
Le:_EAe(XeyueaMe)'xe_?Mefe

. . . . _ m.C— —
[?;r:::scl)rflmulanon of plasma turbulence and anomalous A2 (Xo,Us 0) = Ag(Xo) — %Ueb(xe), 68)
A. Neglect of W
Neglecting theO(e?) term of A¥ in Eq. (26) simplifies He(Xe,Ug,tte) = EmeUiJrﬁeBo(Xe)
the motion equation$Eq. (48)—(51)]. This corresponds to
puttingW—0, and give{X,,&.} ={U,,&,}=0 in Egs.(31) —eife(Xe,Ug,t)
and (32). 5
In the case of the uniform equilibrium magnetic field " € A (Y t)|2 (69)
By=const,W=0 is rigorously obtained, and more simplifi- 2mgc? !t e
cations of the motion equations are given fr@&h=B, and
==Bo. and
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Pe(Xe,Ug, )= d1(Xe 1) — UgAqy(Xe,t). (70) with this replacement for the linear polarization—

. . magnetization, the Poisson bracket terffs; ,F appear
Here, theO(€?) term inA¥ is neglected. Here and hereafter, g 1851, Fao} app

the drift-ordering parameterand the perturbation expansion instead of{ S1,Fa} @s the polarization—magnetization terms
parameterA are suppressed in the equations. in the resultant gyrokinetic Poisson’s equatj&m. (56)] and
in the gyrokinetic Ampee’s law (57) and (58). Also, the
O(A?%) part — (€,/2) ({Sar,tha}), Of the single-particle
C. Quasineutrality Hamiltonian is not involved in the resultant motion equation

The quasineutrality approximation corresponds to put{Eq. (47)]. Thus, the terms associated wiy; disappears
ting (1/8m) [yd3x|V ¢(x)|>—0 in the field Lagrangian part. from the gyrokinetic Vlasov equatiofEq. (55)]. Then, the
Then, we have O(A?) terms in Eq.(60) are connected not t6, but to F ,o
in the total energy59).

The results described above are still valid when the lin-
ear polarization—magnetization approximation is applied to
the the arbitrary-frequency case in Sec. lll. For that case, the
) (71 linear polarization—magnetization approximation is done for

the Lagrangian61) by the replacement of Eq72) to Eq.
Using this field Lagrangian, the left-hand-side term(73) and by replacing the constraint parg with
V2¢,(x,t) in the gyrokinetic Poisson’s equatid&q. (56)]
reduces to the quasineutrality conditidne,ng,=0. Under
this  approximation, the electric field energy
(1/87) [yd3x| ¢1(x,1)|? disappears from the total energy

[V X[Ag(X)+A1(x,1)]?

L= 1fd3
= 87TVX

- %)\(x,t)V-Al(x,t)

(59 [or Eq.(65)] L=, [ 07,0 Zo)F ol Zo)
D. Linear polarization and magnetization xf d®Z A,(Z;Xo,Ug,mo:t)
In this and next subsections, the distribution function
Fa(Z,t) is assumed to be given by the sum of a time- y d L0 d 3 (T (T (74
independent equilibrium paf,4(Z) and a small deviation at aag a1(Z,1) = €atfa(Z,0) | )

from it. Here,Ea(Zt) andF.,(Z) are both independent of
the gyrophasé.

The right-hand sides of the gyrokinetic Poisson’s equa-A detailed le of the i larizati N
tion [Eq. (56)] and the gyrokinetic Ampre’s law (57) and etalled example of the linear polarization approximation

(58) contain the nonlinear polarization-magnetization termsiS 9iven in the next subsection for the electrostatic case.

which are given by the Poisson bracket between the gener-

ating functionS,; and the distribution functior,. These
nonlinear polarization-magnetization terms originate from

2 . .
the O(A%) terms in the Lagrangian E. High-frequency electrostatic waves in the uniform

magnetic field

e _ _ _
; fj d°ZyD4(Zo)Fa(Zoto) The approximations given in the foregoing subsections
are applicable to the gyrokinetic theory for arbitrary-
X ({Sa1(Za(Zo toi1) 1), Pa(Za(Zo toi1) D}7 Ve, frequency fluctuations shown in Sec. Ill. In this subsection,
we present a simplified gyrokinetic system of equations,
(for nonlinear polarization—magnetizatjon (72)  which are valid even for high fluctuation frequencies in the

The linear polarization—magnetization approximation ision-gyrofrequency range. Here, for simplicity, we consider

done by replacing the above terms in the Lagrandé4)  only electrostatic fluctuations in the uniform magnetic field

with Bo=const, although more general cases can be treated
straightforwardly by the formulation given in Sec. Ill. The

E _af 472 D.(Zo)F (Z) resultant _equation§ can d_escrib_e the ior? Bernstein_w@res.
= 2 0 =al=0/t a0l =0 fact, the rigorous linear dispersion relation for the ion Bern-
o stein waves is immediately derived from the linearized ver-

X{Sa1(Zo.1), ¥a(Zo, D)}z, sion of Eqs.(78)—(80) and(76).2%%Y We also take the small

pe limit for electrons, and use the linear polarization approxi-
mation for multispecies ions. Then, the total Lagrangian is
In fact, from the variational principle using the Lagrangianwritten as

(for linear polarization—magnetizatipn (73
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_ _ e _ _ .~
L:fdGZODeFe(ZOytO){ _EAO(Xe)+meUeb Ke—

MeC__ —
Hee
e

+ > f d°Z, D4Fa(Zo,to)

a(ions)

1 - _
- ( Emeug-"ﬂeBO_ed’l(xe’t)

1

m,C__ — —— _
— aba— maUa+MaBO+ea<¢l(xa+Pavt)>§a

a

e — — -
ZAo(Xa)+muUb |- X, +
C

N |

- f " aFao<Z> 3Sar (X, 1 ét)
a(ions) 2m,C p aE

b1(X+ pao(2), t)+—f d*x|V ¢1(x)|?

+ 3 [ d°ZyDyFao(Zo) | FXAEAE ALK 6 Xautto 1)

a(ions)
J o\ — -
X1 =+ Qa— ) Saa(X, 1, 6,1) —€,0a(X+ pao(Z2),1) |, (75
ot 9é
|
where D= Bolme, =Bg/m,, pa paO(Za) andZ J _ ¢ —
=(Xa.Ua la éa) = Za(Zo,to,t) Here, we have used the | . T Ub+B_bXV<¢1(X+Pa0(Z)vt)>§ Al
linear polarization part of the Lagrangian 0
— — e - - — 1% —_—_
~ Zaions) (€3/2M4C) [d°Z D[ 0F ao(Z)/ 1] -—b V<¢1<X+pao<2>,t>>gﬁ} Fa(X,U,,1)=0,
a
X[asal(xiﬁagyt)/a§]¢1(X+PaO(Z)at) (79)
which is a electrostatic version of Eq73) with higher  respectively. Fromél/8¢4,=0, we obtain the Poisson’s
e-order terms neglected. equation
From 61/ 5A =0, we obtain
J V2¢(x)=4wef d®Z D83 (X—X)Fe(Z,t)
EJFQ S (X, £ ) = a1 (X+pao(Z),1)  (76)
IE
The equation forA, is derived fromsl/8S,,=0, which is _47Ta(.ons) eaf 0°ZDa6TX + €pao(2) =]
solved with the help of Eq(.76) to give - o
_ _ €, IFa0(Z) 9S4 (X, 1, & 1)
Aa(X, 1,6 X0, p03t) Fuzoy+ o FFel2) BBalOED | gy
o MaC  Jdu d€
98(w— two) ISu(X,m, &t . o :
b\3(x XO) (4~ 1o) ISl _’u ¢ )_ (77)  The closed nonlinear gyrokinetic system of equatiof)—

s mac au 9E

It should be noted that, in the electrostatic casg,and A ,
are both independent of the parallel velocitgéallaU
=9A,/0U=3dA,/dUy=0.

The motion equations for electrons and ions are derived

from 81/6Z,= 81/5Z,=0, and the kinetic equations for the
electron and ion distribution functions are given by

which is given by

_ _ (1
EGtotzf d®z DeFe(Z,t)(EmeUZ-F,u,BO)

F.(Zt 1 U2+ uB
a( v) 2ma MBo

> f 47D,
_ C — a(ions)
—+| Ub+ —bX Vg (X,t) |-V
B, 2 2) [ B (X m a2
02 IFa(2) | (X mED 1
o o . 2B, )&
+—bV¢1(X,t)—_ Fe(XlUlM!t):O' (78) ’ g aé:
me aU 1 3 2
+— | d3|Va(x)|3. 81
N o | v o) @
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frequency electrostatic plasma fluctuations in the uniform
magnetic fields. They rigorously conserve the total energy,
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It should be noted that, in deriving the conservatiofEgf;, _

the fluctuations on the boundary surface are assumed to ¢1(X,t)=§k: Pi(t)e' X, (85)
make no contributioisee Eqs(A13) and (A14) in Appen-

dix]. If there are any external energy sources or silg,;  Then, the solution of Eq(76) is explicitly written as

is not conserved. WheR,, is assumed to take the Maxwell- _ _

field, we can writedF ,o(Z)/du= — BgF 50/ T, with the per- R

pendicular temperature, . => ek XenE= g (K, py)
As shown in Sec. IV C, from the variational principle .

using the Lagrangian (75  with the term t _ ,

(1/87) fydX|V ¢p(x)|? neglected, the quasineutrality condi- <, dt’e Pt gy (1), (86)

tion [Eq. (80) with the left-hand side term vanishihés de- 0

rived. Then, the electric field energy (8 d*x|¢1(x,1)[*>  where the initial conditiorS,, (X, z,£,to) =0 is used. Here,

disappears from the total ener¢§1). k=kb—k, (siney e, +cosay e,), pa=(cley)(2mul
Further simplification is given by the adiabatic—electrong )12 n=+1+2 ... (n#0), and J, is the nth order
approximation. That corresponds to the following replaceBessel  function. In  the  low-frequency limit,
ment of the electron Lagrangian part in E@5): ﬁodt/e—inﬂa(t—t’)d)k(t/) in Eq. (86) is replaced by
. (inQ,) "¢ (), which reproduces the generating function
f d%Z DeFe(Zg,to)Le(Ze  Ze t) given by Eq.(43).
Ye and Kaufmaf? transformed the guiding-center coor-
e dinates to the gyrocentéoscillation-center in their terminol-
—>f d3x e (x,t)ng(x)| 1+ T(X)d’l(xi) ogy) coordinates only for nonresonant particles. That was
v € done by using a window function in the frequency-wave-
(for adiabatic electrons (82)  number representation to remove the resonance part from the

fluctuating field in the right-hand side of the generating func-

wheren, is the equilibrium electron density ar, is the  tion equation[Eqg. (76)]. In that case, since the gyrophase-

equilibrium electron temperature. In fact, it is easily con-dependent resonance part survives in the Hamiltonian for the
firmed that the variational principle for the Lagrangian usingmotion equations, the magnetic moment is no longer an in-
Eq. (82) makes changes in the gyrokinetic Poisson’s equavariant for the resonant particles, and the gyrophase depen-

tion [Eq. (80)] and in the conserved total energl), which ~ dence of the distribution function must be taken into account
are written as in their Vlasov equation. In the arbitrary-frequency gyroki-

netic theory given by the present work, the guiding-center to
. . . gyrocenter-coordinate transformation is done for all particles
f dSZ D 8B3(X—X)Fo(Z,1) so that the gyrophase dependence does not appear in the
resultant gyrokinetic Vlasov equatidikq. (55)] where the
magnetic moment is regarded as a constant parameter. As
seen from Eq(86), if the fluctuations have the resonance
frequenciesn=nQ, (n==*=1,%£2,...), theamplitude of the
generating functiors,; grows, and the deviation of the gy-
rocenter coordinates from the guiding-center coordinates in-
and creases. For a turbulent system, where the fluctuations with
the resonance frequencies exist only temporarily or ran-
domly, the generating function given by E@6) is not con-
sidered to increase divergently. Then, the use of the gyro-
5 center coordinates for all particles is effective. However, if
_J d3x no(X) € | by (x,1)]2, (84) the waves with the resonance frequencies are steadily pro-
v 2Te(X) duced like in the case of radio-frequency heating, the gener-
ating function diverges and the gyrocenter coordinates are
respectively. In this approximation, no equation for the elecnot valid for the resonant particles. In such a case, the diver-
tron distribution function like Eq(78) is derived or required gence at the resonance frequencies can be avoided in the real
for the closed system of equations. space and time representation by performing the following
The difference between the high-frequency gyrokineticreplacement in the generating function equati@q. (76)]
theory and the conventional low-frequency one is that, forand the Lagrangiafi/5)
the high-frequency case, the generating funcBgncannot  ~  ~ . onres ~  ~res
be determined instantly from the fluctuatie® due to the b1 dr =i
time derivative term retained in E§76). Let us write the 5
¢1{ 1- < w

e
—No(X)| 1+ mQSl(X,t)

(adiabatic electron densijty (83

f d®Z D.F (Zt)(im U2+ 1B )
el e ] 2 e ,lL 0

electrostatic potential in terms of the Fourier components
with wave number vectork

d d\ ~
)]
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where @' and $]°"~"represent the resonance and nonresoAPPENDIX: VARIATIONAL PRINCIPLE AND

nance parts ofh,, respectively. Herew corresponds to the NOETHER'S THEOREM
window function by Ye and Kaufma# although it is now In this Appendix, the Lagrangian variational principle

used ip the real space and time r.epresentation. The definitioghq the Noether's theorem are briefly explained in a partly
of w is as follows. In the regiorix|<v, w(x)=1 and  mqdified way from the standard text book<® The action

w(0)=1 while w(x)=0 for [x|>v, where 0<v<Q,. Ac-  ntegral is given by

companied with the replacement shown by BY), we must

add the resonance potential ¢ to the single-particle |=ft2Ldt. (A1)
Hamiltonian. Therefore, the Hamiltonian acquires the gy- ty

rophase dependence and the magnetic moment can chanﬁe . . o .
due to the resonance. In this case, using the Lagrangian Wittef;]ei:]otﬁgl}z?;?nglanb considered in this work are all writ-

these changes in E75), the ion gyrokinetic equatiofEq.
(79)]_ gnd the gyrokinetic Poissor_fs equat_i[faq. (80)] are L=L[(7,),(7,)], (A2)
modified as well as the generating function equati@f). i ] ) )

The treatment of the resonance shown here can be extend@(fere the field variableg, are functions of X, 1), a is a

straightforwardly to the more general case in Sec. . label to specify the field, and= g/t is the time derivative.
Here, x, denotes al,-dimensional vector variablex,

=(xa1,...,xa,a). Whenl =0, 7%, represents a function of

the timet alone as seen in the case of the single-particle
V. CONCLUSIONS Lagrangian. The electromagnetic potential fielts,t) and
A(x,t) correspond tap, with | ,=3. Also,l ,=6 is given for

In this work, the Lagrangian variational principle is pre- ) . : .
sented to derive the nonlinear gyrokinetic Vlasov—Poisson-a(Xo:Vo.to;t) (wheret, is a fixed parametgin Eq. (2), and
| ,=11 for A, in Eq. (61).

Ampere equations, and the rigorously conserved total energy” The LagrangianL is a functional of the fields(or

for them is directly derived from the Noether’s theorem. The functiong and 7 We note that the part of the La-
nonlinear gyrokinetic system of equations and the conserved® " T Ta- ) - P .
rangian associated with, and 7, for specifieda are writ-

energy for the case of arbitrary fluctuation frequencies ar .
also shown. The high-frequency properties of the fluctuac" " the form
tions are included in the generating functions for theL (,,7,)
gyrocenter-variable transformation.

_Se\_/eral Iim_iting cases art_a_considered, in Wh_ich the gy- :j A" X L] 70X 1)y 70X D),V 070X s )],
rokinetic equations are simplified and more easily tractable
for numerical simulation. The small electron gyroradius (A3)
limit, the quasineutrality, and the linear polarization— ]
magnetization approximation are treated as examples. All th@heré V,=d/dx,, and --- represents possible depend-
simplifications, which are applicable to the arbitrary fluctua-€N¢i€S onx, and on the other fieldsy,; (B#«a). For
tion frequency case as well, are done on the level of th&X@mple, in the case of Eq2), La(Xa,%a)="fa(Xo.Vo,
original Lagrangian. Then, the variational principle auto-tO)[(maVa_(ea/C)A;(Xa*t))';(a_e%‘ﬁ(xa’t)] and L,
matically yields the simplified gyrokinetic equations for the =, (1/8m) [V é(X.1)|* —e.[d*Xo[d*Vo f4(Xo, Vo, to) B(X, 1)
particles (or the distribution functionsand the fields, for & (X—Xa). In this casef, andL,, share a part of each other.
which a corresponding conserved energy exists. The simplil"uS; as shown by this example, we generally have
fied gyrokinetic system of equations are written in detail to7 Zala- o o )
describe the high-frequency electrostatic plasma fluctuations '€ variational principle is written as
in the uniform magnetic field. They are useful for studying

t
the fluctuations in the ion-gyrofrequency range. sl=> 2dtf dlex,, Lo i( M“)
@ 51 ﬁna at (7.7’&
dL,
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=0. A5
Wwa) (A%
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t—t' =t+ 6t,

Xq—Xb =X+ OXg s (AB)

Na(Xa 1) = 76(Xg 1) = 7a(Xa 1) + 874X 1)

Here, 6t and 6x, are generally functions ofx(,t), and
6m,(x,,t) consists of the variations in the functional form
of », and in the variablesx(, ,t),

57alXa )= 07a(Xe D)+ 8 ot X Voo (AT)
where O(5%) terms are neglected, andgna(xa 1)
= 71X 1) = 74(X,,t). The infinitesimal transformations in
Eqg. (A6) also causes the variation in the action integral

IHI’=ft2L’dt’,
t

’
1

(A8)

where, as in Eq(A3), the part ofL’ associated withy,, and
n.=dn.lot’ for specifieda is given by

L;:fd'“xéﬁa[v;(xaJ’)Jn;(xg,t'), LX), .
(A9)
Using the Euler—Lagrange equatiffq. (A5)], the variation

in the action integral under the transformations in &#) is
written as

t, 1dG
5|=|'—|=—J dt| —+ >, fd'axaVa-Ja, (A10)
ty dt 3
where
L,
G:&(E fdlaxa:’]a.__l->
a N
| oL, oL,
+E d"‘Xa 6Xalva77a.__577a . (All)
a Mg N
and
J,=6t7 e +6x,-V L
a naéva Y a’ anaavana
X, L,— 8 L Al12
o o naavana' ( )

When the action integrdl is invariant under the transforma-
tions in Eq.(A6), we obtain from Eq(A10) with arbitrari-
ness oft; andt,

dG
) f d'ex,V .- J,=0, (A13)

which is the main conclusion of the Noether’s theorend, |f
vanish on the boundaries of the integral regigd&x,, , G is
conserved

Gyrokinetic field theory 479

dG

dt

The Noether’s theorem is widely applicable to derivation
of the conservation laws. For example, whépis indepen-

dent of 5, for a=a, the action integral is obviously in-
variant under the transform given by

ot=0, ox,=0, on,=€d, g,

wheree is an infinitesimal constant parameter. Then, we find
from Eqgs.(A1l) and(Al14) that
- 0Ly
d'ex;—— =const.

f Iy

The conservation of the magnetic moment for the gyrophase-
independent Lagrangian is regarded as a special case of this
example.

The total Lagrangians considered in this work have no
explicit time dependence, which means that their time depen-
dencies are only through the functioms(x,,t). Thus, the
action integrall is invariant under the infinitesimal transfor-
mation given by

St=e, Ox,=0, &7,=0. (A17)

Then, from Egs(Al1l) and(A14) we immediately obtain the
total energy conservation

0. (A14)

(A15)

(A16)

L 0L,
Eio= 2 d'ex, na&'_ —L=const. (A18)

Na

P, H. Rutherford and E. A. Frieman, Phys. Fluids 569 (1968.

2J. B. Taylor and R. J. Hastie, Phys. Plasm@s479 (1968.

3T. M. Antonsen, Jr. and B. Lane, Phys. Flu3 1205(1980.

4p.J. Catto, W. M. Tang, and D. E. Baldwin, Phys. Plasa&$39(1981).

5E. A. Frieman and L. Chen, Phys. Fluids, 502 (1982.

5D. H. E. Dubin, J. A. Krommes, C. Oberman, and W. W. Lee, Phys. Fluids
26, 3524(1983.

’T. S. Hahm, W. W. Lee, and A. Brizard, Phys. Fluigs 1940(1988.

8T. S. Hahm, Phys. Fluid31, 2670(1988.

A. J. Brizard, J. Plasma Phy41, 541 (1989.

10R. D. Hazeltine, Phys. Plasmas, 77 (1973.

1R, D. Hezeltine and J. D. Meis®lasma ConfinemeriAddison-Wesley,
Redwood City, California, 1992p. 298.

12R. L. Dewar and A. H. Glasser, Phys. Fluiglé, 3038(1983.

BR. G. Littlejohn, J. Math. Phy=20, 2445(1979.

1R. G. Littlejohn, Phys. Fluid®4, 1730(1981).

15R. G. Littlejohn, J. Plasma Phy89, 111 (1983.

18A. J. Brizard, Phys. Rev. B, 1381(1989.

H. Goldstein,Classical Mechanigs2nd ed.(Addison-Wesley, Reading,
Massachusetts, 1980Chap. 12.

8 D. Landau and E. M. LifshitzThe Classical Theory of Fieldgth ed.
(Pergamon Oxford, 1975Chap. 4.

19 E. Low, Proc. R. Soc. London, Ser. 248 282 (1958.

20p_ L. Similon, Phys. Lett. AL12, 33 (1985.

21D, Pfirsch and P. J. Morrison, Phys. R&2, 1714(1985.

22H. Ye and P. J. Morrison, Phys. Fluids& 771 (1992.

ZH. Ye and A. N. Kaufman, Phys. Fluids & 1735(1992.

243, D. JacksongClassical Electrodynamics3rd ed. (Wiley, New York,
1998, Sec. 6.3.

A, N. Kaufman and P. S. Rostler, Phys. Fluit 446 (1971).

26| Chen and S. T. Tsai, Phys. Flui@$, 141(1983.

27, Chen and S. T. Tsai, Phys. Plasngts 349 (1983.

28H. Qin, W. M. Tang, and G. Rewoldt, Phys. Plasnad035(1998.

2%H. Qin, Ph. D. thesis, Princeton University, 1998.

%°H. Qin, W. M. Tang, W. W. Lee, and G. Rewoldt, Phys. Plas®as575
(1999.

Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



480 Phys. Plasmas, Vol. 7, No. 2, February 2000 H. Sugama

3IR. G. Littlejohn, J. Math. Phy23, 742 (1982. 35T, S. Hahm, Phys. Plasm&s 4658 (1996.

32M. Artun and W. M. Tang, Phys. Fluids B, 1102(1992. 364, Sugama and W. Horton, Phys. Plasmsag560(1999.

33M. Artun and W. M. Tang, Phys. Plasmas2682(1994. 37V, I. Arnold, Mathematical Methods of Classical Mechanipringer,
34, J. Brizard, Phys. Plasmas 459 (1995. New York, 1978, Chap. 8.

Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



