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ABSTRACT 

Ion temperature gradient drift instabilities have been investigated using 

gyrokinetic particle simulation techniques for the purpose of identifying the 

mechanisms responsible for their nonlinear saturation as well as the associated 

anomalous transport. For simplicity, the simulation has been carried out in a 

shear-free slab geometry, where the background pressure gradient is held fixed in 

time to represent quasistatic profiles typical of tokamak discharges. It is found 

that the nonlinearly generated zero-frequency responses for the ion parallel 

momentum and pressure are the dominant mechanisms giving riseto saturation. 

This is supported by the excellent agreement between the simulation results and 

those obtained from mode coupling calculations, which give t.ie saturation 

amplitude as |e*/T e | = ( | u 8 + i ir^|/si|)/(k xp s) 2 . and the quasilinear thermal 

diffusivity as Xj = y i / k j . z - where Wj and t^ are the linear frequency and growth 

rate, respectively, for the most unstable mode of the system. In the simulation, 

the time evolution of Xj after saturation Is characterized by its slow relaxation to 

a much lower level of thermal conduction. On the other hand, a small amount of 

electron-ion collisions, which has negligible effect on the linear staDNIty, can 

cause significant enhancement of Xj in the steady state. 
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I. INTRODUCTION 

As emphasized in the early review by Kadomtsev and Pogutse,1 anomalous ion 

thermal losses associated with Ion temperature gradient dr i f t Instabilit ies, 2- 3 

have long been regarded as a potentially serious threat to efficient magnetic 

confineme;it. These are basically electrostatic waves associated with the ion 

acoustic branch which can become destabilized when the parameter. Hj * 

d(lnTj)/dUnr>j). exceeds a crit ical value (usually estimated to be between l and 2). 

Recent results from a variety of important tokamak experiments* - 6 have 

stimulated renewed Interest in establishing the relevance of tij-modes as the 

primary cause of the observed anomalous ion conduction. The evidence generally 

indicates that when plasma conditions are consistent with larger values of i\\. the 

corresponding deterioration in the ion thermal confinement properties cannot be 

explained by standard neoclassical transport theory. On tfte other hand, anomalous 

transport models based on very simple estimates of the thermal diffusivity Cj(j) 

for T)|-modes have produced results in reasonable agreement with these 

experimental t rends. 7 - 1 0 Since the level of confidence in the predictive capability 

o? any transport model Is dependent on its " f i rs t principles" (as opposed to 

heuristic or empirical) physics content, it is obviously of vital importance to 

understand properly the processes responsible for the nonlinear saturation of the 

Hj-modes and for the associated steady-state transport. To this end. a gyrok.netic 

particle code11 has been developed to Investigate the dynamic properties of these 

instabilities. 

As just noted, experimental data from tokamaks are at least consistent with 

the possiDle degradation of thermal confinement associated with iij-driven 

instabilities. In particular, the saturation of the energy confinement time, T E , 

".with Increasing density in ohmlcatly heated discharges can be explained by invoking 
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standard ion neoclassical transport for situations when the T|j-pararneter is not 

too l a rge . , 2 > l 3 However, if (as in cases of high density plasmas fuelled Dy gas 

puffing 1 > s ) the density profiles become sufficiently f lat, the resultant 

enhancement of i\\ correlates with the "anomalous" saturation of r E at densities 

well below those predicted by the neoclassical calculations. Furthermore, in cases 

of high density pellet-fuelled plasmas, the observed improvement of r E (over the 

gas-fuelled cases Just described) correlates well with the fact that the steepened 

density profiles lead to smaller values of T| j . 1 4 with regard to plasmas heated by 

neutral beam injection (NB1), data analysis again indicates that the ion thermal 

losses generally exceed standard neoclassical estimates. 1 5 Moreover, recent 

experimental studies6 involving direct measurement of the ion temperature profile 

in the D-lll tokamak have indicated that the thermal diffusivity is not only much 

larger in magnitude but also exhibits a radial dependence in strong disagreement 

with the usual neoclassical model ( X j N E 0 ) . 

The idea that the well-known r^-type instabilities could be responsible for 

the thermal confinement trends observed in pellet-fuelled and gas-fuelled onmic 

discharges was f i rs t proposed by Coppi.7 Using the simplest nonlinear models for 

X| associated with toroidal Hj-modes. Pominguez and Waltz8 and Romanelli e ^ i L * 

have demonstrated in transport code studies that the saturation of T E with 

increasing density could indeed be correlated with the presence (or absence) of 

these instabilities in numerous ohmically heated tokamaks. when invoked in 

NBIrheated discharges. Hj-modes also lead to scalings of temperatures and 

confinement times in reasonable agreement with experimental trends, 1 0 

With riqard to the formal theoretical basis in support of the relevance of the 

Tjj-modas, linear studies generally indicate that they should be present under 
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typical operating conditions in tokamaks, provided T[j is sufficiently larqe. 

Although the exact value of the ^-threshold is very diff icult to calculate.' 6 

numerical results from comprehensive fully toroidal linear calculations (including 

complete trapped-particle dynamics, wave-particle resonant interactions, and 

collisions) support the conclusion that these modes are easily destabilized in 

tojcamaks for t̂ - > 2 . 1 7 

An appropriate expression for the anomalous thermal diffusivity associated 

with iij-modes is, of course, much more diff icult to justify from "f i rst 

principles.' At trie simplest level, heuristic strong-turbulence-oased arguments' 

can be made to obtain tne lamiliar estimate lor t te thermal dif lusivity, )tj « 

J f a A i

2 , wttn Jfj being tne linear growth rate of tne strongest mode in the 

unstable spectrum and kj_ being the corresponding perpendicular wave number, More 

formally, but in the same spirit as this estimate, the anomalous thermal flux can 

be calculated' 8 using the linearized perturbed distribution function together with 

the usual ambient gradient or mixing length approximation for the saturated 

amplitude of the perturbations. An expression quite similar to the * j / k j . 2 answer 

generally results and is tne most common form applied in various transport 

studies, ?-">•'* Although they lead to plausible models for the anomalous ion 

diffusivity, these calculations leave open fundamental physics questions regarding 

the identification of the specific mechanisms responsible for the saturation 

process and for the enhanced steady-state transport. 

In developing a detailed theory of T^-driven turbulent transport, the simplest 

approacn is to consider the fluid l imit where the dynamics are governed by a 

Boltzmann response for the electrons and by the hydrodynamic (fluid) equations for 

density, parallel velocity, and pressure of the ions. This approacn is motivated by 
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the tact that when T\{ lies well above the linear threshold [-r\j > (t[{)c - 1 to 2], it 

is commonly Believed 2 0"" that the fluid mode! reasonably approximates the 

relevant dynamics. However, kinetic effects (such as those associated with ion 

Landau damping) are likely to play a prominent role for conditions approaching 

marginal stability. The nonlinear fluid-type analysis as applied to T|j-modes was 

introduced in the work of Horton si.il-.2° who carried out three-dimensional 

Initial value simulations tor a sheared slab configuration. Their results indicated 

that profile flattening associated with nonlinear E * B convection of the ion 

pressure was primarily responsible for saturation. This is similar to the 

profile-modified saturated states commonly observed In conventional particle code 

simulations of these instabilities. 2* However, this is not a realistic scenario 

since the equilibrium ("steady state") profiles in actual confined plasmas are in 

fact maintained by continuous heating and refuelling effects. Fixed-profile 3D 

fluid simulation studies of r[j-modes are currently in progress.25 

With regard to nonlinear analytic calculations. Horton ejLaJ..21 have carried 

out a mode-coupling analysis of i^-modes for a simplified system of nonlinear 

fluid equations applied to a toroidal geometry. Solutions for the saturated 

amplitudes are in basic agreement with the heuristic mixing iengtn results 

described earlier. ]n more recent work. Lee and Diamond" have analyzed a 

nonlinear system of fluid equations applied to a sheared slab geometry and have 

produced a renormalized theory describing saturated Hj-driven turbulence. Although 

the final results are again similar to the mixing-length estimate, the authors 

emphasize the necessity of including the ion viscous term (ignored in Refs. 20, 21, 

and 23) to consistently ensure a finite-amplitude steady-stave solution. In 

particular, they note that the saturated stationary turbulence results from the 

energy transfer process which nonlinearly couples the long-wavelength energy source 

with tne short-wavelength energy sink (which Is proportional to the parallel 

viscosity). Finally, following a very different line of analysis. Connor23 has 
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pointed out that the invariant properties of the fluid equations (studied in Refs. 

20 and 22), regardless of the details of the nonlinear calculations, can be used to 

determine the transport scaling of Tipdriven turbulence for a sheared slab system. 

As in all the other papers discussed,'9~2 1 the local anomalous diffusivitg is found 

to scale basically as }(. « T 3 / 2 / B 2 l . with L being a characteristic equilibrium scale 

length. However, the specific magnitude of X; and the particular prescription for i 

are different in the various evaluations. 

As indicated by the preceding discussion, considerable progress has been made 

in recent years, and these efforts wi l l undoubtedly contribute to the eventual 

development of a reliable "predictive" model for anomalous transport. In the 

present paper, -^-driven instabilities have been investigated using newly developed 

gyrokinetic particle simulation techniques.'1 Unlike previous attempts on the 

p rob lem, " " 2 3 ' 2 5 the present approach does not require prior assumptions concerning 

the nature of the Instability (jdnetic vs. fluid), nor does It need any prejudgment 

as to the relative importance of the nonlinear effects involved. As such, i t affords 

us the opportunity to identify the relevant nonlinear mecnanisms on a totally 

unbiased basis. As described in Ref. l l . the new technique is far more superior 

numerically in terms of time step, grid spacing, and noise level than the 

conventional particle cods? for simulating low frequency microlnstabi'.lties. Most 

Importantly, by employing the scheme of multiple spatial scale expansion, i t 

becomes possible to use a *fro2:-i" background inhomogeneity in the simulation. 

Thus, one can study the truly steady-state problems without the undesirable effect 

of quasi linear profile modification. For simplicity, we have chosen to carry out 

the simulation in slab geometry without shear. This is an adequate approximation, 

since, without toroidal-coupling effects, the usual sheared slab model with single 

helicity as used in Ref. 21 tends to overestimate the effect of shear stabilization 

for t\| » l . 1 6 Moreover, from an analytical point of view, the inclusion of shear 

wi l l unduly complicate the nonlinear physics issues. 
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The paper is organized as follows. In Sec. IJ the governing equations and tne 

linear properties for T(j-modes are presented. Simulation results from an 

electrostatic two-dimensional gyrokinetic particle code are gven in Sec. 111. The 

theoretical interpretation of the simulation results based o;i the mode coupling 

calculations of the governing equations and their conservation properties is 

described in Sec. [V. A summary of the main findings in these studies together 

with the concluding remarks are given in sec. V, 

I i . GOVERNING EQUATIONS AND LINEAR PROPERTIES 

Nonlinear gyrokinetic equations for the Vlasov-Poisson system in stab . 

geometry have been used earlier for studying dr i f t instabilities in the presence of 

a density gradient.2 6 The same set of equations is utilized here as the starting 

point for the investigation of Hj-modes. In the usual gyrokinetic units of ps. 

Qj" 1 , and T e/e for length, time, and potential, the governing equations in the l imit 

of ( k L p j ) 2 < < 1 c a n &e written a s ' 1 , 2 6 

r 

Df„/Dt + L„F M . = C(f J , (!) 

Df j/Dt + U + V ^ / T R J F M J +<V^/T)V<t»*b-XKT iFMi - 0, (2) 

V x » + n, = n e , (3) 

where fj.x. v„, t) fs tne perturDed distribution, « denotes species, F .̂ = 

( i / y^nv^exp i -CVu/v^ ) 2 ) , b = B/B, B is the ambient magnetic field, x is the 

unit yector In the inhomogeneous direction perpendicular to B. r • T f i /Tj, V s d/dx. 



and 

is the perturbed number density. The perpendicular Laplacian acting on <J> accounts 

for the finite Larmor radius effects for the ions and it supersedes the usual Debye 

shielding term in Eq, (3). For Eqs. (J) and (2). we also have 

Df^/Dt = tijdt + v^ -V f^ - V^fi-Vf^-s^VG-bdfo/dv,,. (5) 

L«FM« a - s « W ' & 3 , W a v B + ? f̂i-x[Kn -KTo/2 + W ^ / 2 ^ . (6) 

c(fe) = pej(a/av,)<vjeav3vii * v uf e), (7) 

where s e = -irij/me, s-f - 1, Kn * -dlnn0/dx, and K T C X • -dlnT^/dx are the 

zeroth-order spatial inhomogeneities, which give ^ • KTo/Kn and v e j is the 

electron-ion collision frequency. [Note that, In our units, v t e = Jm-x/me and v t j = 

\/-/x,] Equation (7), wnicn can easily be obtained from the Lorent2 collision 

operator by assuming that v x remains Maxwellian for the perturbed distribution, is 

the usual number~3;-nsity-conserving cne-dimensional diffusion model.26 Equations 

(l)-(7) are a simplified set of gyrokinetic equations, which includes both E*B and 

velocity space nonlinearities essential for describing steady-state microturbulence. 

Linearly, the resulting dispersion relation for i||-modes includes tne critical 

wave-particle resonances and, thus,- predicts the correct threshold for the onset of 

the instability (cf„ Ref. 24). 

For certain instances, simplified fluid responses are adequate for describing 

the instability, such as coilisional drift waves and ion temperature gradient modes 
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for TLJ » l. Tife governing equations in those cases can be obtained By taking 
velocity moments of Eqs. (1) and (2). Using the definitions 

JVcx^l. = V . <8) 

J( vii- u<x> 2 fo< d vii = v t«P«- ^ 9 ) 

and neglecting higher order nonlinearities and velocity moments, we arrive at 

dne/dt + au e/ax„ + 0(p/3y)K n = 0, (10) 

due/dt + (mi/me)8(pe-<t')/ax|| = -v e ju e, (11) 

and 
dpe/dt + aue/ax„ + (a«P/8y)(Kn+KTe) = 0. (J 2) 

These are, respectively, the continuity, momentum, and pressure balance equations 

for the electrons, vitere 

d/dt ~ a/at -v * *6 -V . (13) 

and the E*B convection term is the only nonlinearity retained in the formulation. 

The corresponding equations for the ions can be written as 

drij/dt + au/ax,, +(d<P/ay)[Kn+ (V 1 /T)(K n *K T i )J = 0, (14) 

and 

du/dt + o/T)ap|/ax„ + (J + v j_/r)a4>/ax„ = o, (is) 

dpj/dt •auj/dxn + (a*/ay);(Kn+KTj) + (v i/T)(K n*2K T i)] = o, 06) 
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which differ slightly from the electron fluid equations because of the f inite 

Larmor radius effects. Equations (1G)-(1S) together with Eq. (3) can adequately 

describe a wide range of microtoroulence c-obiems. For example, for K T O < = 0, they 

can be reduced to the well-known equations studied i*y Hasegawa and Mima.2 7 and 

Hasegawa and w^katani, 2 8 compared wit» t e equatiors used Py Horton g i a i , . 2 0 Lee 

and Diamond,22 and "onnor,2 3 the Major difference is in the nonlinear E*B term in 

the continuity equation. Eqs. (io) and (.14), where n^ has oeen replaced oy p K . 

Then5 two sets of equations (kinetic and fluid) are the basis for the 

investigation of n\j-modes. Since we are mainly interested in the cases of Hj » 

i , for which v t j << \Wks \ « v { e> the linear dispersion relation, based on the 

fluin ions and adiauatic electrons (n B = t>). and with the ansatz of expOk-x-lut), 

becomes 

1 + tt> - i i -b( i+Tij)]o M /u 

- (k1 |v t l/n)Z[T(l-t)J+(l + ni^»/«- t>^ + 2n ))tJ»/wJ = 0. (17J 

where b = ( ^ p p 3 accounts for the gyroradius effects, k x

2 s k x

2 + k 2 and o» s 

kMpsKnpsQj is the electron diamagnetic drif t frequency. Equation (17) can also be 

obtained directly from Eqs. (2) and (3) by taking the fluid l imit for the ion 

parallel motion Use. for example. Ref. 241. By letting b = - p (

2 a 2 / d x 2 + (k,.pj)2 and 

k | t = kyX/Ls, where L s is the shear scale length, one then recovers the linear 

eigenmode equation used by Connor (although, with some minor differences). 2 1 For 

b = C and u» - 0, i.e., i ^ * <x>, Eq. (17) reduces to 1 

( t * O a j j / c o M k ^ j / u ) 2 = i , (18) 

10 



where d>,,T| = k up s*T|jJ sQ|. For | w * T | / « | » v, there exists an unstable mode 

with 

<o/u»Ti e^H+iV^VuM-rj =.(k n v t j /UM T i ) 2 / J ( - l + iv/3)/2. (19) 

Since the real frequency Is negative, the mode propagates in tne ion diamagnetic 

direction. For u . T i = 0. Eq, (!8) predicts staNe ion acoustic oscillations, 

When tne electron temperature gradient is also present, i.e., T\& * 0, the 

linear electron density response given by Eq. (l) takes the form of 

ne(lc) = <Kk)[t - iv^7T(w*-u« T B/2-w a)A uv t e!, (20) 

where o „ T e = k p sK T ep sQj, Since [ a / k ^ g l « 1, the correction to the 

dispersion relations, Eqs. (17) and (18), due to the nonadiabatic part of the 

response is negligible. The effect of weak collisions, J v e:/k.,v t e | « 1, on the 

linear stabitity of m -̂modes is also small, which can be easily verified by 

following the procedures described in Ref. 26 for solving Eqs. (1) and (7) in the 

Fourier-transformed velocity space. Nevertheless, both finite t\s and collisions are 

believed to have some influence on particle and energy transport. 

When the collisions are strong, i.e., j ^ g / ^ v ^ f » i and \<^v?l/(knvXe)2\ 

« 1, the electron response can be described by Eqs. (lo)-(l2), For Kn = K T e = o, 

we nave 

ne(k) » *(lt)|l + iu J P e | / (k I v t e ) z J. (21) 
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Again, tne net influence on Eqs. (17) and (i8) is insignificant. Although this limit 

of collisionality is Deyond tne regime of interest for our simulation, we will later 

take advantage of tne simplicity of these equations In tor mutating steady-state 

transport properties for t^-modes. Since Eqs. (10)-(16) are not energy conserving, 

they are not suitable for describing the effects of an electron temperature 

gradients on the ^-instabilities. 

Under the present gyrokin&tic formulation, the quantities related to plasma 

transport are rather easy to evaluate. From Eqs. (8)-(i6). with the Klimontovich 

representation for f w, we obtain the particle and thermal fluxes as' 1 

r«x> = <n«vEx> = l m Zk u{n K(k)] ,Vk) = ZvE x(X|)/N 
V. v j=l J 

<r«x> = <nNvPy> - im Ik u ln„(k)] 'VlO = Iv F i,(Xj)/N (22) 

and 
N 

< W = <P<xvEx> = J r n 2tyPwU0l"Mk> = .Kvyj/v^VfexOtjJ/N, (23) 
k j=l i 

respectively, where v E x * -3<t>/3y is the E*B drift in the x direction, < > = |dx/V 

denotes spatial average, X; is tne position of the j- th particle, and N Is the total 

number of particles In the simulation. Upon Invoking the scheme of multiple 

spatial scale expansion,"'29 one can then express the corresponding particle 

diffusion coefficient and the thermal diffusivity as 

and 

U. * <c'«x> ' <*!«**„>. ( 2 5 ) 

The material presented in this section forms the basis for our investigation 

of T\J- modes in Sees. IU and. IV. 
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111. GYROKINETIC PARTICLE SIMULATION 

Simulation techniques for gyrokinetic plasmas have been reported in detail in 

Ref. 11. Briefly, both the electrons and the ions are treated as guiding center 

particles. The only difference between the two species comes from the fact that 

the ions are advanced In time with a gyrophase-averaged potential, whereas the 

electrons are under the influence of a bare potential. Density responses due to ion 

polarization effects are then accounted for in the field (Poisson) equation. The 

instability is driven by an external source in the form of a time-independent 

background inhomogeneity, so as to eliminate the undesirable effect of profile 

modification in the nonlinear stage of the development. To simulate the Lorentzian 

collision processes, the scheme of pitch-angle scattering for the guiding-center 

electrons is used.26 in the regime of (k a p j ) z « 1, the behavior of the simulation 

plasma can essentially be described by Eqs. ( l)-(3). 

In this paper, we wi l l present the results from a two-dimensional 

gyrokinetic electrostatic code [x, y, v | ( . p (•v ±

2 /2)J in a shearless slab. For 

simplicity, periodic boundary conditions for both the waves and the particles are 

assumed. The ambient magnetic field Is given by B = B 0(fi + ey) with e being a 

small constant ( « 0 , which gives k | ( = 6k and the plasma inhomogeneity is in the 

x direction. In the code we have also set * (k x *0 , k =0) = 0 and »(kx=0. k *0) = 0. 

The latter is necessitated by the requirement of | K J or | K T K | < |k j for a 

system with a "frozen" zeroth-order gradient.11 

When the adlabatlc electron response is assumed, we can totally ignore tne 

electron dynamics by letting 

fine(x)/n0 = |1+ <fine(x)/n0>y]E<Kx)/Te + <8n e(x)/n 0> y, (26) 
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in the field equation, where < >„ denotes a spatial average in y. and Sn^ and n 0 are 

the perturbed and the averaged number densities, respectively. The condition of 

<Kkv*0, k,,=0) = O makes Eq. (26) number conserving and also calls for the use of x y 

the nigh electron mobility model,2" which assumes that 

<Sne(x)>y * <finj(x)>y, (273 

where Sn{ is tne gyropnase-averaged ion number density" and s^ = sn f for (k x Pj) 2 

« 1. [Note that Sn^/no •* n and e*/T e •* <t> in Sec. II.J 

The simulation parameters in units of grid size A and ion cyclotron frequency 

£3j are= LX*L,. = 16A*16A, N(total number of simulation particles per species) = 

128x128. p s /A = l , aCparticie sizeVA = 1.5, Te/T,- = 1, mj/m e = 1837, (k x p s . k yp s) 

= (0 J93m, 0.393n). (m,n) = 0, t l , ±2 e * k/k, . = 0.01, K T i p s = 0.2, K T e p s = 0 

or 0.2, K n p s = 0 or 0.05, (i.e., <o»T j/Qj = 0.08n, « W T e / f l ( = 0 or O.OSn, o„/Qi = 0 

or 0.02n), and QjAUtlme step) = 2.722. The total number of time stefs ranges 

from t m a x / A t = 1000 to 1000. 

The time step and the number of particles used for the simulation are 

determined from numerical staDillty and noise considerations. This requires that 

w H At < l and |e<&/T e | t = 0 = l/v/FTkps « [ e * / T e | t = 0 0 = p s A T , n where w H / n , = 

&s/k)(m\/me),/3 is the electrostatic version of the shear-Alfven wave and N is the 

total number of particles in one wavelength of the mode. Thus, for the (m=J.n=l) 

mode, we have <oHAt = 0.82 and |e»/T e | = 1.38*, which are well within these 

numerical l imits, ft should be pointed out here that the time step and grid size 
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used here are equivalent to u p e A t * 5,000 and X D e / A = 1/42,66 for n e / <J p e = 1. 

in the case of an adiabatic response for the electrons, we can afford to use an even 

longer time step with less simulation particles, i.e., 0 ( A t = 10.89 and N - 6^x64. 

This Is because the restrictions Imposed by <oH are now replaced by those from the 

ion acoustic modes (or Tjj-modes). 

Let us f i rst examine the case for T\( = °° and T\e = 0 ( * T j p s - 0.2. n T e = <n 

- 0). using the adiabatic electron model of Eqs. (26) and (27). The complex linear 

frequencies for the (m=l,n=*l) modes given by Eq. (19) are 

(±6>a + ItfjjVGj = -0.0051 + i0.0094. (28) 

Since | « j A | | V t j | - 1.35, the fluid approximation used here for the ions is not 

totally adequate. A more elaborate calculation based on the kinetic description for 

the parens! Ion motion2* indeed gives slightly different answers. More 

importantly, the calculation has shown that these modes are the fastest growing 

ones in the simulation with the rest being either weakly unstable or damped modes. 

This linear prediction agrees with the Emulation results as Indicated by the 

fluctuating k-spectrum for the potential, in which the most unstable modes of the 

system indeed dominate. The reason is that the fastest growing modes in our 

sosiem also have the longest wavelengths and, as such, ir. -erse energy cascade is 

prohibited. The time history (f l j t = 0-2,700) and the frequency spectra for 

4>(m=l,n--il) are shown in Fig. i . These are rather coherent oscillations which 

follow roughly the prescribed linear properties of the Hj-instability. Although the 

two modes do not exponentiate and saturate at the same time, they do reach the 

same saturation amplitude of | e * A e | = 5%, accompanied by a slight increase in 

amplitude to 6% and a frequency shift to u/Qi = ±0.012 after saturation. The 
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corresponding density fluctuations are SrijCl,l)/n0 = Sn|( l , - I ) /n 0 = i.0-12%. In 

addition, density perturbations of Snj(2.D)/n0 = 10* with co = 0 and Enj(0.2)/n0 = 

10* with «/Qj = JO.024 have also Deen observed in the steady state after 

* saturation. One unique feature shown in Fig. l Is the process of energy exchange 

between the two dominant modes in the nonlinear stage of the development. These 

nonlinear properties of the instability wi l l be examined in detai! In Sec. IV. 

To verify the results based'on the adiabatic electrons (Fig. l ) , we have also 

carried out the simulation with the drif t kinetic treatment of electrons for T[J = 

T|e = « (*TiPs = KTePs = ° ' 2 , K n = °̂  T t i e t i r r ' e e v c i u t i o n f ° r the dominant 

potentials is shown in Fig. 2. where a bandpass f i l te r with the width of < j« T j has 

been used to eliminate the high frequency noise generated by the « H modes. As we 

can see, the two results are nearly identical for both the linear and nonlinear 

stages of development.. (The slight phase difference is caused by tne difference in 

the Initial noise level.) The amplitude for the accompanied ion density fluctuations 

also remains the same. The dominant electron density responses alter saturation 

assume the level of 6n e ( l , l ) /n 0 = Sn e( l ,- i .)/n 0 = 5-7% and 6n e(2,0)/n 0 = 4%. 

interestingly, unlike its ion counterpart. Sne(Q,2)/n0 stays around the thermal level 

of \A% throughout the simulation. These results also confirm the prediction of E<j. 

(20) that n e * o has a negligible effect on the linear stability of the mode. 

However, its presence can give rise to inwaro particle transport for the electrons 

as indicated by Eqs. (20) and (22) . " The results shown in Fig. 2 clearly Illustrate 

this property In the linear stage of the instability. However, the flux reverses its 

direction after saturation for the apparent reason that the electron behavior ceases 

to be linear at this point in time. Since particle flux is ambipolar in the 

simulation, i.e.. < r e x > = < r j X > , u the ions have the same behavior. The calculation 

for the particle flux in the code was based on Eq, (22). 
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The message from the simulation thus far is that one can probably describe 

the saturation of the Instability with the adlabatlc electron model, since all the 

necessary nonllnearities are provided br> the Ions. However, is such a model 

adequate for representing steady-state phenomena? To answer this question, we 

now study the long-time behavior of the instability (Qjt = 0-22,000) again with 

the adiabatic electrons for TJ, = T\ 6 = 4 (K T 1 p s = K T e p s = 0.2. K np 5 = 0.05). The 

results indicate that the general feature of the Instability is very similar to the 

cases shown in Figs. 1 and 2. The fluctuation spectra are also dominated by the 

same modes. Figure 3 gives the time history of the potential 90.-1) and the 

resulting Ion thermal flux. (The flux calculation In the code used the total v in Eq. 

(23) instead of v„. Consult Eq. (41) in Ref. l l for details.] The linear frequency 

and the growth rate are nearly identical to the previous results and reflect the 

fact that the linear properties are rather insensitive to the magnitude of T[j when 

Ti| » l. The nonlinear frequency shift also remains the same. The amplitude for 

e»/T e Increases from about 58 at saturation to 9* at the end of the run. This may 

indicate that the system has yet to evolve to a steady state because of the 

simplified electron dynamics. The most interesting aspect of the results is the 

time plot for the Ion tnermal flux <g | x > In Fig. 3, for which a bandpass filter has 

been applied to eliminate the shot noise. The salient features are: j) the 

time-averaged flux is always in the outward direction; 2) <Qj x>/c s reaches its 

maximum value of 0.0032 (0.0043 before filtering) around the time of saturation; 

3) a precipitous (ten-fold) drop in its magnitude follows shortly after saturation; 

and 4) the thermal flux eventually attains a steady-state value wnich corresponds 

to j(j = 8*10"* cTe/eB as given by Eq. (25). The results here bring into question 

the validity of using the quasllinear flux to predict the steady-state transport. 
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We now proceed to examine the same case (^j = n e=4) but with the dr i f t 

kinetic treatment for the electrons. The comparison of the two results should help 

us gain a better understanding of tne nonlinear behavior of tne electrons. The 

length of tne run is shorter than before with Q f t = 0-11,000. Again, the overall 

characteristics of the instability during the linear as well as the nonlinear phase 

of tne evolution are very similar to the previous run. Figure 4 exhibits the time 

history of the potential for the ( l . i l ) modes. In which tne thermal (numerical) 

noise caused by the high frequency (o H ) oscillations are evident. |Note mat 

Je<&/Te| = 1.2* at t=0 as predicted.] Here, the time-averaged fluctuation 

amplitude after saturation is about 5S and the nonlinear frequencies are around 

o/Qj = iO.Ol. The slight drop in amplitude toward the end of the run is believed 

to be the result of the slow amplitude modulation, which wi l l become more evident 

later. The thermal flux vs. time plots for Doth species are given in Fig. 5, in 

which a f i l ter with the width of <J T J has been applied to smooth the data for the 

electrons but not for the ions. T',iese results indicate: 1) the electron thermal flux 

reaches its steady-state value shortly after saturation and the corresponding 

thermal diffusivity is X e = 1.2*l(r 4 cTe/eB; 2) the relaxation of the quasilinear 

ion flux after saturation is much more gradual than the previous-run; 3) however, 

the magnitude ol the steady-state thermal <f;ffusivity remains unchanged, i.e., Xj = 

8*10'* cTe/eB. In addition, the time-averaged particle flux Is found to be outward 

and D = 10"* cTe/eB is the magnituds of the diffusion coefficient in the 

steady-state. (Note that D = 0 for the case with the adiabatlc electrons.) since 

Xj is the same for the two cases and Xj >> X e = D- o n e « n reasonably conclude 

that the nonadiabatlc response of the electrons Is not essential for ii-modes. 

Unfortunately (from the theoretical point of view), this is true only when the 

Plasma is collisionless. 

18 



To ascertain the collisional effects en t^-modes, we have carried out the 

same simulation (r\l = i\e = -1) with v e / f t j = 0.005. Since <o > vQi and v f i j / k f ( v t e 

« l , this Is a weakly collisional case and the linear properties of the mode under 

investigation are not expected to change. |As indicated Dy Eq. (21). even strong 

collisions have negligible effects on the linear stability,1 Thus, our focus here is 

on the nonlinear stage of development. The time evolution of *(1.±1) for the 

collisional case is shown in Fig. 6. Although the amplitude at saturation increases 

slightly, the mean amplitude in the steady state stays around 5%. which is the 

same as the collisionless value. The major differences between the two runs are 

the energy exchange processes of the two dominant modes and the amplitude 
2 2 

modulation of the total potential, |<D(1,1)| + |<Kl , - l ) | , both of which are 

significantly enhanced by the collisions. Consequently, the resuJting oscillations in 

the nonlineer stage become less coherent with | A « / u j ~ 1 . u ( l . l ) /Q j= -0.01 and 
o ( l , - l ) /D j = -0.0075. The net result is an increase in thermal transport for both 

the electrons and the ions as shown in Fig. 7. A closer examination of the results 

reveals that I) the electron thermal flux, for wtiich a f i l te r has been applied, 

follows the amplitude modulation of the potential with j ( e = 4.8*10"',cTe/'eB as the 

mean value in the steady state; 2) the ion thermal flux also follows the amplitude 

modulation, and the steady-state thermal diffusivity is Xj = 6.4*'iO"3cTe/eB; and 

3) the time history for the particle flux (not shown) closely resembles that of the 

electron thermal flux with D = 2.4><lO"3cTe/eG for t = « . All in al l . there is a 4 

to 24-fold increase in plasma transport, in which ion thermal conduction s t i l l 

dominates, i.e., }(| > D » ; ( e (although 0 exhibits the largest increase). Hence, in 

steady state situations the electron-ion collisions are here found to significantly 

enhance the transport associated with rij-modes. This feature, which emphasizes 

the indispensible role played by the nonadiabatic electrons, has usually been ignored 

In previous nonlinear studies of these Instabilities. 
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IV. THEORETICAL ANALYSIS OF SATURATION AND TRANSPORT 

In this section, we intend to provide some theoretical understanding of the 

nonlinear behavior of the Tjj-modes observed in the simulation. The main areas of 

investigation are= 1) the identification of the mechanisms responsible for the 

saturation; 2) the scaling of the resulting quasi linear transport: 3) the nature of 

steady-state transport as prescribed by the conservation properties of the governing 

equations; and 4) the transport scaling based on the invariance properties of the 

these equations. 

we wi l l f i rs t consider the issue of saturation, since the potential 

fluctuation spectrum in the simulation is dominated by only a small number of 

Fourier fc-modes, i.e., * ( l , r l ) + c. c , and since using the adiabatic approximation 

for tne electrons leads to correct results for the saturated amplitudes, a set of 

simplified equations can be used in this analysis, i t can be shown that the primary 

nonlinear consequence arising from the .excitation of 0(1, *1) is the ^feneration of 

f [(i2.0) through the E*B convection. Moreover, the £*B convection together with 

the velocity space nonlineority for the ions gives rise to the enhancement of 

f j(o,i2). If one assumes that * ( l . l ) = * " ( l , - l ) . f j ( I . I ) = I f j ( l . - ' l ) ] " . and ignores 

the velocity space nonlinearity, f j(o,2) vanishes, and the reduced equations describe 

a three-mode coupling process. (Interested readers should consult Rets. 26 and 29 

for details.) These approximations not only make the problem analytically 

tractable but also yield useful results. 

Letting n e = » , « , = o>.,Te = o. and (k^pg)2 « l. and denoting ( i . i ) and (2,0) 

by the subscripts of + and o, respectively, we can write Eqs. (2) and (3) as 

3 f 1 + / d t + ik||V„f] + + l h * j , v J J - t f » T i / 2 + (v J J /v t J ) o n , / 2 ) F M J * + + kj * + f i 0 = 0.(29) 
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3f|o/3t = 2 l k i l m ( * t f i + ) . (30) 

n,-+ = <t>+, (31) 

2 
where * 0 = 0 is assumed, n ( + = J"f f + dv I ( is the Ion density. k± = rb = 2kxk . and 

k x, k^ are the wave numbers for the (1.1) mode. Equations (29H31) can tie solved 

by treating the nonlinear E*B terms as perturbations. With d/dt - - l « and 

IkuVu/uj « 1. a nonlinear dispersion relation can then be obtained. A simpler and 

more transparent procedure is to use the equivalent f luid equations from Eqs. 

(14)-U6). i.e.. 

dn ( + /dt + i k „ u j + = 0. (32) 

8U| +/3t + i k „ * + + ik;,pj +/r + k j ^ + u ^ = 0. (33) 

2 " 
3u i 0 /3 t = 21 kj_ I T I ( * + U J J (31) 

2 
3p i + /3t + ikBUj+ + i«» T j *+ + kj.O+pjo = 0, • (35) 

3p i 0 /3 t = 2ikj_ Jm(0 + p,+). (36) 

Equation (32) is linear, because n j + = f + . which gives 3n i o /3 t = 0. For 3/81 = - i « 

and | k | ] v t J / o | « i , we obtain 

P i + = ( u ^ j / u ) * * , (37) 

which, together with the linear responses from *<;<!. (31)-(33), gives us the linear 
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dispersion relation of Eq. (18). The nonlinearly excited parallel fluid velocity and 

pressure are proportional to the amplitude of the potential and can be expressed as 

U j o B | < k i K I > 2 ' * . ( 3 S ) 

and 

P j 0 = 2 i o J l ( k i [ * + j ) V ( k | | v t j ) 2 = - i ( k i | * + | ) 2 w » T | / | o j H l f J 1 | 2 . (33) 

where « s + i ^ j is the linear (complex) frequency given by Eq. (19). Tne nonlinear 

dispersion relation for i\f modes can then be written as 

(r*o>MTj/a>)(k,|Vtj/w)2 + (l + 2Wjj/o)k xjU>+|/u = 1. (40) 

which remains a cubic equation in co. An alternative form for Eq. (40) can be 

obtained by using the second expression for j> (0 in Eq. (39). To satisfy the stability 

requirement, Imo = 0, Eq. (40) yields that 

|«+| =(y372) |w 1 +l» J i | /k i = (vT/2) [ (k | |V t | } 2 «« T | I , / 3 /k i . (41) 

This is the appropriate saturation amplitude of the instability. The nonlinear 

frequency now becomes 

« n £ /<o» T J = -2|w f i+lv t f /< i},, T 1 = -2(k n v t J /u , . T | ) 2 y 3 . (4?) 

which yields an upward -frequency shift. Equation (40) can also be derived from 

Eqs. (29)-(31) by keeping tne first two nonvanlsnlng terms from the expansion of 

the resonant denominator; the other terms in the expansion are negligible. We now 

compare these theoretical predictions with the simulation results shown in Fig. i . 

Substituting Eq. (28) in Eqs. (11) and (42), we find that J* +] =3* and u n J j/Qj = 
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0.022, whereas the measured values are 595 and 0.012. respectively. The cause for 

the small discrepancy is the absence of the ion kinetic (velocity space) effects in 

the mode-coupling equations, which would nonlinearly generate f ,(0,+2) and, in turn. 

render *(1,1) * - / ( I , - ! ) . 2 6 - " Nonetheless, the calculation presented here 

veritably captures the primary features of the saturation process in the 

simulation. 

The quasilinear particle and thermal transport can be calculated as follows. 

Substituting Eq. (20) into Eq. (22), we have 

< r e x > = JTU1 2 k u [*(k> 1 2 ( t i * -« j j - w » T e / 2 V k l r v t e (43) 
k s 

for the quasilinear particle flux due to the ^[-instabil i ty. For i \ e > 2 ( l - O j / o J . 

the flux is negative and the particle transport ts directed inward. 1 9 Based on the 

results from Eq. (28) '.'or o A and Eq. (41) for |<P(k)|, we obtain < r e x > / c s = 

-3.5*10-'' as the particle flux due to 9>t and their complex conjugates at saturation 

for •[)[ = t \ e = oo. This is much greater than the results shown in Fig. 2, indicating 

that the nonadiabatic response of the electrons deviates considerably from Eq. (20) 

even in the linear stage of the instability. Equation (43) is also not applicable to 

the results associated with those given in Figs. 4-7 for T^ = r[Q = 4, where the 

particle flux Is outwardly directed even before saturation, with or without 

collisions. (Note that quasilinear estimates would indicate that collisions should 

actually enhance inward transport.) 

The ion thermal diffuslvity, which can be obtained by substituting Eq. (37) 

into Eqs. (23) and (25). takes the form 

X| - Z l k y | « > < W | 2 V | » J i + l * j i | 2 . <«4) 
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This expression is also v i l id for K n * 0. From Eq. (41), which gives the saturation 

level for * , and their comple:' conjugates, the quasillnear coefficient then Becomes 

Xi = (3/2) * A /k£ (45) 

Using the linear growth rate from Eq. (28), we have X| = 0.044cTe/e& and <Qj i <Vc s 

= O.Oll. The latter is quite a bit higher than the peak values shown in Figs. 3, 5, 

and 7. However, if one uses the time-averaged growth rate of ^Q /QJ = 0.0035 

taken from Figs. 1-4 and 6, the quasilinear flux then reduces to <Q J X>/c 5 - 0.0041, 

which agrees well with the simulation results. Unfortunately, quasi linear 

diffusion is primarily a linear concept and, as such, there Is no apparent reason 

why it should be related to the steady-state diffusion. In fact, in our three-mode 

coupling model, Xj actually vanishes after saturation. One can verify tnis by using 

both Eq. (37) and Eq, (39) in tne perturbation analysis in calculating X,-

The quasi linear electron thermal flux as defined In Eq. (23) is usually ^mall 

for |o /k , |V t e | « l , because the contribution for the flux mainly comes from the 

perpendicular pressure perturbation instead of p e as defined in Eq. (9). Starting 

with the original dr i f t kinetic equation in (x, p, v r t ) , 1 1 we obtain 

<Q e x> = JTUT. (2/3) 2k y j 'K i : ) | Z (<o»-<0j l +co» T e /2)A l l v t e . (46) 

The expression is very similar to <I*e x> in Eq. (43). The main difference is the 

sign of o * T e . Thus, the direction of the flux is always outward. Again, Eqs. (28) 

and (41) give <Q e x>/c s - 0.00037. which is much greater than the results shown in 

Fig. 5. Thus, the linear wave-particle in ten t ion for the electrons becomes 
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inoperative long Defore the saturation of the instaoility. 

Evidently, quasi Linear analysis correlates quite well with the simulation for 

the ion thermal flux at saturation. However, it is not adequate for desciPing tne 

quasilinear particle and electron thermal transport. Most of al l , the three-mode 

coupling model totally fails to predict any flux at all In the steady state. The 

four-mode coupling model, which accounts for tne nonlinearly generated fj(0,;2) and 

is analytically intractable, would provide Detter agreement with the simulation in 

terms of saturation level and nonlinear frequency shift. However, even if one 

carries out the numerical solutions for the four-mode coupling model, past 

experience has snown that the issue of steady-state transport s t i l l cannot be 

resolved unless one also includes the background fluctuations in the calculation—a 

rather formidable task. 2 5 

Instead of the mode coupling approach, we wi l l now proceed to address tne 

problem in a totally different manner by studying the conservation properties of 

the governing equations. In doing so, we hope to gain some understanding of the 

physical processes involved in the steady-state transport, we begin by considering 

a simple periodic system with tcn = K T e = 0, K T ] * 0 and <k x p s ) 2 « I. From Eqs. 

(3). (10), and (H) , we have 

(8/8t)< j Vj,<D j 2>/2 = <(a«/ax | |)(u j - Ue) >, (47) 

which is the field energy equation, where < > denotes spatial average. For the 

adiabatic electrons with n ? = «, it becomes 

0 / 3 t K | Vx4> | 2 • <i>2>/2 = «d«/dx„)U|>. (48) 

where | Vx<p| « <t> . Multiplying Eq. (2) by f j /F M , . integrating tne resulting 
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equation in v„ . taking the spatial average, and, finally, making use of Eq. (-18), we 

arrive at 

(a/at)<[( f f /TF M j )dv l ( +lV i <DJ 2 +* Z >*<0<! ' /ax j , ) f ( f^F M i )v n ( lv | ) >=K: T i <Q i x >/r. (49', 

In the derivation, the condition < r e x > = < r j x > = 0 has been used. This can be 

verified by multiplying Eq. (3) by 3<f/5y and taking its spatial average, Equation 

(49) is the conservation law for the ion thermal flux in the case of adiabatic 

electrons, where the second term on the left-hand side comes from the nonlinear 

velocity space term in Eq. (2). Thus, in the true steady state when d/dt = o, the 

ion thermal flux may remain finite even in the absence of ion dissipation because 

of the nonlinear wave-particle interactions. This important insight can help us to 

explain the simulation results in Figs. 3 and 5, where <Q j x >/c s = 2*10"'' for large 

Qjt. 

We now proceed to derive the same conservation law based on the fluid 

equations. After multiplying Eqs. (15) and (16) by u ( and p,-. respectively, and 

taking their spatial averages, we combine the sum of the resulting equations with 

Eq. (48) for the adiabatic electrons to obtain 

« / 3 t K p i / r + u )+ |V i*j+<l> >/2 + = KT i<Q i > (,>/T. (50) 

Thus, the steady-state ion thermal flux vanishes in a dissipationless system. This 

is obvious, since the crucial nonlinear velocity space effects, as given by Eq, (49), 

are now absent in Eq. (50). To understand the influence of electron-ion collisions 

on trie conservation properties In the fluid l imi t , we can modify Eq. (50) by 

including Eqs. (10) and (11) TO account for the electron responses and by using Eq. 

(47) for the energy balance. This leads to 
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(a/atKp/r+Uj + | V x * j + n e > / 2 • v e j <(u e / v t e ) >/2 = K T i <Q i x >/T. (5!) 

with the assumption of v e i » o in Eq, (11). Therefore, collisions can Indeed 

enhance <QjX> in the steady state for finite u e . (A similar equation has been 

obtained in Ref. 22. which relates <Q|X> with ion viscosity.) Although our 

simulation parameters lie outside the regime of its validity. Eq. (51) s t i l l 

provides us with a trend which is in agreement with the results shown in Fig. 7. 

A more appropriate conservation law Involving Eqs. ( I ) , (2), and (47) can also be 

constructed, which, in the steady state, gives 

2v e i < U - l 3 fa /a (v „ /V t e Wv H / v t e ) f B l 2 dv l >+ <(a«/axB) [<f j / F M ) - * J / F M e ) V v i i > 
J r Mi J 

= K T i <Q i x >/T, (52) 

for ( (Qj j^ l >:" f < r | X > j . The importance of collisions and velocity space 

nonlinearities in determining the magnitude of steady-state transport is therefore 

evident. Since none of these effects are relevant to the nonlinear saturation of the 

instability, it is not surprising that the relationship is rather tenuous between the 

quasi linear X| given by Eq. (46) and the steady-state X] from Eq. (52). 

Unfortunately, based on our current understanding, we cannot realistically 

estimate the steady-state <Q f x> due to Tjj-modes. However, if the trend observed 

in the simulation is assumed to be accurate, one can argue'that the quasilinear flux 

can reasonably be construed as an upper bound for the steady-state flux. Thus, from 

Eqs. (19) and (45). the scaling law for the ion thermal diffusivity can be written 

as 
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X, = ( P s / R q ) 2 / 3 ( p s / U T i ) , / 3 ( k y P s ) " 5 / S cTe/eB 

(53) 

cc T™/B\. 

where Rq = l /k ( | and L T j • 1 / K T ( . Likewise, from Eqs. (19),and (41), the scaling 

for the saturation amplitude can be obtained as 

| e* / t e [ =(p f/Rq) 2 / 3(p s/TL T i)' / 3(kyP s)" 5 / J . (51) 

As for the appropriate k u p s in these equations, one should use the corresponding 

wave number for the fastest growing mode in the system. A review of various 

scaHngs for /-,, including Eq. (53), has been given by, Connor.23 

As the final topic of this section, let us examine the scaling laws from a 

different point of view, i.e., using the invariance properties of the fluid ion 

equations, Eqs. (H)- (16) . 2 3 For simplicity, we have made following assumptions' 

K n = 0. (kj_ps) « 1, n ( = <t> (i.e., adiabatic electrons). [These are the same 

equations which are the basis for Eq. (50) as well as for the three-mode coupling 

analysis.) The resulting equations have only two Invariant transformations that are 

consistent with the original ordering of the equations. They are 

Pl= t -• tAx. X ± - Xv X, •* X„/©<. * •* « • , Uj •* OcU|, pj -» «Pj, K r j •+ KKJr J(j -* o<Xj 

?2- t -» $t. x x - 3Xj_, x„ - $x„. * - *, u, - ^u(, p, - *p,. KTj - 0 K T 1 > Xi - U\-

The ion thermal diffusivity can be expressed as 

h K ^ T i P s ^ 9 (kiiPs>q ( k i P s ) f Pscs- <55> 
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where p g c s

 s cTe/eB. we then have 

PI: s + q = I and P2= q + r = - I . (56) 

which give no unique solutions for s. q. and r. However, the solutions of q = 2/3, 

s - 1/3, and r = -5/3 satisfy Eq. (56) and give the same scaling in Eo (55) as the 

mode-coupling result In Eq. (53). If we neglect d«P/5xd In Eq. (15) and du^/dx^ In 

Eq. (16), 2 3 the number of allowable transformations Increasos to three. As such, 

the coefficients in Eq. (55) can then De uniquely determined and lead again to the 

results given Dy Eq. (53). [The fact that tne Invarlance properties studied nere are 

slightly different from those in Ref. 23 is due to the discrepancy in Eq. (14) as 

mentioned earlier,] 

Dropping of the terms, 3<f/6xM and dUj/6x„. from the governing equations can 

be justified by noting that they are irrelevant to the linear stability and to the 

nonlinear saturation for the 3-mode case. However, the energy-!ike conservation 

law, Eq. (50), cannot be satisfied without them. Thus, the scaling of Eq. (53) is 

valid only for the transient period before the steady state sets in. in the steady 

state, the flux vanishes as predicted by Eq. (50) and the j(j scaling under the 

present assumption Becomes meaningless. The derivation of a valid scaling law 

should therefore include kinetic as well as collisional effects. Their influence on 

the Ion thermal f tux is underscored by Eq. (52). However, such an attempt, which 

needs a more complete understanding of the steady-state physics, is beyond the 

scope of the present paper and wi l l be pursued in due course. 

The scaling for the saturation amplitude can be derived by following the same 

procedure. For the same parameter dependence as Xj In Eq. (55), the exponents (s, 

q, r) are again determined by Eq. (56). Thus, a unique scaling Identical to the 
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quasi linear result in Eq. (54) can be obtained when we neglect the same two terms 

in the ion equations. However, unlike the case for %t. Eq. (54) can be a valid subset 

ot the general solution given by Eq. (56). This is borne out by the simulation, in 

which the saturation amplitude stays roughly at the same level In the steady state. 

Thus, Eg. (51) is not only valid for the quasilinear saturation, it is applicable for 

the fluctuation amplitude in the-steady state as well. 

V. SUMMARY AND CONCLUSION 

The investigation of the nonlinear behavior of T|j-modes in a simple shearless 

slab using gyrokinetic particle simulation techniques has provided us with 

considerable insight into the saturation of the instability and the resulting thermal 

transport, i t is found that the zero-frequency parallel momentum and pressure 

responses for the ions, generated Dy the E*B convection, are responsible for the 

nonlinear saturation. The saturation amplitude and the quasilinear ion thermal 

diffusivity are |e* /T e f = (|oijj + itf^ f /Q , ) / ( k x p s ) 2 . and X| = V k i 2 -

respectively, [see Eqs. (41) and (45)]. These analytical results are in reasonable 

agreement with the simulation. The corresponding scaling laws are given oy Eqs. 

(53) and (51). However, the simulation results also indicate that there is more 

than an order of magnitude reduction for the ion thermal diffusivity in the steady 

state, whereas the amplitude for the fluctuation potential remains roughly 

constant. On the other hand, if a smalt amount of electron-ion collisions in tne 

simulation is introduced, a dramatic increase in the steady-state Xj without any 

significant change in |e«/T e | has been observed, Through the conservation 

properties of the gyrokinetic equations, we have found that both the collisions and 

the ion velocity space nonlinear J ties are related to the steady-state ion thermal 

flux as indicated by Eq. (52). However, the exact physical process, that contributes 
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to the phase difference between the potential and pressure response and, in turn, 

gives rise to the steady-state flux, is s t i l l unknown. A recent study has shown 

that particle "bunching" in the configuration space, due tc E«B and phase space 

trapping, is responsible for the electron-drlft-wavc-induced particle f lux. 3 0 This 

mecnanism may have some Dearing on the present r\j-mode problem as well. 

An important and rather surprising lesson learned from the prsent work is 

that even for a seemingly straightforward situation involving a few nearly coherent 

modes in the simplest conceivable geometry, the nonlinear physics issues associated 

with the final steady state remain a very diff icult problem yet to be completely 

resolv»d. This also serve to highlight the rather weak " f i rst priciples" basis for 
2 

the common use of Tf/kx scaling and other phenomenological type models for 

diffusivities in current transport studies. On the computational front, our work 

t\ere represents a major step forward for simulating an instability with a very low 

frequency and a very slow growth rate. The new computational techniques have also 

enabled us to probe deeper Into the nonlinear behavior of this very important type 

of microinstability. 
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FIGURE CAPTIONS 

FJ3. 1 Time evolution and frequency spectra for e<p(l.±l)/Te with -qj = « and 

r\s = O based on adlaoatlc electrons and gyroklnetlc ions. 

FiG. 2 Time evolution for e*( l . t ! ) with l\-t = T\e - » based on drif t kinetic 

electrons and gyroklnetlc ions (a bandpass f i l ter has been applied to the 

data). 

FIG. 3 Time evolution for the fluctuating potential and the ion thermal flux 

with T\J = Tie = 4 based on adiabatic electrons and gyrokinetic ions. 

FIG. 4 Time history for e*<l J±t)/T e with \ { = t \ e = 4 and v e ( /Q j = 0. 

FiG. S Time history for the electron and ion thermal fluxes with ^ j = T\e = 4 

and v e i / f l | = 0, 

FIG. 6 Time history for e<t( i . i l ) /T e with ^ i = "He = * a n d v e / n i = ° - 0 0 5 -

FIG. 7 Time history for the electron and ion thermal fluxes with TJJ = Tje = 4 

and Vgj/flj = 0.005. 
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