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Abstract

In the present paper, the evolution of the Alfvén modes is studied in a realistic ASDEX
Upgrade equilibrium by analyzing the results of simulations with the global, electromagnetic,
gyrokinetic particle-in-cell code ORB5. The energetic particles are modelled both via the
newly implemented isotropic slowing-down and with Maxwellian distribution functions. The
comparison of the numerical results shows that modelling the energetic particles with the
equivalent Maxwellian rather than with the slowing-down, does not affect the frequency of the
driven Alfvén mode, while its growth rate appears to be underestimated with a quantitative
difference as large as almost 30 %. Additionally the choice of the isotropic slowing-down allows
a better description of the nonlinear modification of the dominant Alfvén mode frequency,
while an equivalent Maxwellian underestimates it. A good comparison with the experimental
spectrogram is found.
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1 Introduction

Next-generation fusion machines like ITER [1] and DEMO [2] will be characterized by a significant
population of energetic particles (EPs). With this term we refer to fast ions in general that are
going to be present in the confining machines as fusion products (α-particles, 4

2He) or as products
of auxiliary heating sources like neutral beam injection (NBI) or ion cyclotron resonance heating
(ICRH). The typical EP velocity vEP is intermediate between the thermal bulk ions velocity vth,i
and the thermal electron velocity vth,e. EPs’ gyroradius ρEP is instead much larger than the bulk
plasma species gyroradii (ρi and ρe) [3]:

vth,i � vEP � vth,e , ρEP � ρi � ρe . (1)

Typically in Tokamak machines the EPs’ characteristic dynamical frequencies ω associated with
their guiding-center motion (transit, bounce and precessional) fall inside the magnetohydrody-
namic (MHD) regime ω ∼ 10−2 ωci, with ωci the ion cyclotron frequency. Because of this EPs can
resonate with MHD instabilities driving them unstable. Among the MHD instabilities, the most
detrimental and easily excited are the nearly incompressible shear Alfvén wave (SAWs). These
are transverse electromagnetic waves that propagate along the magnetic field lines with group
velocity equal to the Alfvén speed vA. Their dispersion relation is [4, 5]:

ωSAW = k‖vA , k‖ = k · b̂ , vA =
B0√

4πρm,0
, (2)

with b̂ = B0/B0 a unit vector pointing in the direction of the background magnetic field B0 with
modulus B0, ρm,0 the plasma mass density and k the wave-number of the perturbation. In a
straight cylinder [6, 7, 8]:

k‖ =
1

R0

(
n− m

q(r)

)
, (3)

with q(r) the safety factor profile, R0 the major radius of the Tokamak and m and n the poloidal
and toroidal mode numbers respectively. SAWs are characterized by a frequency spectrum that
varies continuously across the radial domain because of the radial dependence contained in both
the Alfvén speed and the safety factor profile.
Different kinds of Alfvén instabilities, that we call for simplicity Alfvén modes (AMs) [9, 10, 11],
can be present in Tokamak machines. These include both energetic-particle continuum modes
(EPMs) [12] and Alfvén eigenmodes (AEs) [10].
EPMs represent forced oscillations of the SAW continuum that arise when the EP pressure is
comparable to that of the bulk plasma. They emerge as discrete oscillations at the frequency
of the continuum where the wave-EP power exchange is maximized, above the threshold of the
continuum damping.
The AEs, on the other hand, are normal modes of the bulk plasma that can be classified into
two types. The first type includes modes that arise in correspondence of the radial position r0

where different branches of the continuum, see eq. (3), cross. There two counterpropagating
waves interfere destructively, opening a gap in the continuum where modes reside. An important
example of gap modes is represented by the toroidal Alfvén eigenmodes (TAE [13, 14, 15, 5])
that arise because of the coupling between modes with close poloidal harmonics: (m0, n) and
(m0 + 1, n). The second type of AEs arise in correspondence of an extremum of the continuum
spectrum. There ∂ω/∂r vanishes and an effective potential well is established that traps the
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wave. An example of these kind of modes is represented by the reversed shear Alfvén eigenmodes
(RSAE) [16, 17] that are present in correspondence of a minimum in the safety factor profile.
The interest connected with the study of the driven AMs relies on their potentially detrimental
role. In fact the driven AMs can interact with the EPs redistributing them in phase-space,
enhancing the EP transport. In this way EPs can be expelled before they can thermalize with the
bulk plasma leading to a less effective heating [18, 19, 20]. Additionally AMs are held responsible
for the presence of the so-called abrupt-large-events (ALE [21, 22, 23, 24]). These are violent and
rapid variations of the fluctuating magnetic field in correspondence of which an intense migration
of EPs from the core to the periphery is observed, representing a possible threat for the safety
of the machine. Therefore, the study of the AM dynamics is of primary importance both for the
safety of the machine and because only a small fraction of EP losses can be tolerated to achieve
ignition. That is why is mandatory to gain the necessary insight in the AM dynamics to become
predictive about the scenarios that will be met in ITER and DEMO.
In this paper we want to contribute to this task studying the AM dynamics with the code ORB5
[25] in numerical simulations where the so-called “NLED-AUG case” [26] is considered. With
this term we refer to the plasma conditions of the ASDEX Upgrade discharge #31213 at time
t = 0.84 s. The uniqueness of this scenario relies on the fact that it has been obtained tuning the
plasma parameters so that the EPs injected through a neutral beam (NB) have an energy with
respect to the bulk plasma temperature EEP /TBulk ∼ 102 and an induced fast-ion β comparable
to that of the bulk plasma. In such a way there is a strong Alfvén activity, the stabilizing effects of
the bulk plasma being minimized. In particular, TAE-EPM bursts are observed in correspondence
of which energetic particle driven geodesic acoustic modes (EGAMs [27]) appear exhibiting the
typical chirping.
Studies of the AM activity with the numerical tool ORB5 [25] using the NLED-AUG scenario
have already been presented in Ref. [28, 29]. There the EPs have been modelled, respectively,
with Maxwellian distribution functions and with bi-shifted Maxwellians (also known as “double-
bump-on-tail”). These were the two kinds of equilibrium distribution functions available at that
time in ORB5 and the choice of one over the other was motivated by the kind of physics we were
interested to reproduce. In particular the double-bump-on-tail was chosen because of the need to
have an anisotropy in velocity space to drive unstable an EGAM and study its interaction with
the AMs. In the works already published a good qualitative comparison with the experiments has
been obtained. In this work we want to make a further step showing that, through the slowing-
down distribution function [30] newly implemented in ORB5 we are able to go closer to the
experimental conditions obtaining an even better quantitative comparison with the experiment.
The present paper is structured as follows. In Sec. 2 the main features and the model of ORB5 are
described. In Sec. 3 the NLED-AUG case is briefly described. In Sec. 4 an analytical derivation of
the slowing-down distribution function together with details about its implementation in ORB5
are provided. In Sec. 5 the results of numerical simulations obtained taking into account the
NLED-AUG case are described. Finally in Sec. 6 the conclusions of this paper are presented.

2 The numerical model

ORB5 [25] is a nonlinear, global, electromagnetic, gyrokinetic, particle-in-cell (PIC) code that
can take into account collisions and sources (neglected in this work).
The code uses a system of straight-field line coordinates: (r, θ∗, ϕ). As radial coordinate the code
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takes into account the square root of the poloidal flux ψ normalized at its value at the edge ψ0:
r =

√
ψ/ψ0 with 0 ≤ r ≤ 1 that labels the magnetic surfaces. ϕ is the toroidal angular coordinate

and θ∗ is the poloidal magnetic angle:

θ∗ =
1

2 q(r)

∫ 2π

0
dθ
′ B0 · ∇ϕ
B0 · ∇θ′

, 0 ≤ θ∗ ≤ 2π (4)

with θ
′

the geometric poloidal angle and q(r) the safety factor profile.
In ORB5 all the physical quantities are normalized with respect to reference parameters. The
masses of the considered particle species msp are given in units of the mass of the main bulk ion
species mi, the velocities are given in units of the sound velocity cs, the lengths are given in units
of the sound Larmor radius ρs and the time is given in units of the inverse bulk ion cyclotron
frequency:

ωci =
qiB0

mic
, qi = eZi (5)

with e the electron charge in absolute value and Zi the atomic number of the main ion species.
The total distribution function of the sp-particle species fsp is divided into a time-independent
part (equilibrium or background distribution function, F0,sp) and a time dependent component
δfsp, so that fsp = F0,sp+ εδδfsp with εδ a small parameter. Only the time-dependent component
is discretized as will be later discussed. The gyrokinetic Vlasov equation for the perturbed (time-
dependent) distribution function is:

d

dt
δfsp = −Ẋ · ∂F0,sp

∂X

∣∣∣∣
E, v‖
− Ė ∂F0,sp

∂E

∣∣∣∣
X, v‖

− v̇‖
∂F0,sp

∂v‖

∣∣∣∣
X, E

, E =
v2
‖

2
+ µB , µ =

v2
⊥

2B
(6)

where X is the gyrocenter position, while v‖ and v⊥ are, respectively, the parallel and perpendic-
ular components of the particle velocity. The equation of motions in mixed-variable formulation
[31] of the gyrocenter characteristics of the particle species are [32]:

Ẋ = v‖b̂
∗ +

1

qspB∗‖
b̂ × µ∇B + εδ

[
b̂

B∗‖
×∇〈δφ− v‖δAh‖ − v‖δA

s
‖〉α −

qsp
msp
〈δAh‖〉αb̂

∗

]
(7)

v̇‖ = − µ

msp
b̂∗ · B − εδ

{
µ
b̂×∇B
B∗‖

· ∇〈δAs‖〉α +
qsp
msp

[
b̂∗ · ∇〈δφ− v‖δAh‖〉α +

∂

∂t
〈δAs‖〉α

]}
(8)

Ė = v‖v̇‖ + µ∇B · Ẋ , µ̇ = 0 . (9)

In eqs. (7) to (9), msp and qsp = eZsp are respectively the mass and charge of the sp-particle
species with atomic number Zsp. Note that for the electron species Ze = −1. Still in eqs. (7)
to (9) the gyroaveraging operator appears:

〈F 〉α =
1

2π

∫ 2π

0
dαF (X + ρ0) =

1

2π

∫ 2π

0
dα

∫
d3r F (r) δ3(X + ρ0 − r) = J gc0 (F ) (10)

that removes the fast gyroangle α dependence into a general quantity F , with ρ0(X, α) the
gyroradius. δφ is the perturbed scalar potential and δA‖ is the perturbed magnetic parallel
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potential decomposed into symplectic and Hamiltonian parts: δA‖ = δAh‖+δAs‖. B
∗
‖ is the parallel

component of the symplectic magnetic field B∗, linked to the symplectic magnetic potential A∗

by the following relation:

A∗ = A+
msp

qsp
v‖b̂ , B∗ = ∇×A∗ , b̂∗ =

B∗

B∗‖
=

B∗

b̂ ·B∗
. (11)

In ORB5 only the perpendicular component of the perturbed magnetic field δB⊥ is implemented:
δB⊥ = b̂×∇δA‖. In eq. (11) A is the background magnetic potential: B0 = ∇×A and b̂ a unit
vector pointing in the direction of the background magnetic field. The characteristic equations
eqs. (7) to (9) are coupled to the field equations. These are the gyrokinetic quasi-neutrality
equation:

−∇ ·

 ∑
sp=i,f

q2
spnsp

Tsp
ρ2
sp

∇⊥δφ
 =

∑
sp=i,e,f

qsp δnsp , δnsp =

∫
dW 〈δfsp〉 (12)

the parallel Ampère’s law ∑
sp=i,e,f

βsp
ρ2
sp

−∇2
⊥

 δAh‖ = µ0

∑
sp=i,e,f

δj‖,sp +∇2
⊥δA

s
‖ , δj‖,sp = qsp

∫
dW v‖ 〈δfs〉 (13)

and the ideal Ohm’s law :
∂

∂t
δAs‖ + b̂ · ∇δφ = 0 (14)

where:

nsp =

∫
dWF0,sp , βsp = µ0

nspTsp
B2

0

(15)

where dW = B∗‖ dv‖ dµ dα. Equations (6) to (9) and (12) to (14) constitute the gyrokinetic
Vlasov-Maxwell system of equations solved by ORB5.
The discretization is achieved sampling the phase-space with a set of super-particles called mark-
ers. The k-th marker of the sp-particle species is associated to a weight ωsp,k(t). This is a
time-dependent quantity that represents at the time t the variation of the number of physical
particles contained in a small volume in phase-space Ωk, centered around the k-th marker:

δNphysical particles
sp =

∫
Ωk

d6Z δfsp(Z(t), t) = ωsp,k(t) . (16)

Each marker is pushed along its orbit slowing the characteristics equations through a Runge-
Kutta method at 4th order.
The perturbed fields Ψ = {δφ, δA‖} are discretized using the finite-elements Galerkin approxi-
mation. The fields are represented as linear combinations of finite dimensional function space
Λµ(x):

Ψ(x, t) =
∑
µ

Ψµ(t)Λµ(x) (17)

where the basis Λµ(x) are tensor product of 1D polynomials (B-splines) of degree p = 1, 2, 3:

Λµ(x) = Λpj (r)Λ
p
k(θ
∗)Λpl (ϕ) with µ = (j, k, l) . (18)
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In the present work p = 3. The number of B-splines in each direction is connected to the number
of grid points (knots) (Nr, Nθ∗ , Nϕ) associated to the B-splines and to the chosen degree p of the
polynomials. Through the decomposition expressed in eq. (17) the fields equations become a set
of linear equations to which is applied the double discrete Fourier transformation F in both the
poloidal and toroidal directions. Inverting the obtained system of equations, it is then possible
to calculate the Fourier coefficients of the perturbations, to which a Fourier filter is applied. This
is given by a field aligned filter:

m ∈ [n q(r)−∆m,n q(r) + ∆m]︸ ︷︷ ︸
field aligned filter

, n ∈ [nfilt1, nfilt2] . (19)

In eq. (19) nfilt1, nfilt2 are the range boundaries of the rectangular filter for the toroidal coef-
ficients. ∆m, instead, is the width of the field aligned filter.
In Sec. 5 results of ORB5 simulations will be discussed. There we will indicate some important
parameters used in the simulations. We will specify: the number of grid points associated to the
B-splines (Nr, Nθ∗ , Nϕ), the number of markers used for every particle species nptotsp, the time
step in use ∆t and the width of the field aligned filter ∆m. In this work only the AMs in the
NLED-AUG scenario are investigated by retaining, as in previous works [28, 33], only the modes
with toroidal mode number equal to one: nfilt1 = nfilt2 = 1. Additionally only the EPs will be
allowed to redistribute in phase-space, following their full trajectories. The bulk plasma species
instead will follow their unperturbed trajectories. This means that in eqs. (7) to (9) the small
parameter is taken, with abuse of notation, equal to one only for the EPs while for the electrons
and the bulk ions species it is identically zero.
In the following sections we will also specify if a drift-kinetic model is considered and finite-
Larmor-radius (FLR) are neglected, or if a gyrokinetic model is considered and FLR effects are
taken into account.

3 NLED-AUG scenario

As stated in the introduction, with the term NLED-AUG case [34] we refer to the plasma con-
ditions present at t = 0.84 s in the discharge number 31213 (#31213@0.84s) performed in the
Tokamak ASDEX Upgrade (AUG). EPs, in this experimental case, are due to a NB launched
with an injection angle of 7.13◦ with respect to the horizontal plane. This experimental case
exhibits, as anticipated in Sec. 1, plasma parameters previously unexplored in ASDEX Upgrade.
In fact, the NB-induced fast-ion β is comparable to that of the bulk plasma and EPs’ injection
energy is approximately 100 times higher than the bulk species temperatures:

βEP /βBulk ∼ 1 , EEP /TBulk ≈ 93 keV/1 keV ∼ 102 . (20)

By doing so, the realistic ratios of plasma parameters that are going to be met in future fusion
machines have been achieved in this scenario (in ITER/DEMO: EEP /TBulk ≈ 3.5MeV/30keV ).
In such a way an intense EP-driven activity is observed, with the stabilizing effects of the bulk
plasma minimized. That is why this is a very interesting scenario to understand the EP-driven
dynamics and to validate the codes against the experiments. In particular this case presents a
rich nonlinear physics of interest. Around t ≈ 0.84 s a TAE-EPM burst is present after which, at
lower frequencies, an EGAM exhibit the typical chirping behaviour (cf. Fig. 1). According to the
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pick-up-coils measurements, in this scenario the most unstable AM has toroidal mode number
n = 1.

Figure 1: Experimental spectrogram. At t = 0.84 s the plasma parameters, profiles and the
reconstructed magnetic equilibrium have been selected to perform numerical simulations. At this
time a TAE-EPM burst, covering the frequency range 80 kHz≤ ν ≤ 250 kHz, is observed. At
lower frequencies ν ≈ 50 kHz, an EGAM exhibits the typical chirping behaviour.

In Fig. 2 the temperature profiles of the bulk plasma species (left) and the radial dependence of
the electron density profile (right) are shown, while in Fig. 3 left the radial dependence of the

Figure 2: Radial temperature profiles (left) of the bulk plasma species (electrons and deuterium)
and radial electron density profile (right) of the NLED-AUG case.

EP density profile nEP modelled by TRANSP [35] is shown. The EPs have an off-axis radial
density profile with a reference concentration of 〈nEP 〉/〈ne〉 = 0.0949, where 〈...〉 indicates vol-
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ume average. In Fig. 3 right the radial dependence of the safety factor profile q is shown. It has
a reversed shear, with a minimum around r ≈ 0.5. Additionally the TAE position r ≈ 0.738 is
indicated (black point). The TAE is formed in the gap created by the interaction between the
two most unstable scalar potential Fourier components: (m,n) = (2, 1) and (m,n) = (3, 1).

Figure 3: Left: EPs off-axis radial density profile as modelled by TRANSP. It has a reference
concentration of 〈nEP 〉/〈ne〉 = 0.0949. Right: Safety factor profile of the NLED-AUG case. It
exhibits a non-monotonic profile with a minimum around r ≈ 0.5 where q ≈ 2.28 and a maximum
at r = 1 in the amount of q ≈ 8.5. The inset figure marks the TAE location at r0 ≈ 0.738,
corresponding to q0 = q(r0) = (2m0 + 1)/2 = 2.5, with n = 1 and m0 = 2.

In Tab. 1 the values of some important constants that will be used in the simulations are shown.
In this work frequencies and growth rates will be provided in ωA0-units, that is the Alfvén fre-
quency on-axis, at r = 0: ωA0 = vA(r = 0)/R0, with vA the Alfvén speed (cf. eq. (2)) and R0 the
major radius of the tokamak.

a0 [m] R0 [m] B0 [T] βe Lx ωci [rad/s] ωA0 [rad/s] ωci/ωA0

0.482 1.666 2.202 2.7 · 10−4 551.6 1.055 · 108 4.98 · 106 ≈ 21

Table 1: Constants in use: averaged minor radius a0, major radius R0, amplitude of the back-
ground magnetic field on axis B0. Normalized electron pressure βe = 4π ne(r0)Te(r0)/B2

0 with
the r0 a reference radial position. Normalized size of the plasma system that is Lx = 2 a0/ρs,
with ρs = cs/ωci and cs the sound velocity and ωci the ion cyclotron frequency. ωA0 is the value
of the Alfvén frequency on axis.

Many works have already been dedicated to the investigation of the mode dynamics of this in-
teresting experimental case. The linear AM dynamics has been investigated in Ref. [28, 33] in
simulations where both on-axis and off-axis radial density profiles have been considered for the
EPs. These have been modelled via Maxwellian distribution functions associated to temperature
profiles constant against the radius. In Ref. [36] numerical studies of the nonlinear EGAM dynam-
ics have been conducted. In Ref. [37] bicoherence studies have suggested that nonlinear coupling
exists between the observed TAE-EPM burst triggering the EGAM. In Ref. [29] the interaction
between AMs and EGAMs has been studied both with numerical simulations and through an
analytical model where only the EPs have been allowed to redistribute in phase-space, following
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their full trajectories. Additionally, there the EPs have been modelled via a double-bump-on-tail
distribution function, since an anisotropy in velocity space was needed to drive an EGAM unsta-
ble [38, 39, 40].
In the present work we focus on the AM dynamics, modelling the bulk plasma species with
Maxwellian distribution functions and retaining the nonlinearities only in the EP dynamics, as
in [29, 33]. That is, only the EPs gyrocenter characteristics eqs. (7) to (9) have εδ = 1. The
other particle species (electrons and bulk ions) follow their unperturbed trajectories and for them
εδ = 0. The novelty of this work is represented by the fact that we go closer to the experimental
conditions modelling the EPs via an isotropic slowing-down distribution function. We emphasize
here that EPs are present in the NLED-AUG case as injected through an NB. This implies that
their distribution function is intrinsically anisotropic in phase-space. In the studies carried out
in this paper we neglect the effects of the anisotropy in velocity space that are, on the other
hand, important to detail the interaction between AMs and EGAMs (that here we do not study
in contrast to what was done in Ref. [29]). Nevertheless the isotropic slowing-down represents
an improvement with respect to the Maxwellian distribution function, as will be motivated in
Sec. 4. Additionally through its choice we will observe a good quantitative comparison with the
experiment making a further step with respect to previously published works where already a
good qualitative agreement has been obtained. In the NLED-AUG scenario the bulk ions and the
EPs are constituted by deuterium ions. In all the simulations discussed in this work the realistic
electron mass will be considered: me ≈ mD/3676.
In Sec. 4 we report a simplified analytical derivation and discuss why the slowing-down distri-
bution function represents a better description of the EPs displacement in phase-space and why
this is an improvement with respect to the Maxwellian and the double-bump-on-tail distribution
functions. Later we will describe its implementation in ORB5.
In all the simulations presented in Sec. 5 the quasi-neutrality condition will always be satisfied
ne = ZD nD + ZEP nEP with ZD = ZEP = 1, by keeping fixed the electron radial density profile
(cf. Fig. 2 right) and varying accordingly the EP and bulk deuterium profiles.

4 Slowing-down distribution function

We want to investigate the AM dynamics in the NLED-AUG case with ORB5. Approximations
are present in the performed simulations. The main approximations here concern the choice of not
retaining the bulk plasma nonlinearities and the choice for the equilibrium distribution function
of the particle species. The importance of modelling the particle species with a proper equilibrium
distribution function can be understood by looking at the gyrokinetic Vlasov equation eq. (6). In
fact δfsp can only be evolved once the equilibrium distribution function and its derivatives are
known. Obviously changing the equilibrium distribution function implies a modification of the
time evolution of the perturbed distribution function, thus catching different aspects of physics.
While particles of the bulk plasma are usually well described by Maxwellian distribution functions
(that from now on we denote with FM ), the question here is what is the shape of the distribution
function that better represents the arrangements of the EPs in phase-space. For this, we choose
a non-Maxwellian equilibrium distribution, namely the “slowing-down” [41, 30, 42, 43, 44] that,
from now on, we simply indicate with F0.
To derive its form we summarize the main steps presented in Ref. [30] where the analytical form
of the slowing-down is derived. There the author studies how the fast-ions with mass mEP
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and charge qEP injected in plasma through a beam are displaced in phase-space because of the
collisions with the particles of the bulk plasma. The starting point is represented by the Fokker-
Planck equation [45] for the EPs:

∂tF0 + v · ∇xF0 +
qEP
mEP

(
E0 +

v

c
×B0

)
· ∇vF0 = C(F0) + S . (21)

In eq. (21) S is the EPs source, while C(F0) [46] is the collision operator, composed by the sum
of two contributions

C(F0) = C(F0, FM,e) + C(F0, FM,i) . (22)

C(F0, FM,e) takes into account the effects of the collisions of the EPs with the electrons while
C(F0, FM,i) considers the collisions of the EPs with the bulk ions. Considering an EP beam
axisymmetrically distributed around the background magnetic field and writing explicitly the
analytical form of the collision operator, eq. (21) becomes [30]:

∂tF0 =
1

τsv3

{
v
∂

∂v

[(
v3 + v3

c

)
F0

]
+ Z2

v3
c

2

∂

∂ξ

[(
1− ξ2

) ∂F0

∂ξ

]}
+ S(v, ξ) . (23)

In eq. (23) v is the modulus of the beam particle velocity v = |v| and ξ = v‖/v = cosχ, where
v‖ is the component of the particle velocity parallel to the background magnetic field and χ the
pitch angle. vc is the “crossover velocity” or “slowing-down critical velocity”:

vc =

(
3
√
π

4

me

mEP
Z1

)1/3

vth,e , Z1 =
∑

i=Bulk ions species

ni
ne

mEP

mi
Z2
i (24)

vth,e is the electron thermal velocity and

Z2 =
∑

i=Bulk ions species

ni Z
2
i

neZ1
. (25)

The crossover velocity is a property of the bulk plasma and represents a critical speed as for v > vc
the electron drag dominates over the ion drag and the EPs are mainly decelerated by friction
with the electrons. For v < vc the opposite trend is met and the EPs are mainly decelerated by
friction with the bulk ions. τs [47] is the slowing-down time that describes the time after which
a particle of the energetic ion beam is decelerated by collisions with the other particle species.
We take into account a monoenergetic EP beam. In this way the EP source in eq. (23) becomes:

S(v, ξ) =
S0

v2
δ(v − vEP )δ(ξ − ξEP ) . (26)

S0 is the intensity of the EP source, ξEP is the injection parallel velocity of the beam normalized
to the modulus of the total velocity vEP =

√
2EEP /mEP with EEP the injection energy of the

beam.
In Ref. [30] the solution of eq. (23) is nicely derived. This is quite complex and contains the
dependence in ξ (or χ, the pitch angle). Here, and in the results presented below, we disregard
the ξ-dependence. It is then straightforward to obtain the steady state solution for an isotropic,
monoenergetic, EP beam:

F0(v) =
S0τs
4π

θ(vEP − v)

v3
c + v3

. (27)
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This ξ-independent slowing-down distribution function is appropriate to describe fusion-born
products [43] since α particles are not born in any preferential direction (they are isotropic). On
the other hand eq. (27) does not appropriately describe the arrangement in phase-space of the
EPs belonging to an injected ion beam. In this case, in fact, the EPs are not isotropic. Eq. (27)
represents nevertheless an improvement with respect to the Maxwellian distribution function and
it is widely used in literature to model EPs [43]. In fact, through the Heaviside step function
θ(vEP −v), it provides a constraint in the velocity distribution of the EPs present (born/injected)
in plasma with EEP , since 0 ≤ v ≤ vEP . Additionally its dependence in velocity-space is governed
by the crossover velocity that, as previously stated, is a property of the bulk plasma.
By taking the zero and second order moments of eq. (27) we find [42]:∫

d3v F0 = S0τsI2

(
vc
vEP

)
,

∫
d3v v2F0 = S0τsI4

(
vc
vEP

)
v2
EP , (28)

where:

In(a) =

∫ 1

0
dx

xn

x3 + a3
=


n = 2 , 1

3 ln
(
1 + a−3

)
n = 4 , 1

2 − a
2
{

1
6 ln

(
1−a+a2

(1+a)2

)
+ 1√

3

[
tan−1

(
2−a
a
√

3

)
+ π

6

]}
.

(29)
To ensure the zero order moment in eq. (28) to give the EPs’ radial density profile nEP , we
impose:

S0 =
nEP

τs I2

(
vc
vEP

) . (30)

With this choice it follows:

F0 =
nEP

4π
3 log

[
1 +

(
vEP
vc

)3
] θ(vEP − v)

v3
c + v3

(31)

that represents the analytical form of the slowing-down distribution function properly normalized.
Equation (31) has been implemented in ORB5 together with its derivatives that are needed to
evolve the perturbed EP distribution functions δfEP eq. (6):

dF0
dψ =

{
d
dψ log nEP +

 (vEP /vc)3[
1+

(
vEP
vc

)3
]

log

[
1+

(
vEP
vc

)3
] − v3c

v3c+v3

 · 3 d
dψ log vc

}
F0

d
d(mEP E)F0 = − 3v

v3c+v3
F0
mEP

d
dv‖
F0 = 0

(32)

where v =
√

2E and:

dvc
dψ

= vc

[
d

dψ
log vth,e −

1

3

d

dψ
log ne +

1

3

(∑
l

z2
l

ml

dnl
dψ

)
·

(∑
p

z2
p

mpnp

)]
, (33)
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where ψ is the normalized poloidal flux. In the notation in use:

E =
v2

2
=
v2
‖

2
+ µB with µ =

v2
⊥

2B
and EEP = mEP E . (34)

We conclude this section introducing the concept of “equivalent temperature” TEP that is the
temperature of a Maxwellian distribution function FM for the EPs that satisfies the following
requirement:∫

d3v v2 FM =

∫
d3v v2 F0 with

∫
d3v v2 FM = 3nEP (r)

TEP (r)

mEP
(35)

from which it follows:

TEP (r) =
2

3

I4

(
vc(r)
vEP

)
I2

(
vc(r)
vEP

)EEP . (36)

4.1 Implementation in ORB5

As it has been already anticipated in Sec. 2, in ORB5 all the quantities are normalized with
respect to reference parameters. In particular, velocities are given in units of the sound velocity
cs:

cs =

√
Te(r0)

mD
(37)

defined as the square root of the electron temperature considered at a chosen reference position
r0, divided by the mass of the main ion species that, for the NLED-AUG case, is constituted
by deuterium ions. Here the reference radial position is on-axis r0 = 0 and Te(r0) = 0.7088 keV
. In Fig. 4 the velocity dependence in (v‖, µB)-space of the slowing-down distribution function
at r = 0.5 is shown. This has been taken from an ORB5-simulation. It has been obtained
considering the bulk plasma parameters of the NLED-AUG case (see Sec. 3) as well as the
reference EPs parameters: off-axis radial density profile in Fig. 3 left having a concentration of
〈nEP 〉/〈ne〉 = 0.0949, injected with injection energy EEP = 93 keV.
In Fig. 5 slices obtained from Fig. 4 are shown. There we can observe the cuts in velocity-space
introduced because of the presence of the Heaviside function in eq. (31):

v‖ ≈ 16.2 cs , µB ≈ 131.1 c2
s . (38)

Using the appropriate conversion factor the interested reader can easily verify that these cuts
correspond to an injection energy of EEP = 93 keV. In Fig. 6 we show the EP radial density
profile (on the top, corresponding to Fig. 3 left) and the equivalent temperature (on the bottom,
cf. eq. (36)). The analytical expressions (black dashed lines) are compared with the correspond-
ing moments (blue lines) calculated through numerical integration of the distribution function
implemented in ORB5. The observed good agreement between the analytical expressions and the
numerical calculations is a further proof of the correct implementation of the new non-Maxwellian
background distribution function in the code.
In Fig. 7 slices of slowing-down distribution functions obtained considering different EP concen-
tration, electron temperature and injection energy are shown. The corresponding moments are
shown in Fig. 8. Also there a good agreement is observed between the analytical expressions
(black dashed lines) and the numerical integrals of the implemented slowing-down.
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Figure 4: Slowing-down distribution implemented in ORB5 for the EPs. The dependence in
velocity-space at a fixed radial position is shown.

Figure 5: Slices of the equilibrium distribution function obtained from Fig. 4.
Left: Dependence against v‖: F0(r = 0.5, v‖, µB = 0). Right: Dependence against µB: F0(r =
0.5, v‖ = 0, µB).
The vertical black dashed lines correspond to the cuts in velocity space present because of the
Heaviside theta contained in eq. (31).
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Figure 6: Top: EP Radial density profile corresponding to Fig. 3 left. Bottom: EP equivalent
temperature, cf. eq. (36).
〈...〉v indicates integration in velocity space. The moments of the equilibrium distribution func-
tion F0 implemented in ORB5 and calculated through numerical integration (blue curves) are
compared with the expected values of the analytical expressions (black dashed lines).

Figure 7: Slices of equilibrium distribution functions obtained considering different EP concentra-
tion, values of electron temperature and injection energy. Te,ref indicates the reference electron
temperature of the NLED-AUG case (cf. Fig. 2 left).
Left: Dependence against v‖. Right: Dependence against µB.

14



Figure 8: Top: EP Radial density profiles. Bottom: EP equivalent temperature profiles.
The black-dashed lines correspond to the analytical expressions, while the coloured lines are
calculated through numerical integration of the implemented distribution functions. The coloured
lines are obtained with the plasma parameters considered to compute the slices of the same colour
in Fig. 7
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5 Comparison with the experiments: application to the NLED-
AUG case

We discuss here the mode dynamics observed in numerical simulations where the NLED-AUG
scenario (see Sec. 3) has been taken into account. In Tab. 2 the main parameters considered in
the simulations are reported. Their choice is motivated by convergence studies (see Appendix A).
As it is indicated in Tab. 2, we will investigate here only the dynamics of modes with toroidal
mode number n = 1. This because, as anticipated in Sec. 3, from experimental measurements
this is known to be the most unstable AM. The dynamics of zonal structures (n = 0) is then not
treated in the present work.

∆t [ω−1
ci ] nptotD,e,EP · 107 Nr Nθ∗ Nϕ nfilt ∆m

4 3, 12, 3 3000 64 32 1 7

Table 2: Main simulation parameters: time step (∆t), number of markers for particle species
(nptot). Radial/poloidal/toroidal grid points (Nr, Nθ∗ , Nϕ), toroidal (nfilt) and poloidal width
(∆m) of the field aligned Fourier filter (see Sec. 2).

We begin studying the mode dynamics observed in the exponential growth phase of the dominant
mode and compare the results obtained with a Maxwellian and a slowing-down distribution. For
the moment we run ORB5 neglecting the FLR effects of all the particle species, i.e. considering a
drift-kinetic model. In all the simulations analyzed the dominant mode, in the exponential growth
phase, is an Alfvén mode with scalar potential dominated by its components (m,n) = (2, 1) and
peaked around r = 0.2.

Figure 9: Growth rates determined in drift-kinetic simulations (no FLR effects). Left: Scan
against the EP concentration for Maxwellian (FM ) and slowing-down (F0) distribution functions.
TEP = 25 keV represents the value on the center of the equivalent temperature (cf. eq. (36))
corresponding to an injection energy of EEP = 93 keV. Right: Scan against the EP temperature
in simulations where the EPs have been modelled through Maxwellian distribution functions.
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In Fig. 9 left the growth rates determined in a scan against the EP concentration are shown.
There we compare the growth rates obtained in simulations where the EPs have been modelled
with Maxwellian distribution functions (FM ) with those obtained modelling the EPs with the
slowing-down distribution function (F0). In Fig. 9 right the growth rate dependence against
the EPs temperature (with constant radial profile) is shown in a scan where the EPs have been
modelled via Maxwellian distribution functions. In Fig. 10 we display the real frequencies of
the dominant modes observed in the corresponding simulations that have produced the growth
rates reported in Fig. 9. Only in Fig. 10 the error bars are present, since the errors committed
determining the growth rates in Fig. 9 are negligible.

Figure 10: Real frequencies determined in the growing exponential phase of the dominant modes
in drift-kinetic simulations (no FLR effects considered). Left: Scan against the EP concentration
for Maxwellian (FM ) and slowing-down (F0) distribution functions.
Right: Scan against the EP temperature in simulations where the EPs have Maxwellian distri-
bution functions.

In the scans presented in Fig. 9 and Fig. 10, the case closer to the experimental conditions is that
where the EPs have been modelled with slowing-down distribution function and concentration
of 〈nEP 〉/〈ne〉 = 0.0949. Its values of growth rate and frequency are reported in Tab. 3. There,
they are compared with those obtained in a simulation where the EPs have been modelled with
a Maxwellian distribution function with TEP = 25 keV. This corresponds to the value of the
equivalent temperature around r ≈ 0.5 (cf. with Fig. 6).

Distribution function γ [ωA0] ω [ωA0]

Slowing-down, EEP = 93 keV 0.023 0.116± 0.008
Maxwellian, TEP = 25 keV 0.016 0.128± 0.005

Table 3: Growth rates γ and frequencies ω of the dominant modes, determined in drift-kinetic
simulations (no FLR effects included). The reference EP concentration of 〈nEP 〉/〈ne〉 = 0.0949
is here considered.
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Referring to Tab. 3, we can then conclude that the choice of the slowing-down distribution function
over a Maxwellian distribution function with temperature close to the equivalent temperature,
does not affect significantly the frequency of driven AM, although quantitative differences as large
as almost 40 % are found in the growth rate.
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Figure 11: Temporal evolution of the dominant poloidal harmonics (m-numbers indicated in the
legends) in the simulations. Left: EPs modelled with slowing-down distribution and EEP =
93 keV. Right: EPs modelled with the equivalent Maxwellian.

We describe now in detail the mode dynamics of the AM observed in simulations where FLR
effects are included for bulk ions and EPs (the model is gyrokinetic) and the reference EP con-
centration of 〈nEP 〉/〈ne〉 = 0.0949 is taken into account. Here we will not just limit ourselves
to the investigation of the exponential growth phase of the AM, but also to its nonlinear phase.
There the AM mode structure evolves radially, presenting peaks close to the edge. Therefore
we have increased the radial resolution to Nr = 6000 in order to correctly resolve those peaks.
Simultaneously since in ORB5 the numerical noise is proportional to the number of radial grid
points Nr [48], we have increased the number of markers to nptotE,e,EP = (18, 72, 18) · 107.
The temporal dynamics observed in a simulation where the EPs have been modelled with the
slowing-down distribution function with EEP = 93 keV, is compared with that observed in a sim-
ulation where the EPs are modelled with the equivalent Maxwellian (the equivalent temperature
in Fig. 6 is taken now into account). The former is shown in Fig. 11 left, while the latter is
shown in Fig. 11 right. In the two plots in Fig. 11 we have highlighted the temporal intervals
corresponding to: the exponential growth phase (yellow), the early nonlinear phase (pink) and
the deep nonlinear phase (blue). Note that both the simulations cover the same temporal range:
t ∈ [0; 100000]ω−1

ci .
The growth rate and frequencies determined in the exponential growth phase of the two simula-
tions in Fig. 11 are reported in Tab. 4, while the corresponding mode structures and frequency
spectra are shown in Fig. 12. The dominant AM here, as in the drift-kinetic simulations, is
an EPM whose scalar potential is dominated by the Fourier component (m,n) = (2, 1) peaked
around the radial position r ≈ 0.2. Its frequency lies almost on the continuum spectrum calcu-
lated with the linear gyrokinetic code LIGKA [49] (see red dashed lines in Fig. 12 on the bottom).
We can conclude also here that, as for the drift-kinetic simulations, the choice of the equivalent
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Distribution function γ [ωA0] ω [ωA0]

Slowing-down, EEP = 93 keV 0.019 0.133± 0.007
Equivalent Maxwellian 0.015 0.138± 0.005

Table 4: Growth rates γ and frequencies ω of the dominant modes, determined in gyroki-
netic simulations (FLR effects of the EPs are retained). The reference EP concentration of
〈nEP 〉/〈ne〉 = 0.0949 is here considered.

Maxwellian over the slowing-down distribution function, does not modify significantly the kind
of driven AM investigated (mode structure and frequency). However, referring to Tab. 4, we still
observe a growth rate quantitative difference that in this case is as large as almost 30 % of the
value of the growth rate obtained in the simulation with the EPs modelled with the equivalent
Maxwellian.
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Figure 12: Mode structures and frequency spectra observed in the exponential growth phases
(yellow regions) of the simulations in Fig. 11, where the EPs have been modelled with slowing-
down (left) and equivalent Maxwellian (right).

In Fig. 13 we compare the frequency spectra calculated in the early nonlinear phases (pink re-
gions) of the two different simulations shown in Fig. 11. In this temporal phase the scalar potential
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Figure 13: Frequency spectra calculated in the early nonlinear phases (pink regions) of the
simulations in Fig. 11. Left: EPs modelled with slowing-down distribution function. Right:
EPs modelled via equivalent Maxwellian.

Fourier component (m,n) = (2, 1) is still the dominant one, since it is almost an order of magni-
tude higher than the other Fourier components. Comparing Fig. 13 with Fig. 12, we observe that
both simulations catch correctly the nonlinear modification of the AM frequency passing from
the linear to the nonlinear phase. In this time interval, the dominant AM frequency exhibits tiny
differences modelling the EPs with slowing-down or equivalent Maxwellian. Additionally in both
simulations, at the end of this phase, the Fourier component (m,n) = (3, 1) begins to grow, even
though with different growth rate, as indicated in Tab. 5.

Distribution function γ [ωA0]

Slowing-down, EEP = 93 keV 0.002
Equivalent Maxwellian 0.00053

Table 5: Growth rates γ of (m,n) = (3, 1) in the deep nonlinear phase (blue regions in Fig. 11).
Gyrokinetic simulations (FLR effects of the EPs are retained). The reference EP concentration
of 〈nEP 〉/〈ne〉 = 0.0949 is here considered.

In Fig. 14 the frequency spectra calculated in the deep nonlinear phases (blue regions in Fig. 11)
are shown. In these temporal phases the scalar potential Fourier component (m,n) = (3, 1)
reaches an amplitude comparable to that of the dominant (m,n) = (2, 1). Passing from Fig. 13
to Fig. 14 we observe that in the simulation where the EPs have been modelled with the slowing-
down (left), a higher frequency modification of the AM is detected with respect to the right plots
where the EPs had been modelled with the equivalent Maxwellian. In fact in Fig. 14 left the AM
oscillates mainly at the TAE frequency. We remind here that this is an AE whose frequency lies
inside the gap created by the branches of the continuum (m0, n) and (m0 + 1, n) at the radial
position r0 that labels the rational surface satisfying q(r0) = (2m0 +1)/(2n) [13] where two close
poloidal harmonics interact. For the case under investigation: m0 = 2, n = 1 and r0 = 0.738
(cf. Fig. 3 right). We emphasize that in Fig. 14 left the AM oscillates almost at every radial
position at the TAE frequency while, in Fig. 14 right, such a higher frequency modification is
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Figure 14: Frequency spectra calculated in the deep nonlinear phases (blue regions) of the sim-
ulations in Fig. 11. Left: EPs modelled with slowing-down distribution function. Right: EPs
modelled via equivalent Maxwellian.

not observed. Finally we note in Fig. 14 the presence, in this deep nonlinear phase, of higher
frequencies in the EAE gap: ω ∼ 0.6,−0.5ωA0. We do not further investigate the emerging
of these higher frequencies as the focus of the present paper is on the study of the TAE-EPM
frequency modification observed in the experiment (cf. Fig. 1), that correspond to the dominant
frequencies also in the presented simulations.
We summarize the results of the AM frequency modification in Fig. 15. There the spectrogram
calculated in a simulation with EPs modelled with the slowing down (left) is compared with that
obtained in the simulation where the EPs have been modelled with the equivalent Maxwellian
(right). The spectrograms presented have been obtained through the fast Fourier transform of
the scalar potential at r = 0.2. This corresponds to the radial positions where the mode structure
of the AM has a maximum. The time interval where the Fourier transform has been calculated
[t0; t0 + ∆t] has been obtained varying continuously t0 (as indicated in the x-axis in Fig. 15)
and choosing ∆t = 104 ω−1

ci . In Fig. 15 the time units are provided also in milliseconds, while
the frequency units are provided also in kHz, to allow a better comparison with the experimental
spectrogram in Fig. 1. We notice, at first, that the total time width of the simulations is of ≈ 1 ms
which lies well inside the width of the TAE-EPM burst at t = 0.84 s (cf. Fig. 1). Finally, the
choice of the slowing-down over the equivalent Maxwellian allows a better comparison with the
experiment. Through this, in fact, a broader modification of the AM frequency in the nonlinear
phase is observed 100 kHz≤ ν ≤ 180 kHz, resulting in a better agreement with the experiment
(cf. Fig. 1).
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Figure 15: Spectrograms calculated from ORB5 simulations with the EPs modelled with different
distribution functions (as indicated in the plot titles). The Fourier transform of the signal has
been calculated in the temporal range t ∈ [t0, t0 + ∆t] with ∆t = 104 ω−1

ci . The low boundary t0
has been varied continuously as indicated in the x-axis of the plot.

6 Conclusion

In this work the study of the AM instabilities driven by EPs has been conducted for the NLED-
AUG scenario. This is an interesting case obtained in the Tokamak ASDEX Upgrade where the
EPs have been injected through a NB with energy EEP ≈ 93 keV. The peculiarity of this scenario
relies on the fact that it has been obtained through plasma ratios (βEP /βBulk and EEP /TBulk)
close to those that are going to be met in future fusion machines.
Studies of the AM dynamics in the NLED-AUG case have already been conducted through nu-
merical simulations [28, 29, 33]. The main novelty in the present work is represented by the fact
that the EPs have been modelled thorough an equilibrium isotropic slowing-down distribution
function. Through it, we have been able to go closer to the experimental conditions. In particu-
lar we have obtained a good quantitative agreement with the experimental spectrogram doing a
further step with respect to previous published works [28, 29, 33]. There, in fact, a good quali-
tative agreement with the experiment has been obtained and the EPs have been modelled with
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Maxwellian or double-bump-on-tails, whose choice was motivated by the kind of physics we were
interested to investigate. In the present work we have proved that the isotropic slowing-down dis-
tribution function has been correctly implemented in ORB5. We have also shown that its choice
allows a more accurate description of the frequency modification of the AM in the nonlinear
phase, while the choice of an equivalent Maxwellian underestimate it. The key conclusion is that
with the inclusion of the FLR effects we have been able to achieve a good quantitative agreement
with the experimental spectrogram. These results are already encouraging and prove that we are
able to reproduce the relevant physics behind the experiments in an attempt to become predictive
about future fusion scenarios and pave the path to new studies that have to be carried out to
catch more of the nonlinear aspects in the NLED-AUG case.
In future works we will retain the nonlinearities in all the particle species and we will consider
the interaction between the AM and the EGAM, to describe the triggering of the EGAM by the
TAE-EPM burst. An attempt on this has already been done in Ref. [29] where the EPs have
been modelled with a double-bump-on-tail. Moreover the AM and EGAM interaction will be
studied considering a ξ-dependent slowing-down distribution function [50] in order to retain the
anisotropy in velocity space needed to drive the EGAM.
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A Slowing-down validation and convergence studies

We present here a series of convergence studies used to find the reference simulation parameters
in Tab. 2. In Fig. 16, Fig. 17, Fig. 18 and Fig. 19 we show the discrepancies σ of the determined
quantities X from the most accurate value, that is:

σ [%] =
X −Xmost accurate vale

Xmost accurate vale
· 100 . (39)

The most accurate value Xmost accurate value corresponds to the value (almost) at convergence. Its
discrepancy, because of the definition in eq. (39), is σ = 0 %. In Fig. 16, Fig. 17, Fig. 18 and
Fig. 19 the orange points have been obtained in simulations where the reference parameters in
Tab. 6 have been considered.

∆t [ω−1
ci ] nptotD,e,EP · 107 Nr

4 3, 12, 3 1000

Table 6: Reference simulation parameters: time step (∆t), number of markers for particle species
(nptot) and radial grid points (Nr), cf. Sec. 2.

In all the simulations here presented FLR effects are retained and the reference EP concentration
of 〈nEP 〉/〈ne〉 = 0.0949 is considered. The quantities X here studied (growth rates γ and fre-
quencies ω) have been determined in the exponential growth phase of the simulations. The scans
here presented are against: the time width ∆t, the number of markers nptot and the number of
radial grid points Nr (cf. Sec. 2). The growth rate and frequency obtained using the reference
parameters in Tab. 6 correspond to:

γref = 0.0197ωA0 , ωref = 0.133ωA0 . (40)

Figure 16: Simulations with # of markersD,e,EP = (3, 12, 3) · 107 and Nr = 1000. Scan against
the time step ∆t in use in the simulations. In the plots, the discrepancies σ of growth rate (left)
and frequencies (right) with respect to the best resolved case (at ∆t = 0.25ω−1

ci ) are shown. The
orange points correspond to the results obtained with the parameters shown in Tab. 6.
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Figure 17: Simulations with ∆t = 4ω−1
ci and Nr = 1000. Scan against the # of markers of

Deuterium and EPs. The number of markers for the electrons is four times higher than that of
the EPs. In the plots the discrepancies σ of growth rate (left) and frequencies (right) with respect
to the best resolved case (corresponding to the simulation with number of markers = 30 · 107)
are shown. The orange points correspond to the results obtained with the parameters shown in
Tab. 6.

Figure 18: Simulations with ∆t = 4ω−1
ci and Nr = 1000. Scan against the # of markers of the

electrons. The number of markers for EPs and Deuterium particles is fixed at 3 ·107. In the plots
the discrepancies σ of growth rate (left) and frequencies (right) with respect to the best resolved
case (here corresponding to the simulation with number of markers = 50 · 107) are shown. The
orange points correspond to the results obtained with the parameters shown in Tab. 6.
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Figure 19: Simulations with ∆t = 4ω−1
ci and # of markersD,e,EP = (3, 12, 3)·107. Scan against the

# of radial grid points Nr. In the plots the discrepancies σ of growth rate (left) and frequencies
(right) with respect to the best resolved case (here corresponding to the simulation with Nr =
6000) are shown. The orange points correspond to the results obtained with the parameters
shown in Tab. 6.
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