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Abstract
The nonlinear dynamics of beta-induced Alfvén eigenmodes (BAEs) driven by energetic
particles (EPs) in the presence of ion-temperature-gradient turbulence is investigated, by means
of selfconsistent global gyrokinetic simulations and analytical theory. A tokamak magnetic
equilibrium with large aspect ratio and reversed shear is considered. A previous study of this
configuration has shown that the electron species plays an important role in determining the
nonlinear saturation level of a BAE in the absence of turbulence (Biancalani et al 2020
J. Plasma Phys.). Here, we extend the study to a turbulent plasma. The EPs are found modify
the heat fluxes by introducing energy at the large spatial scales, mainly at the toroidal mode
number of the dominant BAE and its harmonics. In this regime, BAEs are found to carry a
strong electron heat flux. The feed-back of the global relaxation of the temperature profiles
induced by the BAE, and on the turbulence dynamics, is also discussed.

Keywords: Alfvén instabilities, turbulence, gyrokinetics, energetic particles

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetically confined plasmas are complex systems in
which waves and instabilities at multiple spatial scales
coexist and influence each other. Important examples are

∗

Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

microinstabilities, meso-scale zonal flows and macroscopic
MHD instabilities like Alfvén modes. Microinstabilities,
like ion temperature gradient (ITG) modes [1], are linearly
unstable due to the gradients of plasma temperature, and
nonlinearly interact and saturate forming turbulence states.
ITGs carry particle and heat fluxes in the direction of the
nonuniformity, and therefore they are particularly deleteri-
ous to the heat and particle confinement. One of the products
of the nonlinear interaction of microinstabilities is the form-
ation of zonal flows (ZFs). ZFs are ExB flows (primarily
in the poloidal direction) associated with purely radial vari-
ations of the electrostatic potential. They can play the role of
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the dominant turbulence saturation mechanism [2], by break-
ing the turbulence vortices, and consequently pushing the
energy towards higher radial wavenumbers, where the plasma
absorption occurs at kinetic scales. Alfvén modes (AMs) are
eigenmodes of the shear Alfvén waves, i.e. electromagnetic
plasma waves propagating as transverse waves along the mag-
netic field lines. Various types of AMs exist, such as global
Alfvén eigenmodes (GAEs) [3], toroidicity-induced Alfvén
eigenmodes (TAEs) [4] or beta-induced Alfvén eigenmodes
(BAEs) [5–7]. AMs can be driven unstable by suprathermal
ions, named here energetic particles (EPs), present in tokamak
plasmas due to external heating mechanisms and to nuclear
fusion reactions. AMs can then lead to a redistribution of the
EP population [8], which can have consequences, inter alia, on
plasma heating.

The difference in temporal and spatial scales has been
invoked in the past to justify a separate treatment of AMs
and microturbulence. Nevertheless, they can mutually interact
either due to direct coupling via wave-wave nonlinear interac-
tion, or by indirect interaction. Thewave-wave nonlinear inter-
action has been proposed to explain the experimental meas-
urements in ASDEX Upgrade [9], and studied theoretically
to investigate the AM saturation [10]. Regarding the indirect
interaction, the reader can see [11] for a review of some recent
experimental evidences. An indirect interaction can occur for
example due to the ZFs, which can be nonlinearly excited
by both microinstabilities via parametric excitation [2, 12]
and AMs via forced-driven excitation [13–17] (for a theor-
etical introduction to this interaction mechanism, see [18]).
In addition, toroidal symmetric structures can be produced in
the plasma equilibrium profiles, e.g. density and temperature,
which are typically linearly stable and characterized by a slow
time variation with respect to micro-instabilities [19]. The
possibility of defining plasma nonlinear equilibria, consistent
with zonal structures and microinstabilities was suggested in
[20, 21] by extracting the part of the toroidally symmetric dis-
tribution function that is undamped by collisionless processes.
Another way of indirect interaction is by means of the EP pop-
ulation. EPs are known to excite and nonlinearly interact with
AMs [8]. The interaction of turbulence and EPs has also been
observed in tokamak plasma experiments [22–25] and invest-
igated by means of analytical theory [8, 15, 16, 18, 26] and
flux-tube numerical simulations (see for example [27–33]).
Finally, a third way of indirect interaction is the nonlinear
modification of the plasma profiles (see [18]), as both AMs
and microinstabilities can carry heat fluxes. In this paper, we
investigate in particular the heat flux carried by AMs and dis-
cuss this third indirect interaction mechanism.

Traditionally, global fully gyrokinetic (GK) nonlinear sim-
ulations of AMs have been unpractical due to the large com-
putational costs. By global, we mean considering the whole
radial domain and the associated variation of the equilibrium
plasma profiles. By fully GK, we mean here treating all the
plasma species with a GK model. Consequently, the nonlinear
dynamics of AMs has been studied in the past mostly in the
absence of turbulence, andwith hybridmodels treating the EPs
and the thermal plasma (or part of it) with GK and fluid mod-
els, respectively. Alternatively, by using local (i.e. flux-tube)

models, fully GK simulations of AMs in the presence of turbu-
lence have also been performed, focusing on AMs in the limit
of high toroidal mode number [33, 34]. Recently, global, fully
GK simulations have become affordable due to the availability
of more powerful supercomputers, and more efficient numer-
ical schemes (see for example [35]). In this paper, we present
the results of global, fully GK simulations and discuss the self-
consistent nonlinear interaction of AMs and ITG turbulence.

We consider here an analytical magnetic equilibrium with
concentric circular flux surfaces, reversed magnetic shear, and
large aspect ratio. The stability of AMs in this equilibrium
has recently been investigated by focusing on the toroidal
mode numbers 0⩽ n⩽ 9 [36]. In this paper, we extend the
previous study allowing higher-n ITG modes to develop in
the same equilibrium, and we study the self-consistent non-
linear interaction. The main numerical tool used here is the
GK particle-in-cell code ORB5. ORB5 was originally writ-
ten for electrostatic turbulence studies [37], and then extended
to its electromagnetic, multi-species, version [38, 39]. ORB5
is based on a variational formulation of the electromagnetic
gyrokinetic theory, which ensures appropriate conservation
laws [40]. It uses state-of-the-art numerical schemes [39] that
allow for transport time scales simulations. The global charac-
ter of ORB5, i.e. the resolution of the full radial extension of
the global eigenmodes to scales comparable with the minor
radius, makes ORB5 appropriate for studying low-n AMs,
without pushing towards the local limit of vanishing ratios
of the ion Larmor radius to the tokamak minor radius. ORB5
has been verified and benchmarked against the linear and non-
linear dynamics of AMs [35, 41, 42], ZFs [43, 44], and ITG
modes [45, 46]. In this paper, we discuss the dynamics of AMs
in the presence of ITG turbulence, as shown by ORB5 global
self-consistent simulations [47], and compare with the estim-
ation of analytical theory.

The structure of the paper is the following. The description
of the numerical model of ORB5, of the numerical experiment,
and of the considered tokamak case, are given in sections 2
and 3. The heat flux of ITGs and BAEs separately, is described
respectively in sections 4 and 6. In section 5, we show that
no sensible effect of the EPs on the turbulence in the absence
of AMs is found in our regime. The results of the numerical
simulations of AMs and turbulence are shown in section 7,
with dedicated subsections on the evolution of the zonal and
nonzonal electric fields, on the evolution of the heat fluxes,
on the evolution of the temperature profiles, and on the con-
sequent modification of the spectra at low-n, dominated by
the BAEs and at high-n, dominated by the ITGs. The differ-
ence between the heat fluxes carried by ITGs and BAEs is also
evaluated analytically, to support the numerical findings, and
is described in section 8. Finally, a summary of the results and
a discussion are given in section 9.

2. The model

The investigation of the dynamics of AMs, EPs, and turbu-
lence, requires to treat all three species (thermal ions, thermal
electrons, and energetic ions) with a kinetic model. Among
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themain reasons, wemention here the importance of the wave-
particle resonances which are essential for determining the ion
and electron Landau damping, and for the AM drive due to
the EPs. Due to the low frequencies of the modes of interest,
with respect to the ion cyclotron frequency, we are allowed to
reduce the complexity of the kinetic model from 6D in phase
space to 5D, by averaging out the fast cyclotron motion of the
particles around the magnetic field lines: this reduced model
is called gyrokinetics (GKs). Global simulations allow us to
investigate the intrinsically multiscale dynamics of a system
made of microturbulence, meso-scale zonal flows, and macro-
scale AMs. By means of global simulations, we can invest-
igate the interplay of the several instabilities at the different
positions where they develop.

In this paper, we use the GK framework for solving numer-
ical simulations, and for making comparisons with analytical
theory, which helps interpreting the results of the simulations.
The main numerical tool used for the investigations described
here is the global GK particle-in-cell code ORB5. The model
equations of ORB5 are the gyrocenter trajectories, and the two
equations for the fields.

The gyrocenter trajectories are:

Ṙ=
1
m

(

p∥ −
e
c
⟨A∥⟩G

) B∗

B∗
∥

+
c
eB∗

∥

b

×
[

µ∇B+ e∇⟨ϕ− p∥
mc

A∥⟩G
]

(1)

ṗ∥ =−B∗

B∗
∥

·
[

µ∇B+ e∇⟨ϕ− p∥
mc

A∥⟩G
]

. (2)

The phase-space coordinates are Z= (R,p∥,µ), i.e.
respectively the gyrocenter position, canonical parallel
moment p∥ = mU+(e/c)⟨A∥⟩G and magnetic moment µ=
mv2⊥/(2B). The time-dependent fields are named ϕ and A∥,
and they are respectively the perturbed scalar potential and
the parallel component of the perturbed vector potential. In
our notation, on the other hand, A is the equilibrium vector
potential. The Jacobian is given by the parallel component
of B∗ = B+(c/e)p∥∇× b, where B and b are the equilib-
rium magnetic field and magnetic unit vector. The summation
is over all species present in the plasma. The gyroaverage
operator is defined by:

⟨ϕ⟩G =
1
2π

ˆ 2π

0
ϕ(R+ρL)dα (3)

where α here is the gyroangle and ρL = ρL(α,µ) is the Lar-
mor radius. The gyroaverage operator reduces to the zeroth
Bessel function J0(k⊥ρLi) if we transform into Fourier space.
The gyroaverage is calculated for all ion species. For electrons,
ρL → 0, therefore ⟨ϕ⟩G = ϕ(R) (see [39] for more detail). In
other words, we take into account finite Larmor radius of ions,
and we neglect them for electrons.

The quasineutrality equation is:

−Σsp̸=e∇ · mc
2
´

dWfM
B2

∇⊥ϕ=Σsp

ˆ

dWe⟨f⟩G (4)

where f and fM are the total and equilibrium (i.e. independent
of time) distribution functions, the integrals are over the phase
space volume, with dV being the real-space infinitesimal and
dW= (2π/m2)B∗

∥dp∥dµ the velocity-space infinitesimal.
Finally, the Ampère equation is:

Σsp

ˆ

dW
(ep∥
mc

f− e2

mc2
⟨A∥⟩GfM

)

+
1
4π

∇2
⊥A∥ = 0. (5)

Electromagnetic particle-in-cell gyrokinetic codes are
affected by a numerical problem called the ‘cancellation prob-
lem’, which arises from the fact that some terms in the Ampère
equation are solved analytically, and some terms are evaluated
by means of a marker discretisation, which introduces a stat-
istical error. A detailed description of the cancellation prob-
lem and possible mitigation techniques can be found in [48].
In particular, the ‘pull-back’ mitigation technique used for the
simulations discussed in this paper, is described in [49].

This study of AMs in the presence of turbulence is per-
formed by running a first simulation with turbulence only, and
switching on the EP effects in a second simulation, namely a
restart. This is done in the following way:

• firstly, a simulation with three species is initialized, where
the EP density is ⟨nEP⟩/ne = 0.01, and the EP profiles are
identical to those of the thermal species;

• secondly, a ‘restart’ simulation is performed, i.e. starting
from the last time step of the previous one, and with modi-
fied EP profiles taken from [36]. In particular, we consider
a flat EP temperature profile, with the EP temperature ten
times higher than the thermal species at the reference pos-
ition at mid-radius. The EP density gradient is ten times
higher than the thermal gradients at the reference position.
Moreover, EPs are allowed to redistribute in phase space, i.e.
they are allowed to follow perturbed orbits, like the thermal
species. This defines fully nonlinear simulations.

The quasineutraility is imposed by ORB5 at every restart,
bymodifying the electron profile in order to have ne = ni+ nEP
at each radial position. As a consequence, due to the larger
density gradient of the EPs species after the ‘switch’, the elec-
tron density is slightly steeper. The effect of this ‘switch’
on the linear dynamics of the ITGs has been found to be
negligible.

Perturbed modes with toroidal mode number in the range
20⩽ n⩽ 30 are initialized, while all toroidal modes in the
range 0⩽ n⩽ 40 are simulated. For each toroidal mode n, a
radial dependent filter is applied, allowing for poloidal mode
numbers in the range m= n q(s)± δm. A spatial grid of (ns,
nchi, nphi) = (256, 384, 192) points, a time step of dt = 5
Ω−1
i (Ωi being the ion cyclotron frequency), and a number of

markers of (ni,ne,nEP) = (2,10,2)× 108 respectively for the
thermal ions, electrons and EP are used for the turbulence sim-
ulations. Unicity boundary conditions are applied at potentials
at the axis and Dirichlet at the edge. No collisions are con-
sidered here. We consider a Krook operator as a source for
the thermal species (no Krook is applied to the EP species). It
acts by restoring the initial temperature profiles of the thermal
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Figure 1. Safety factor profile.

species. It is modified so as to conserve the steady ZFs [50].
Therefore, it avoids turbulence to decay due to profile flatten-
ing. It also keeps statistical sampling noise under control [50].
As a side effect, the Krook operator also adds an artificial fixed
damping to all modes, with value γK = 1.0× 10−4Ωi. This
value is chosen because the source of energy for the turbulence
is suffiently high, and at the same time the artificial damping
is small compared to the dominant ITGs (see section 4) and to
the BAEs excited by the EPs. Slightly changing this value, has
an effect on the linear growth rates and therefore also on the
saturation levels. Nevertheless, the qualitative picture shown
in this paper remains the same.

3. Magnetic equilibrium and plasma profiles

The magnetic equilibrium and plasma profiles used here are
the same as in [36] for the study of AMs, and in [47] for the
study of AMs and turbulence. The major and minor radii are
R0 = 1.0 m, and a= 0.1 m, and the toroidal magnetic field
at the axis is B0 = 3.0 T. An equilibrium with circular con-
centric flux surfaces is considered. The safety factor has a
value of 1.85 at the axis, it decreases from ρ = 0 to ρ =
0.5, where the minimum value is located (q(ρ= 0.5) = 1.78),
and then it raises to the edge, where it reaches the maximum
value (q(ρ= 1) = 2.6) (see figure 1). Here ρ is a normalized
radial coordinate defined as ρ= r/a. The choice of a safety
factor with a reversed shear is made in analogy with exper-
imentally relevant scenarios, which have been studied with
ORB5 in the absence of turbulence [51, 52], and which we
would like to study in the presence of turbulence in our future
papers. No qualitative change in the dynamics shown in this
paper is expected going to a monotonic safety factor profile.
A reference radial position is chosen at ρ= ρr = 0.5, corres-
ponding to s= 0.525, where the flux radial coordinate s is
defined as s=

√
ψpol/ψpol(edge),ψpol being the poloidal mag-

netic flux. The ion and electron temperature profiles are the
same: Te(ρ) = Ti(ρ). The temperature at the reference radius
is chosen to have a value of Te(ρ= ρr) corresponding ρ∗ =
ρs/a= 0.00571 (with ρs =

√

Te/mi/Ωi being the sound Lar-
mor radius). The electron thermal to magnetic pressure ratio
is βe = 8π⟨ne⟩Te(ρr)/B2

0 = 5× 10−4.
The EP nominal density and temperature profiles and distri-

bution function are also taken from [36]: the volume-averaged

EP concentration is nEP/ne = 1%, the density profile is shown
in figure 2, the distribution function is a Maxwellian, with a
flat temperature profile with TEP/Te(ρr) = 10.

The ion species (thermal and energetic) have the mass of
the deuterium. The value of the electron mass is chosen as
mi/me = 200. This value is chosen in order to have quicker
numerical simulations. Note that the time scales of the con-
sidered waves (for example, the Alfvén frequency and sound
frequency) are defined by the thermal ion mass, and the cor-
rections due to the electron mass are small. On the other hand,
choosing a not realistic electron mass, as we do here, slightly
modifies the damping rates, due to its influence on the electron
Landau damping. This value is found to be at convergence for
the saturation levels of the BAE, and for the linear dynamics
of the ITG. The dynamics of the BAE at very low EP con-
centration depends on the value of the electron mass due to
the electron Landau damping, and in particular the BAE in the
absence of EPs is found to be slightly above marginal stability,
with a growth rate which is small but finite. In this paper, we
show the results of simulation where a Krook operator is used,
which adds an artificial damping to all modes, with a value
of γK = 1.0× 10−4 Ωi. This value is sufficiently high to make
BAEs linearly stable in the absence of EPs (independently on
the electron mass).

The equilibrium considered has some simplifications with
respect to present-day tokamaks: namely a higher aspect ratio,
and circular concentric flux surfaces. This allows to capture
the physics of a simple case, before going to more accurate
experimental cases. At the same time, an effort of comparing
the results of the code ORB5with experimental measurements
of EP-driven modes is being done in separate papers [51, 52].

4. ITG linear dynamics

In this section, we describe the results of linear electromag-
netic ITG simulations. In the absence of EPs, we can study the
ITG radial location and spectrum. The ITG radial location is
found to be near the s= 0.525 reference surface (see figure 3),
where the peak of the temperature gradient is. In figure 4,
we show the spectrum of linear growth rates of electromag-
netic simulations of ITG, without sources/sinks, i.e. without
Krook operator. The most unstable mode is around n= 30,
with growth rate:

γITG,EM = 4.25× 10−4 Ωi. (6)

For comparison, we also provide here the linear growth rate
of two low-n modes which are important in the nonlin-
ear simulations discussed in the next sections, namely the
BAEs with n = 5 and n = 10 (whose dynamics in the pres-
ence of EPs has been described in [36]). In the absence of
EPs, and in the absence of sources/sinks, the growth rates
of these two modes are respectively γ = 0.5× 10−4Ωi, and
γ = 2.3× 10−4Ωi. They are radially localized at s= 0.39
and their polarization is different from the ITGs, i.e. these
modes have a spectrum of poloidal mode numbers with a
dominant component at m= n× q, whereas ITGs show the
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Figure 2. Density (left) and temperature (right) profiles, vs s radial coordinate.

Figure 3. Spatial structure of the scalar potential (left) and parallel component of the vector potential (right) for the linear ITG mode with
n= 30, with radial position s= 0.5 depicted as a dashed circle. No Krook operator (sources/sinks) is applied here, and no EP population is
considered.
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Figure 4. Growth rate of linear electromagnetic simulations of
ITGs, vs toroidal mode number. No Krook operator (sources/sinks)
is applied here, and no EP population is considered.

typical ballooning structure, i.e. a composition of several pol-
oidal components and an amplitude of the scalar potential
peaked at the low-field side. Note that in the presence of the

nominal population of EPs (described in section 3), the BAE
with n= 5 is the dominant instability, with γ = 6.9× 10−4Ωi

in the absence of sources/sinks (see the detailed description
in [36]).

In order to characterise the ITG heat flux, a linear elec-
tromagnetic simulation of a single ITG, with n= 26, is con-
sidered. The reason why the heat flux, like the particle flux,
associated to a single mode is not vanishing, is due to the fact
that the heat and particle fluxes are quadratic forms, and the
integral in phase space and the flux-surface average provide
the net value (see section 8 for more details). We consider
the nominal EP population as described in section 3. Note
that in a linear simulation the amplitude of the mode is grow-
ing exponentially, therefore there is not a saturation where
we can measure the levels of the fields and fluxes. On the
other hand, for a growing mode, the levels of the fields and
fluxes can be quantified instantaneously, and this is what we
do here. The heat flux is measured, and it is found to grow
exponentially. The growth rate of the heat flux is measured to
be γh = 0.8× 10−3Ωi.
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To study the contribution of the different species to the
transport, we start with the definition of the the volume aver-
aged radial heat flux as:

⟨Γs⟩=
〈
ˆ

d3vδfs
msv2

2
v∗E · ∇ψ

〉

(7)

where the outer brackets are the volume average, and vEr is the
radial component of the ExB drift:

vEr = c
δEθ
B0

=
c
B
m
r
ϕ (8)

withm being the poloidal mode number, ϕ the perturbed scalar
potential, and δf s the perturbed distribution function of the
species s. This is a quadratic function of the perturbed field,
and therefore can be rewritten in a simplified form as:

⟨Γs⟩= αs n
2 ⟨ϕ2⟩ (9)

where s is the species index, and we have explicited only the
scalar potential ϕ and the toroidal mode number n, whereas
all other quantities are calculated and are kept implicitly in the
coefficient αs. We now proceed by measuring the saturation
levels of the scalar potential and heat flux in the considered
simulation of an ITGwith n= 26. As a result, we can calculate
the coefficient αs. We measure for this ITG with n= 26 the
following values respectively for the thermal ions, electrons,
and EPs:

αITG,i = 0.037 (10)

αITG,e = 0.014 (11)

αITG,EP = 0.002 (12)

where α is in units of nsTscsρ∗T2
e/e

2, with ns being the density,
and Ts being the temperature measured in eV. The same pro-
cedure for the calculations of the coefficients αs is used also
in the other sections of this paper.

The ratios of the heat fluxes and the electron heat flux,
which can be calculated as the coefficients of the thermal and
energetic ion heat transport normalized to the coefficient of the
electrons, are:

κITG,i =
⟨Γi⟩
⟨Γe⟩

=
αITG,i

αITG,e
= 2.7 (13)

κITG,EP =
⟨ΓEP⟩
⟨Γe⟩

=
αITG,EP

αITG,e
= 0.14. (14)

Although the values of these ratios for the thermal ions and
EPs slightly depend on the electronmass, nevertheless they are
found to always be respectively higher and lower than unity.
This characterises the ITG in the regime of interest.

We can also study the effect of the EPs on the linear ITG
dynamics, by repeating this simulation of an ITG with n =
26 (therefore without the BAE), with and without EPs (with

the same nominal EP population as described in section 3).
The result is that we measure no sensible difference in the ITG
linear dynamics, in the presence and in the absence of EPs.
This result already gives us the hint that, in this regime, the
direct effect of the EPs on ITG turbulence is negligible. The
result of nonlinear studies is shown in section 5.

5. ITG nonlinear dynamics without AMs

In this section, we want to study the effect of EPs on the tur-
bulence, in the absence of AMs. To this aim, we run electro-
static simulations. In order to prevent the omega-H mode [53]
from developing, we treat the electrons as adiabatic. The mag-
netic equilibrium, plasma profiles, and EP population here are
exactly the same as for the nominal case used in most of this
paper, and in particular they are the same as for the EM sim-
ulations shown in section 7. The main difference is the solver
of ORB5, which here is the electrostatic one with adiabatic
electrons.

The radial electric field is shown in figure 5(left).
The nonzonal component of the radial electric field satur-
ates at δEr ≃ 2× 104 Vm−1, and the zonal component at
δEr ≃ 3× 104 Vm−1. We anticipate that these are the same
values of the electromagnetic simulations of turbulence dis-
cussed in section 7 (see figure 8). Regarding the effect of the
EPs, one can see that the EPs are not modifying the satura-
tion levels of the nonzonal component (ITG) nor of the zonal
component (ZF) in these simulations.

The heat flux is shown in figure 5(right). The thermal ions
carry a heat flux of Γi ≃ 1× 10−3 (in units of nsTscsρ∗). Like
for the radial electric field, we anticipate that this level is very
similar to the electromagnetic case shown in section 7 (see
figure 9). To help the reader in the comparison, we have chosen
here the same scale of the plot. Regarding the effect of the
EPs, we observe that no sensible effect on the heat flux can be
found. Note that the EPs are switched on at a different time
with respect to the electromagnetic simulations discussed in
section 7.

In conclusion, in this regime, the EPs do not directlymodify
the turbulence dynamics.

6. Dynamics of AMs without turbulence: heat flux

As an example, we consider here a fully nonlinear simulation
with only n= 5. No other mode is allowed to develop (there-
fore there is no turbulence).We consider the nominal EP popu-
lation, as described in section 3. Themode is found to grow lin-
early, saturate at around t= 1.3× 104 Ω−1

i , and damp due to
the EP radial redistribution (see [36] for a detailed analysis of
the BAE dynamics in this equilibrium). The evolution in time
of the scalar potential and of the heat flux are shown respect-
ively in figure 6 (top-left) and figure 6 (top-right). The heat flux
shown in figure 6 (top-right), and measured with the ORB5
diagnostics named ‘efluxw_tot’, is given in units of niTi cs ρ∗.

We write the volume averaged heat flux as in equation (9).
Like for ITGs, a non-vanishing heat flux is associated to a
single mode, and can be quantified already in the linear phase,
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associated to the squared of the instant amplitude. There-
fore, we can already define a heat transport of AMs without
turbulence, given a single mode. The quadratic form of the
radial heat flux associated to a single mode is similar to
the form of the radial energetic particle transport of an AM,

which is known to be the main saturation mechanism (see
section 8 for the analytical derivation of the heat flux). In
the linear phase, we measure for this BAE with n= 5 the
following values respectively for the thermal ions, electrons,
and EPs:
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αBAE,i = 0.023 (15)

αBAE,e = 0.035 (16)

αBAE,EP = 0.083. (17)

Note that, with respect to the ITG (see section 4), a BAE drives
a lower ion heat flux, a similar electron heat flux, and a much
higher EP heat flux (one order of magnitude higher).

The ratios of the heat fluxes and the electron heat flux,
which can be calculated as the coefficients of the thermal and
energetic ion heat transport normalized to the coefficient of the
electrons, are:

κBAE,i =
⟨Γi⟩
⟨Γe⟩

=
αBAE,i

αBAE,e
= 0.7 (18)

κBAE,EP =
⟨ΓEP⟩
⟨Γe⟩

=
αBAE,EP

αBAE,e
= 2.4. (19)

These characteristic values are found to be stable during the
linear phase, and they change after the nonlinear saturation
(see figure 6–bottom). They are found to be at convergence
with the electron mass for mi/me = 200. Note that the EP spe-
cies carries a heat flux of the same order of magnitude of the
thermal species, in these simulations. In order to understand
this, we can calculate the value of the ion diamagnetic fre-
quency, for a mode with n = 5 sitting at s = 0.4: ω∗/Ωi =
ρ∗2nqκni = 8.8× 10−5. The diamagnetic frequency is about
two orders of magnitude lower than the mode frequency [36].
So, for our case, we have that an energetic species with the
same concentration of the thermal species, is expected to carry
a radial flux of about two orders of magnitude higher than the
thermal species, due to the higher temperature (one order of
magnitude) and higher density gradient (one order of mag-
nitude). The EP species considered here has a concentration
of two orders of magnitude lower than the thermal species,
which explains the fact that the heat flux is of the same order
of magnitude of the thermal heat flux.

The spectrum of the heat transport can also be studied. In
figure 7, the radial structure of the poloidal spectrum of the
n= 5 component of the electron heat flux is shown, and com-
pared with the scalar potential. One can see that this BAE with
n = 5 has a dominant poloidal m= 9 component in the scalar
potential, peaked at s = 0.39. This structure is also visible in
the poloidal spectrum of the n= 5 component of the heat flux,
where also the components m= 9± 1 are important.

The reason why a BAE can carry a significant amount of
heat flux of the thermal species, with respect to other AMs,
is due to its relatively low frequency, which increases the
importance of the wave-particle resonances [7]. Regarding the
thermal ions, the dominant resonance is expected to be with
the transit frequency. Regarding the electrons, which typically
have amuch higher thermal velocity, the resonances are expec-
ted to occur mainly with barely trapped electrons, similarly to
what happens for EGAMs [54]. The strong electron transport
due to AMs found here with ORB5 simulations, is consist-
ent with earlier theoretical predictions [55] (see also [56] for
a treatment in non-toroidal magnetic equilibria) and exper-
imental observations [57]. Although the number of trapped
electrons is small compared to the passing ions, nevertheless
their resonance yields a higher impact on the kinetic proper-
ties of the BAE in this configurations. This has been demon-
strated in [36], where the electron response has been shown
to be more important than the ion response. Moreover, the
kinetic electron dynamics has also been recently shown to
be more important than the ion kinetic dynamics, in experi-
mentally relevant scenarios. In particular, there are ASDEX
Upgrade shots where the electron Landau damping has been
found to be higher than the ion Landau damping, for Alfvén
instabilities [52]. These shots have been designed in particular
to reduce ion Landau damping (exponential dependence on T i)
and electron Landau damping (∼βe) as much as possible by
reducing the background temperatures to 0.5–2 keV (allowing
central impurity (W) accumulation) despite 2.5–5 MW of NB
heating. Note also that the reversed q profile used here might
affect the toroidal precession drifts of barely trapped electrons
and thus modify overall resonance condition. The dependence
of the BAE dynamics on the equilibrium and plasma profiles,

8



Plasma Phys. Control. Fusion 63 (2021) 065009 A Biancalani et al

0 2 4 6 8 10 12 14

t (
i

-1
) 10 4

10 -2

10 0

10 2

10 4

m
a

x
r,

r (
-

0
0

) 
[V

/m
] 

(m
i/m

H
=

2
)

Radial electric field

nonzonal, restart with EP-switch

zonal, restart with EP-switch

nonzonal, restart w/o EP-switch

zonal, restart w/o EP-switch

EPs switched on here

Figure 8. Evolution in time of the maximum of the radial electric field in the poloidal plane (left). Blue lines depict sims where EPs are
swiched on, whereas red lines depict simulations where EPs are not switched on. Scalar potential at t = 53 000 (right), after switching on
the EPs.

including the safety factor profile, will be discussed in a ded-
icated paper.

7. Nonlinear dynamics of AMs with turbulence

7.1. Evolution of the fields

Here, the results of the nonlinear simulations with turbulence
and AMs are shown. The restart with EPs switched on is per-
formed at t≃ 4.9× 104Ω−1

i . Before discussing the results of
the simulations where the EPs have their nominal temperat-
ure, i.e. TEP(sr)/Te(sr) = 10, we have run a simulation where
the EP switch is performed only by increasing the density pro-
file to κn= 10, but keeping the EP temperature equal to the
thermal species. This test is done to study the effect of the
modification in the density profiles alone. No sensible change
is observed. Therefore, we can state that the effect of dens-
ity gradient alone of the minority with thermal temperature, is
negligible.

We can now study the effect of the EPs with nominal tem-
perature i.e. TEP(sr)/Te(sr) = 10. In figure 8(a), the evolution
in time of the maximum of the radial electric field is shown, for
a simulation where the EPs are switched on at the restart, and
compared with a simulation where the EPs are not switched
on at the restart. In both simulations, the zonal component
of the fields is allowed to evolve selfconsistently. One can
see that the effect of the EPs is to excite both the nonzonal
and zonal components of the electric field, which start grow-
ing, then saturate around t≃ 6× 104Ω−1

i , and then damp
in time.

The radial structure shows that the BAE mode with n = 5,
m = 9 is excited by the EPs in the second part of the simula-
tion, when the EPs are switched on (see figure 8(b)). This BAE
is not clearly visible before the EPs are switched on. Thismode
is identified as a BAE due to the polarization, i.e. a clear n =
5,m = 9 signature, and the frequency, which is slightly higher
than the linear BAE frequency, i.e. two orders of magnitude

higher than the frequency of the ITGwith n= 5 (see section 4).
This frequency is observed at each radius in the domain where
the linear BAE and the linear ITG are observed. Therefore, this
BAE is shown to be dominant in amplitude on the ITG modes
in this time window (see figure 8(a)). The saturation level
of the BAE for this value of Krook is Er ≃ 1.0× 105 Vm−1

(lowering the value of the Krook corresponds to decreasing the
artificial damping and reaching a higher saturation level). This
value is found to be the same as in the absence of turbulence
(see [36]). This means that the nonlinear effects of both the
nonzonal field associated with the ITGs and the zonal field of
the ITG-generated zonal flows, on the dynamics of the BAE,
are negligible. This is due to the fact that the amplitude of the
fields of the ITGs and ITG-generated zonal flows is low com-
pared to the BAE amplitude.We can also study the radial struc-
ture of the zonal component of the field, generated by the BAE
via forced-driven excitation. The zonal radial electric field is
observedmainly around the location of the most unstable BAE
(s= 0.4). On the other hand, the location of zonal poloidal
magnetic field is more extended in space, with a global struc-
ture going from the inner to the outer BAE continuum accu-
mulation points. The detailed study of the global dynamics of
the zonal fields and their effect on the possible turbulence sta-
bilization is left to a future dedicated paper.

7.2. Evolution of the total heat fluxes

The volume averaged radial heat flux can be studied in a
simulation with EPs (see figure 9(left)). At the moment of
the BAE saturation, very similar levels of the heat fluxes of
the turbulence simulations are obtained with the simulations
which retains only 0⩽ n⩽ 10. If we filter out the n= 10mode,
slightly lower values of the thermal heat fluxes are obtained.
This means that these heat fluxes are not due to the high-n ITG
modes, but to the n= 5 and n= 10 modes. The high-n ITG
modes contribute only for a very small amount to the total heat
flux.
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Now, we want to study what species are carrying the dom-
inant heat fluxes, in the different phases of the simulation. In
section 4, we have shown that for an ITG the thermal ions carry
a higher heat flux than the electrons, Γi/Γe > 1, and on the
other hand, the EPs carry a lower heat flux than the electrons,
ΓEP/Γe < 1. In section 6, we have shown that for a BAE the
values are inversed: Γi/Γe < 1 and ΓEP/Γe > 1. These prop-
erties can help us identify the modes which are dominant in
the different phases of the nonlinear simulation. The ratios
of the heat fluxes with the electron heat flux in the simula-
tion where the BAE is excited on top of turbulence, are given
in figure 9(right). At the beginning of the simulation, when
no EPs are present (0< t< 5× 104Ω−1

i ), we have Γi/Γe > 1,
which means that this is an ITG dominated regime (and in par-
ticular, in the ITG linear phase, we recognize similar values
as in the linear ITG simulations of section 4, i.e. Γi/Γe ≃ 3).
After the EPs are switched on, at t= 4.9× 104Ω−1

i , the value
of Γi/Γe drops to values lower than 1 (oscillating around
Γi/Γe >≃0.7 at t≃ 6× 104Ω−1

i ), which means that BAE has
grown to its maximum amplitude and it is giving the dominant
contribution to the total heat flux. Then the ion over electron
heat flux gradually goes back over 1, which is the signature
of the BAE damping to lower levels, when the ITG domin-
ates again the heat flux. Viceversa, ΓEP/Γe starts with values
higher than unity when they are switched on, indicating a dom-
inant Alfvénic activity, to decrease to values lower than unity
after the BAE has faded away. When sending simulations with
0⩽ n⩽ 10 only, we also try to switch the Krook on, like in
the simulation with turbulence, but the values are not sensibly
changed. If we consider the simulation where also the mode
with n= 10 is filtered out, the values are not sensibly changed.

7.3. Evolution of the temperature profiles

In this subsection, we show the temperature profile evolution
in time in the simulations with and without EPs. The sim-
ulation is the same as in the previous section. Sources are
applied to the thermal species at the restart in the form of a

Krook operator, like in the previous sections. In figure 10, the
difference of the temperature at a certain time and the temper-
ature at the beginning of the simulation is shown. The original
profiles are normalized to their value at the reference radius
sr = 0.525. The time is chosen around the peak of the BAE
amplitude. Around this time, the temperature profile is found
to have small oscillations and small radial structures are also
formed.

Note that the ITG turbulence redistributes the temperature
of about a factor 2 higher for the thermal ions than for the elec-
trons, whereas the BAE redistributes both ions and electrons
of about the same amount. Note also that the amplitude of the
ion temperature perturbation of the BAE is about three times
higher than the ITG.

In figure 11, the evolution of the temperature profiles is
shown. Note the flattening of the profiles around the location
of the BAE, due to the heat flux carried by the BAE.

7.4. Spectra in toroidal mode number

Both ITG turbulence and AMs are known to induce cross-field
heat transport. In the simulations presented here, both of these
effects are co-existing, raising two general questions: What is
the relative importance of each of these two mechanisms, and
are they influencing each other in any way?

The toroidal mode number spectrum of the ion heat flux
(for the details of the diagnostic, see [58]) for a simulation
where the EPs are switched on can be seen as a the con-
tinuous red line in figure 12. For comparison, the same spec-
trum for a simulation without EPs is shown as a dashed red
line. A sensible general trend that we find is that the heat
fluxes are higher in the simulation with EPs. This is explained
by the fact that the EPs are introducing an additional source
of free energy to the system. Although they are only 1% of
the total plasma mass, their temperature is ten times higher
than the thermal species, and they easily excite AMs due to a
ten times higher density gradient with respect to the thermal
species.
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7.4.1. Analysis of the spectrum at low-n. We observe that
the nonzonal spectra given in figure 12 are dominated by the
modes n= 5, n= 10 and n= 15, namely the first, second and
third harmonics of the main BAE mode. The contributions

of the different poloidal mode numbers to the heat flux car-
ried by thermal ions for the dominant mode, namely the mode
with n= 10, is depicted for a simulation without and with
EPs, in figure 13. In the case of the simulation without EPs,
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a broad spectrum of poloidal components shows the charac-
teristic polarization of the ITG mode. On the other hand, for
the case of the simulation with EPs, the heat flux is dominated
by the poloidal mode m= 18. Note also that the peak of the
m= 18 component is at the position of the peak of the BAE
field. These two are signatures of the second harmonics of the
BAE. Therefore, we can state that the ITG dynamics is sub-
dominant in the simulation with EPs, with respect to the BAE,
in carrying the heat transport.

It is also important to note that the other poloidal compon-
ents (i.e. m ̸= 18) are increased in the simulation with EPs, in
comparison with the simulation without EPs. This implies that
the BAE second harmonic is efficient in modifying the dynam-
ics of the ITG of n= 10, due to the nonlinear interaction. This
is an example of cross-scale interaction, with the AMbeing the
macro-scale mode, and the ITG turbulence being constituted
mainly by micro-instabilities.

7.4.2. Analysis of the spectrum at high-n. It is worthy to
note that not only the low-n part of the heat flux spectrum,
i.e. where the BAEs are dominant, is modified by the EPs,
but also the the higher-n part, i.e. where the ITGs are dom-
inant. This is of interest for the question of how the presence
of EPs modifies the ITG turbulence. In this regime, we can
state that an EP population driving a BAE linearly unstable,
affects the turbulence dynamics by increasing the heat trans-
port primarily at low n, and consequently also at higher n.
The fluctuation amplitude of the scalar potential ϕ and dens-
ity ρ for the different toroidal mode numbers is also shown in
figure 12 (respectively with blue lines and blue black lines).
Differently from the heat flux, the fluctuation amplitude given
by the scalar potential is shown not to be sensibly modified
by the presence of EPs in the range of toroidal mode num-
bers of the ITG. Moreover, the fluctuation amplitude given by
the perturbed density is found to be decreased by the presence
of EPs.

We can also investigate the relative importance of the ion
and electron heat fluxes in the domain of high-n. This is

shown in figures 14 and 15. We note that the ion heat flux
is always bigger than the electron heat flux in the radial
region 0.5< s< 0.7, with or without EPs, because the spec-
trum is dominated by the ITG turbulence. On the other hand,
the electron heat flux is bigger than the ion heat flux in the
radial region 0.3< s< 0.5, when the EPs are switched on,
because in this region the spectrum becomes dominated by
the BAE.

We can now discuss the effect of the EPs on the amplitude
of the ITG heat fluxes more in detail, as seen in figures 14
and 15. With a comparison with and without EPs, we see that
the amplitude of the heat flux at high n increases in the pres-
ence of the EPs because of the injection of energy at large
scales (i.e. low n). This is evident especially for electrons,
which constitute the dominant heat transport species for the
BAE. The steepness of the spectra can be measured by means
of the fits in figures 14 and 15. The fact that he steepness
remains the same or increases (respectively at the location of
the BAE and far from the BAE), when adding the EPs, means
that the EPs are not changing the physics of the nonlinear
coupling at high n.

8. Analytical estimation of the heat fluxes of
ballooning and non-ballooning modes

In the previous sections, we have described the results of
global gyrokinetic simulations of AMs and ITG turbulence.
We have shown that AMs drive a strong electron heat flux, in
comparison with ITGs, which have the ion heat flux domin-
ant. AMs and ITGs differ mainly because of their frequency,
spatial structure, and polarization.

In this section, we want to investigate how the spatial struc-
ture of the modes influences the electron heat flux, by estim-
ating the heat flux analytically. To this aim, we consider two
types of modes. The first is an ITG: a mode with ballooning
structure, i.e. with higher amplitude on the low-field side of
the tokamak and lower amplitude at the high-field side of the
tokamak. The second is a BAE: a mode with non-ballooning

12
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Figure 14. Heat fluxes of ions (blue) and electrons (red) in the simulation w/o EPs (left) and with EPs (right), with sources. The
measurement is done around the location of the BAE, i.e. in the region 0.3< s< 0.5, and in the time window 50000< t< 80000. Note the
effect of the EPs in reversing the importance of the electron over the ion heat fluxes, by pushing up the electron heat flux.
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Figure 15. Same as in figure 14, but with a measurement done far from the location of the BAE, namely in the region 0.5< s< 0.7, and in
the time window 50000< t< 80000. Here the electron heat flux is pushed up by the EPs, but not enough to overcome the ion heat flux. The
result is that the ion heat flux is always bigger than the electron heat flux, as the ITG turbulence dominates the spectra.

structure, i.e. with equivalent intensity on the low-field side
and high-field side.

Let us recall that the distribution function of each species s
is written as

fs = fMs(r,v)
(

1− esϕ(r, t)
Ts

)

+ gs(r,v,λ, t), (20)

where r is the particle position, r the guiding-centre posi-
tion, ϕ the electrostatic potential, es the charge, v the speed,
λ= v2⊥/(v

2B) the ratio between the magnetic moment µ=
msv2⊥/(2B) and the kinetic energy msv2/2= x2Ts, and

fMs = ns

(
ms

2πTs

)3/2

e−x2

the Maxwellian with particle density ns(ψ) and temperature
Ts(ψ). In this notation, the equation for ga becomes, after Four-
ier transforming,

iv∥∇∥gs+(ω−ωda)gs = J0

(
k⊥v⊥
Ωs

)
esϕ
Ts

(
ω−ωT∗s

)
fMs,

(21)

where Ωs = esB/ms is the gyrofrequency and the derivatives
are taken at fixed energy and magnetic moment. J0 is the
zeroth-order Bessel function of the first kind, and corresponds
to a gyroaveraging operator in real space. The magnetic field
is taken to be B=∇ψ×∇α, k⊥ = kψ∇ψ+ kα∇α, where in
this section ψ is the toroidal magnetic flux, and α= qθ−φ,
with θ and φ respectively the poloidal and toroidal angles.
The diamagnetic and drift frequencies, respectively, are
defined by

ω∗s =
kαTs
es

d lnns
dψ

,

ωT∗s = ω∗s

[

1+ ηs

(

x2 − 3
2

)]

,

ωds = k⊥ · vds,

where ηs = d lnTs/d lnns and vds =Ω−1
s b×

[

v2∥b · ∇b+

0.5v2⊥∇B/B
]

denotes the drift velocity.
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Within this framework, the flux-surface averaged quasi-
linear radial heat flux, for species s, can be rewritten from
equation (7) as:

Γs =−kαℑ
〈
ˆ

d3vgs
msv2

2
J0ϕ

∗

〉

ψ

. (22)

The kinetic function gs will be considered in the frequency
regime

ω ∼ ωds ≪ ωbe,ωtr,e, (23)

where ωbe, and ωtr,e are the bounce and transit frequency. This
allows us to solve analytically equation (21) for the electrons.

In the following, we will focus on the electron transport,
which is found to be dominant for BAEs in the simulations.

8.1. Passing electrons

For passing electrons the streaming term is dominant,
hence [59]

g(p)e =−
(

1− ωT∗e
ω

)
eψ̂
Te
fMe, (24)

where ψ̂ is so that A∥ = c∇∥ψ̂/(iω). By replacing this expres-
sion in equation (22), after writing ω=ωr+iγ, one finds

Q(p)
e =

ekα
Te

〈
ˆ

d3vfMe
mev2

2

[(

1− ωT∗eωr

|ω|2

)

×
(

ℑψ̂ℜJ0ϕ−ℜψ̂ℑJ0ϕ
)

+
ωT∗eγ

|ω|2
(

ℜψ̂ℜJ0ϕ+ℑψ̂ℑJ0ϕ
)
]〉

ψ

. (25)

In the specific case E∥ → 0, ϕ= ψ̂, and for a periodic potential
in θ, e.g. ϕ= cosθ+ isinθ, we have

Q(p)
e =

ekα
Te

〈
(

ℜψ̂ℜJ0ϕ+ℑψ̂ℑJ0ϕ
) γ

|ω|2

×
ˆ

d3vfMe
mev2

2
ωT∗e

〉

ψ

=
3
2
ekαn0

γω∗e

|ω|2
(1+ ηe).

(26)

Then, close to marginality, passing particles do not give a con-
tribution to transport.

8.2. Trapped electrons

We consider trapped electrons to be mostly electrostatic. We
bounce average the electron kinetic equation to obtain

g(tr)e =−ω−ωT∗e
ω− ω̄de

efMe

Te
ϕ (27)

wherewe took J0 = 1, sincewe are interested in transport at the
ion scale, and the bounce-average is defined in the appendix A.
By inserting equation (27) in (22), one obtains

Γe =−ne
(

χe,n
1
ne

dne
dψ

+χe,T
1
Te

dTe
dψ

+χe,C

)

(28)

with

χe,n =
πk2α
ne

〈
ˆ

tr
d3vfMe

mev2

2
∆γ (ωr− ω̄de)

∣
∣ϕ
∣
∣
2
〉

ψ

, (29)

χe,T =
πk2α
ne

〈
ˆ

tr
d3vfMe

mev2

2

(

v̂2 − 3
2

)

×∆γ (ωr− ω̄de)
∣
∣ϕ
∣
∣
2
〉

ψ

, (30)

and

χe,C =
πekα
neTe

〈
ˆ

tr
d3vfMe

mev2

2
ω̄de∆γ (ωr− ω̄de)

∣
∣ϕ
∣
∣
2
〉

ψ

.

(31)

We evaluate term by term, using a simple model for the equi-
librium field B=B0(1− εcosθ), in the marginal limit γ→
0+. Results are in the appendix A, and will be used in the
following.

8.3. Influence of the space structure on the electron heat flux

We consider two types of modes, one with a maximum on the
outboard-side and a minimum at the inboard-side (ballooning,
ITG-like)

ϕ(b) = ϕ0 cosθ/2, (32)

one a simple trigonometric function (non-ballooning, BAE-
like)

ϕ(nb) = ϕ0 cosθ. (33)

The result is the estimation of the electron heat flux of
ballooning and non-ballooning modes as a function of the
frequency. As an example, we consider the heat flux given
by the temperature gradient term, χe,T (the others behave
similarly). The ratio of the coefficients of the contribu-
tions of non-ballooning and ballooning modes is shown in
figure 16. One can see that, below a certain frequency given
by ωr/ωde(0) = 1.5, the electron heat flux is dominated by
ballooning modes (‘b’) like ITGs, whereas above this fre-
quency, the electron heat flux is dominated by non-ballooning
modes (‘nb’) like BAEs. This shows how the spatial struc-
ture of BAEs is important, together with the frequency,
in driving an important electron heat flux, in comparison
with ITGs.
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Figure 16. Ratio of the coefficients of the electron heat flux due to
temperature gradients for ITG-like modes and BAE-like modes.
Here ωrω

(0)
de < 0.

9. Conclusions and discussion

The transport of heat and particles is one of the most important
problems for the confinement of tokamak plasmas in present
day tokamaks and future devices. Historically, the radial trans-
port of energetic particles (EPs) by AMs and the heat transport
of the thermal species by turbulence, have been treated separ-
ately. Nowadays, it is becoming clearer that these two prob-
lems can actually be connected, because their mutual influence
can be strong in some regimes. Moreover, it is becoming more
feasible to study their selfconsistent interaction by means of
numerical simulations, due to the more powerful supercom-
puters, and to more efficient numerical schemes. A kinetic
model must be used for this study, due to the importance of
the wave-particle resonances with all species (thermal ions,
thermal electrons, and energetic ions). The multi-scale nature
of the problem demands a global description, because different
modes have different spatial size and localization.

In this paper, we have adopted a global gyrokinetic model
and applied it to a simplified tokamak equilibrium, where
numerical simulations are sufficiently fast to allow the study of
the nonlinear dynamics of AMs in the presence of turbulence.
The heat flux of AMs has been studied and compared with that
of ITGs. It has been found that, in the selected regime, AMs
drive an important electron heat flux, in contrast to ITGswhich
drive a dominant ion heat flux. This has been found to depend
not only on the difference of the frequency, but also on the
different spatial structure, by means of analytical estimations.

For relatively low concentration of EPs (1%), with ten times
higher temperature than the thermal species, the radial electric
field of BAEs has been observed to grow and saturate at levels
one order of magnitude higher than that of ITG turbulence.
As a consequence, zonal flows driven by the BAEs via forced-
driven excitation have also been observed, at levels ten times
higher than those driven by turbulence alone. The BAEs dom-
inate the heat flux spectra at the low toroidal mode numbers

and the main harmonics, injecting energy at the large spatial
scales.

The global character of the problem has been studied, and
we have found that the levels of turbulence fluxes in the part
of the spectrum of high toroidal mode numbers is modified
more evidently at the location of the BAE, than far from the
BAE. This indicates a role of the BAE in the modification of
the turbulence heat fluxes. In particular, at the radial location
of the BAEs, the electron heat flux becomes dominant in the
presence of EPs, confirming the importance of the Alfvénic
activity, whereas at radial locations far from the BAEs, the
ITGs is found to dominate the heat flux even in the presence of
EPs, and the ion heat flux remain the dominant one. By meas-
uring the steepness of the heat fluxes spectra at high toroidal
mode numbers, we have observed that this is unchanged by
the presence of the EPs at the location of the BAE, implying
that the dynamics of the nonliner mode-mode coupling of the
turbulence is not affected by the presence of the EPs. This con-
firms that the reason why the heat fluxes levels at high toroidal
mode numbers increase, is the injection of energy at low tor-
oidal mode number by the EPs, by means of the excitation of
the BAE.

In summary, we have shown that an AM like a BAE can
drive a heat flux of the thermal species as efficiently and even
more efficiently than ITG turbulence, especially for the elec-
trons. This modifies the temperature profiles of the thermal
species, flattening them at the location of the AMs. The levels
of the spectra of the heat fluxes are increased especially for the
electrons, mainly at the low toroidal mode numbers, and as a
consequence at the high toroidal mode numbers, dominated by
the ITGs.

As next steps, we will first investigate how changing the
location of the AMs influences the turbulence dynamics, in
monotonic safety factor profiles and reversed-shear safety-
factor profiles. In particular, one effort will be to isolate the
effect of the zonal flows. These are known to suppress the tur-
bulence by enhancing the cascade of energy from large spa-
tial scale to small spatial scales, and it will be important to
assess how this can enter the multi-scale interaction of AMs
and turbulence. Having demonstrated the feasibility of global
multi-scale gyrokinetic particle-in-cell simulations in simpli-
fied equilibria, we will then relax some of the limitations,
to approach cases which are closer to experimentally relev-
ant scenarios. As an ultimate goal, comprehensive theoretical
studies of burning plasmas can be envisioned, to develop a pre-
dictive capability for ITER and future fusion power plants.
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Appendix A. Electron integrals

We present the details of the evaluation of equations (29)–(31).

χe,T = πk2αTe

ˆ ∞

0
dv̂2πv̂4

(

v̂2 − 3
2

)
e−v̂2

√
π

×
ˆ

tr
dλτE(λ)

∣
∣ϕ(λ)

∣
∣
2
δ (ωr− ω̄de(λ))

= πk2αTe

√
2ϵ
8

ˆ ∞

0
dv̂2πv̂2

(

v̂2 − 3
2

)
e−v̂2

√
π

×
ˆ 1

0
dκ2K(κ)

∣
∣ϕ(κ)

∣
∣
2∑

i

δ(κ2 −κ2
i (v̂

2))

−ω(0)
de F

′
(
κ2
i (v̂

2)
) , (A.1)

where κi(v̂2) are s.t. v̂2F(κi) = ωr/ω
(0)
de , with ω

(0)
de =

meqv2the/(eBrR), and F was calculated in [60]

F(κ) =
E(κ)
K(κ)

− 1
2
+ 2ŝ

[
E(κ)
K(κ)

+κ− 1

]

. (A.2)

We will consider ŝ= 0, for simplicity. We are also neglecting
finite β ′ effects calculated in [61]. Similarly,

χe,C = πekα

ˆ ∞

0
dv̂2πv̂4

e−v̂2

√
π

ˆ

tr
dλτE (λ)

∣
∣ϕ(λ)

∣
∣
2

× ω̄de(λ)δ (ωr− ω̄de(λ))r

= πekα

√
2ϵ
8

ˆ ∞

0
dv̂2πv̂4

e−v̂2

√
π

×
ˆ 1

0
dκ2K(κ)

∣
∣ϕ(κ)

∣
∣
2
F(κ)

∑

i

δ(κ2 −κ2
i )

−F ′
(
κ2
i

) . (A.3)

Here,

τE(λ) =

ˆ

Tr

dθ√
1−λB

=

ˆ

Tr

dθ
√

1−λB0+ϵλB0(1−2sin2 θ/2)

=

ˆ

Tr

dθ

√
2ϵλB0

√
√
√
√
√

1−λB0

2ϵλB0
+

1
2

︸ ︷︷ ︸

κ2

−sin2 θ/2
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Figure A1. F for ŝ= 0. The line is the approximation
F=−1/2(κ/κ0 − 1), with F(κ0)= 0.

= 4
ˆ 2arcsinκ

0

dθ
√
2ϵλB0

√

κ2 − sin2 θ/2

≈ 4√
2ϵ

ˆ 2arcsinκ

0

dθ
√

κ2 − sin2 θ/2

=
4√
2ϵ

ˆ π/2

0

2dϕ
√

1−κ2 sin2ϕ

≡ 8√
2ϵ
K(κ2), (A.4)

where K is a complete elliptic integral. The bounce-angle is
then defined by 1+ cosθb = 2κ2.

Notice that for ωr ≫ ω
(0)
de , only the energetic trapped

electrons, v̂2 ≫ 1, satisfy the resonant condition v̂2F(κi) =

ωr/ω
(0)
de . For a diamagnetic modeωr ∼ ω

(0)
de , and the resonance

can occur for v̂2 ∼ 1.
For a mode rotating in the electron direction ωrω

(0)
de > 0,

the condition

v̂2F=
ωr

ω
(0)
de

(A.5)

can be satisfied for F positive, that is 0< F< 1/2. Then, for
all values of energy below v̂2min = 2ωr/ω

(0)
de , the result of the

integration is zero. When 0< F< 1/2, a very good model is

F=−1
2
(κ/κ0 − 1), F(κ0) = 0, (A.6)

see figure A1. Then

κi(v̂
2) = κ0

(

1− 2
ωr

ω
(0)
de v̂

2

)

, (A.7)

with κ0 = 0.826225, and 0⩽ κi(v̂2)⩽ κ0, for any
v̂min ⩽ v̂<∞. Thus,

−F ′
(
κi(v̂

2)
)
=

1
2κ0

, for v̂min ⩽ v̂<∞. (A.8)

For a mode rotating in the ion direction, ωr/ω
(0)
de < 0, we

must consider negative values of F, that is κ0 ⩽ κ < 1.
A very good approximation that we found (by simply

Taylor expanding around κ= 1−) is the following one (see
figure A2)
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Figure A2. F, full and approximated according to equation (A.9).

0.85 0.90 0.95 1.00

2

1

5

10

- F
'

Figure A3. F ′, full and approximated according to equation (A.11).

F≈

2(7− 2log2−κ(6log2− 1))+ (1+ 3κ) log(1−κ)

−4(1− 10log2)− 4κ(−1+ 2log2)− 2(5−κ) log(1−κ)

≡

a+ bκ+(1+ 3κ) log(1−κ)

c+ dκ− 2(5−κ) log(1−κ)
, (A.9)

definitely valid for −1/2⩽ F⩽ 0, and beyond! For
κ0 < κ≲ 1, we then find

κi
(
v̂2
)
≈ 1− e

− 1
4

(a+b)̂v2−(c+d) ωr

ω

(0)
de

v̂2+2 ωr

ω

(0)
de , (A.10)

where, again v̂min ⩽ v̂<∞, with v̂min =

√

2
∣
∣
∣ωr/ω

(0)
de

∣
∣
∣.

Therefore

F ′
(
κi(v̂

2)
)
≈ 4

2(a+ b)+ c+ d

[1−κi(v̂2)]{c+ d− 8log(1−κi(v̂2))}2
.

(A.11)

This approximation is also quite good (see figure A3).
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