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Abstract 

A time varying weighting (Sf) scheme for gyrokinetic particle simulation 

is applied to a steady state, multi-species simulation of neoclassical trans- 

port. Accurate collision operators conserving momentum and energy are 

developed and implemented. Simulation results using these operators are 

found to agree very well with neoclassical theory. For example, it is dy- 

namically demonstrated in these multispecies simulations that like-particle 

collisions produce no particle flux and that the neoclassical fluxes are am- 

bipolar for an ion-electron plasma. An important physics feature of the 

present scheme is the introduction of toroidal sheared flow to the simula- 

tions. Simulation results are in agreement with the existing analytical neo- 

classical theory of Hinton and Wong. The poloidal electric field associated 

with toroidal mass flow is found to enhance density gradient driven electron 

particle flux and the bootstrap current while reducing temperature gradient 

driven flux and current. Finally, neoclassical theory in steep gradient profile 

relevant to the edge regime is examined by taking into account finite banana 

width effects. In general, the present work demonstrates a valuable new ca- 

pability for studying important aspects of neoclassical transport inaccessible 

by conventional analytical calculation processes. 
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I. INTRODUCTION 

It is generally acknowledged that neoclassical theory provides a useful 

lower bound for comparing confinement properties in magnetically confined 

plasmas.' Standard neoclassical theory begins with the assumption of a 

static magnetic field equilibrium with no fluctuating fields. Recently sev- 

eral authors2"' have pointed out that external electrostatic and magnetic 

fluctuations can strongly influence neoclassical transport. Another issue of 

current interest is the realistic extrapolation of the neoclassical bootstrap 

current into advanced tokamak operating regimes and assessing its efficacy 

for driving a steady state de~ice.~'' Neoclassical theory is also an important 

area of stellarator research since present-day experiments find that this type 

of transport is apparently dominant in the long mean free path regime.7 

Analytical neoclassical theory has its limitation in all of the just noted situ- 

ations due, for example, to complications introduced by realistic geometry. 

It is, .therefore, of interest to systematically analyze this problem using par- 

ticle simulation techniques. Potentially significant modifications associated 

with finite gyro-radius dynamics, energetic particle effects, sheared flows, 

and the influence of fluctuating electric fields can be examined with this ap- 

proach. The scaling of the bootstrap current under realistic conditions in a 

steady-state tokamak can also be properly investigated. Finally, the fully 3- 

dimensional non-axisymmetric nature of stellarator configurations can best 

be addressed by particle simulations. 

The numerical simulation of neoclassical transport based on the drift- 

kinetic formalism was carried out in early works by Tsang, et aL8 More 
recently, Wu and Whiteg used a Hamiltonian guiding center Monte-Carlo 

code to study the bootstrap current. Ma, et aL1' developed a particle sim- 

ulation scheme using the conventional gyrokinetic algorithm (total-j) and 

binary collisions. Our present work is intended to develop a tool which can 

be used for more comprehensive investigations. To this end, we have ex- 

tended the gyrokinetic simulation techniques developed by Lee and cowork- 

ersll-13 to a new regime of applicability. Specifically, the new Sj scheme is a 

fully dynamical, self-consistent and systematic approach, which has distinct 

numerical advantages over conventional simulation methods. 

The approach in this paper differs from previous studies in a number of 

significant ways. First, the Sf scheme is a steady state simulation without 

profile relaxation effects, while a Monte-Carlo simulation will cause profile 

modification due to transport. Secondly, the noise level is greatly reduced in 
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the present scheme compared to conventional particle simulations. Finally, 

momentum-conserving collision operators can be readily implemented using 

Sf scheme. The present work is the first steady state, multi-species simula- 

tion with ion dynamics retained and complete collision operators properly 

implemented. Simultaneously accounting for the ion and electron dynamics 

is very important because of the sensitivity of the ion response to effects 

such as sheared flows and finite gyroradius physics. This in turn can signif- 

icantly modifies the electron transport through the collisional coupling and 

quasi-neutrality constrain. 

In the usual Sf scheme for turbulence simulations, the distribution func- 

tion is separated into a “ k n ~ ~ d ’  or background fo and a perturbed part Sf. 
When Sf << fo, the noise level is reduced by a factor of ( S f / f ~ ) ~  compared 

to the total f ~cheme.’~~’~ In the simulation of microturbulence, fo rep- 

resents the background equilibrium distribution function and Sf accounts 

for the perturbation. In neoclassical transport, there are no fluctuations. 

Nevertheless, to facilitate the computations, the distribution function can 

still be separated into a Maxwellian fo plus a perturbed part, Sf, with the 

perturbed part resulting from magnetic drifts and spatial inhomogeneity. 

We can then load a Maxwellian fo and calculate Sf as a time dependent 

quantity in the simulation. In this way, we can extend the Sf scheme to 

steady state simulation and study steady state phenomena by the initial 

value approach. 

In the present paper, we extend the Sf schemes based on the small gyro- 

radius ordering of drift kinetic equation t o  simulate steady state physics. 

The numerical scheme is benchmarked by using a simple model collision op- 

erator to study neoclassical transport. Simulations results of particle fluxes, 

energy fluxes, and bootstrap current are found to agree very well with stan- 

dard neoclassical theory. Based on the approach adopted by Xu and Rosen- 

bluth and later by Dimits and Cohen,16 accurate collision operators are de- 

veloped and implemented. Specifically, all collisions conserve local momen- 

tum and energy, and the like-species collision operator properly annihilates 

the linearized shifted Maxwellian distribution. The relevance of momentum 

and energy conservation and the role of like-species collisions in neoclassical 

transport is explored in detail. Ion dynamics are self-consistently retained 

for the first time in these multi-species simulations, and it  is dynamically 

demonstrated that (i) like-species collisions produce no particle flux; and 

(ii) neoclassical fluxes are automatically ambipolar for simple ion-electron 

plasma. Pure toroidal flows have also been introduced for the first time 
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into these simulations. The trends predicted by the analytic neoclassical 

theory’’ of large toroidal mass flow is confirmed. In the banana regime, the 

neoclassical enhancement of the viscosity is a Pfirsch-Schluter factor times 

the classical viscosity, and the enhancement of ion heat fluxis observed. The 

direct effect of toroidal flow on electron particle transport is negligible when 

the Mach number is smaller than unity. Furthermore, the poloidal electric 

field associated with the flow is found to  enhance the density-gradient-driven 

electron particle flux and bootstrap current, but reduce temperature gradi- 

ent driven electron particle flux and the associated bootstrap current con- 

tribution. The effect on electron thermal fluxes is largely negligible. Finally, 

the neoclassical theory is re-examined in the steep gradient profile regime 

where the ion poloidal gyroradius is comparable to the equilibrium profile 

scale length. This finite banana width effect is studies both analytically and 

numerically. It is found that both the ion thermal flux and the toroidal mass 

flow are increased by factors of order ( P ~ K . ) ~  when the finite banana width 

effects are taken into account, where pp is the ion poloidal gyroradius and K. 

is the profile gradient. h t u r e  work using this new simulation technique to 

study various aspects of neoclassical transport will be discussed. 

Section I1 presents 

the basic formalism. Section I11 shows the results of benchmarking single 

species simulations. Accurate collision operators are developed in Section 

IV. The relevance of conservation properties of the collision operators is 

demonstrated in Section V. The effects of toroidal flow and the associated 

poloidal electric field are investigated in Section VI. Finally, neoclassical 

theory for the steep equilibrium gradient profile case is examined in Section 

VI1 with finite banana width effect retained. Section VI11 summarizes the 

main findings of the present work and comments on future studies. 

The rest of the paper is organized as following. 

11. 6f SCHEME FOR NEOCLASSICAL TRANSPORT 

A. Basic Formalism 

To illustrate the basic principle behind the computational approach de- 

veloped to  address the neoclassical transport problem, we begin by consid- 

ering a simple steady state plasma with static magnetic field Bb and no 

electric field. The usual drift kinetic equation for a guiding center distribu- 

tion function f(E,p,x), where E is particle kinetic ?nergy, p is magnetic 

moment and x is guiding center coordinate, has the form,’ 
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where Vd is guiding center drift velocity, C is the drift kinetic collision op- 

erator. In the steady state, 

af - = 0. 
at 

The basic small expansion parameter is 

where pp is the ion poloidal gyroradius and I& is the major radius of the 

torus. 

Since the drift term Vd is smaller than transit term 2111 by a factor of S,l 

a perturbation expansion base on S ordering is appropriate; i.e. , 

f = f o +  f l+ . . .  . 

The zeroth order equation then becomes 

with its solution being a local Maxwellian 

The first order equation is 

Together with the solubility conditions from the second order equation, we 

can solve for f1 in term of linear functions of fo. The formal solution is 

where 
v2 3 

it = [ K ~  + (- - - ) ~ t ] e T  
'?h 
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with rc, and ~t representing the inverse of density and temperature scale 

length, respectively. 

In order to utilize particle simulation techniques to solve the first order 

equation, Eq. 3, we adopt the following approach. This equation is solved 

numerically by following the zeroth order guiding center trajectory in phase 

space, which is defined by the characteristics of zeroth order equation, Eq. 2. 

To cast the drift kinetic equation in a form suitable for particle pushing, we 

make a transformation to guiding center phase space variables (p,vll,x), 

which leads to, 

After defining 

Eq. 2 and Eq. 3 can then be expressed as 

With regard to the physical interpretation of these equations, we note 

that a steady state distribution function close to a local Maxwellian has 

been considered. It can then be linearized and separated into a zeroth order 

background Maxwellian and a first order perturbation part. The background 

inhomogeneity only comes in through the drift term in the steady state drift 

kinetic equation. Since this drift term is much smaller than the transit term, 

we can separate it out and treat it as a source term in the linearized drift 

kinetic equation. 

Eqs. 4 illustrate the desired form needed for numerical simulation. It 

contains all the important neoclassical effects, Le., the Vd term accounting 

for magnetic gradient and curvature drifts, and the all term representing 

the mirror force term which gives rise to particle trapping. These equations 

can be readily solved utilizing the linearized weighting scheme of Dimits 

and Lee.12 In this linearized scheme, particles are pushed by following the 
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zeroth order guiding center trajectory without the gradient and curvature 

drifts which are taken into account in the first order equation. f1 (or Sf in 

the usual notation of gyrokinetic simulation) is solved by integration along 

the particle trajectory. In this way we can solve the steady state problem 

by initial value methods. The steady state solution of f1 is obtained after 

several characteristic time periods governed by the left side of Eq. 4. This 

is the collisional time in the banana regime and the parallel diffusion time 

in the collisional regime. 

Magnetic surface averaged neoclassical fluxes and diffusion coefficients 

only depend on local density, temperature and their gradients. Hence, in- 

stead of loading a real profile, we can load a normalized fo which is uniform 

in space with density and temperature equal to those of the magnetic surface 

on which we are computing the neoclassical fluxes. 

B. Finite Banana Width Effects 

In order to take into account finite banana width effects which usually 

are not included in the neoclassical theory, we need to follow a more exact 

guiding center motion. Thus, the drift term Vd must be retained t o  the 

leading order in drift kinetic equation, 

For 

f =fo+Jf  , 
fo  now satisfies 

The governing equation for the perturbation is then become, 

Equation 6 can be efficiently solved using the nonlinear weighting scheme 

of Parker and Lee13 . This is accomplished by first defining a symbolic 
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and weight 'w 

Then. we have 

If a Maxwellian distribution is considered, 

f ( t =  0) = fo = F ! ,  

for 
N 

f = c S(Z - Zi) , 
i=l 

the solution of Sf is then given by 

N 

Sf = m;S(Z - Z;) , 
i=l 

where Z represents the five-dimension phase space variables (p ,  V I I  , x) . 
When ion-electron collisions are neglected, the solution of fo can be 

generalized to a shifted Maxwellian F,,(vII - ~ 1 1 0 )  with mean velocity ~ 1 1 0 .  

The associated equilibrium gradient scale parameter rc is defined as, 

where rcV is the inverse of flow velocity scale length. 

111. BENCHMARKING THE NUMERICAL SCHEME 

To benchmark the numerical scheme, a simulation in toroidal geometry 

is carried out using a model collision operator. Consider an axisymmetric 

toroidal geometry with circular cross section. The magnetic field can be 

written as 

B = BT(r)$ + B p ( r ) 8 ,  

where T ,  $ and 8 are, respectively, the minor radius, the toroidal and the 

poloidal angles. Here BT = Bo/h, B p  = B,o/h with h defined as 
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and f i  is the major radius. Bo and Bpo are related by the safety factor q, 

TBO 

&Bpo 
q=- .  

For numerical simplicity, we use the familiar Lorentz model without velocity 

dependence , i . e. , 
- l d  2 8  c = vL = v--(1 - [ )- , 

2 at @. 

where v is the collision frequency, L is the pitch angle scattering operator, 

and is the particle pitch with respect to magnetic field line, 

V 

A. Analytical Neoclassical Theory 

In order to provide the benchmarks for the simulation results, we ana- 

lytically calculate the neoclassical fluxes for the model collision operators in 

both collisionless and collisional limits. We begin with the first order steady 

state drift kinetic equation, Eq. 3, with the drift velocity' and the collision 

operator written as 

and 

respectively. Here SIp = eBpo/mc and X = h(1 - t2). 

1. Banana Regime 

In the banana ordering, f1 can be expanded as; 

where the smallness parameter is, 
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where wt is the transit frequency. The-zeroth order equation becomes 

V K  
vll6 O(fi’O) - -ht)Fm = 0,  

a, 
or 

where 

- 0. 
ai1 

de 
-- 

Application of the annihilator 

to the first order equation, 

v, ,b  + fjl) - C( fiO)) = 0 , 

leads to the following solubility condition: 

Thus, we find for f j  

where H is a step function, and hmin = 1 - e defines the boundary 

between trapped and passing particles. With fjo) and first order equa- 

tion for f i l l  specified, we can calculate the corresponding neoclassical 

fluxes: 

2 

=< s d3VVdr fi >= $11vp2%n(Kn + K T )  , 

where < - > represents the flux surface averaging, J , ,  hde/2n. Here, 

I’ is the particle flux, Q is the energy flux and j b  is the bootstrap 
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current with p being the thermal gyroradius ( p  = mvthc/eBo), ft is 

the fraction of trapped particles, and to the lowest order in E ,  

I1 = I3 = 1.38&. 

For a finite E ,  as pointed out by Wu and White: the next order cor- 

rection to the trapped particle fraction can be estimated heuristically 

by requiring f t ( E  = 1) = 1. This yields: 

ft  = 1.46& - 0.466. 

We note that to measure local (not volume averaged) current density, 

it is essential to calculate < J d3vf1vll/h > rather than < J d3vfiq >. 

2. Collisional Regime 

In collisional regime, f1 can be expanded as: 

fl = fi-1) + fp + fi1) + . . . , 

where the smallness parameter is 

The associated lowest order equation is 

C(fi-l)) = 0, 

or 

fj-l) = j i - l ) (~ ,  T, e) . 
The zeroth order equation is then given by 

C(fi’O)) = VI16 - vfi-l) 

This yields 
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fp) can then be substituted and the annihilator 

I h  dX 
can be applied together with 

The corresponding neoclassical fluxes are 

B. Simulation Results 

In this benchmark simulation, we consider a static magnetic field and no 

electric field. A uniform Maxwellian of electrons is loaded over an annulus 

section of torus. We follow the electron guiding center trajectories and 

treat the ions as a cold Maxwellian background. The simplified Lorentz 

collision operator is implemented by the utilizing the Monte-Carlo pitch 

angle scattering model, 

( = [o(I - vat) + (R - 0-5)[12(1 - Ei)vAt)]i , 

where and (0 are pitch angles after and before collisions, respectively, At 

is the time step, and R is a uniform random number between 0 and 1. 

The neoclassical fluxes are measured within an annulus centered by a 

magnetic surface. Results from the 3-D toroidal code are shown in Figs. 1, 

2, and 3, where we show the collision fiequency dependence of, respectively, 

particle flux I?, energy flux Q and bootstrap current j b  ( j b  is normalized 

by the collisionless limit value j o ) .  Results from the analytical neoclassical 

calculations using the same model collision operator are also plotted on these 
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figures for comparison purpose. The effective collision frequency is defined 

bY 

u*=  v f i q &  

EF"Uth 

Throughout this paper, we use the gyrokinetic normalization of Bo = T, = 

mi = 1 . Key parameters in the simulations are: &J = 512, E = 0.213, 

The simulation results agree very well with analytic theory in both 

the collisional and the collisionless limits where analytical results are valid. 

This numerical scheme is sficiently accurate t o  actually measure Sf. To 

demonstrate that the present computational scheme correctly represents the 

physics, we now examine the neoclassical transport in some details in these 

two limits of collisionality. 

= 2.5, IC,, = 0.02, and I C ~  = 0 . 

1. Collisional Limit 

In the collisional regime, f1 can be written as 

where Sn is local density perturbation, and u is the parallel flow ve- 

locity. By expanding Sn and u in poloidal h,armonics, 

m=0 
m = _ _  Um(T)eime7 

m=O 

and accurate to the lowest order in E for Eq. 9, the solutions are 

where R eBo/mc.  Thus, 
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and 

Good agreement is obtained for the amplitudes of S n p  and ul between 

analytic theory and simulation results as depicted in in Fig. 4. 

Diamagnetic current driven by background pressure gradient produces 

a parallel flow (Pfirsch-Schluter current or return current) in the col- 

lisional limit as required by the quasineutrality condition. Due to the 

short mean mean path of the particles, this return current produces 

a first order pressure variation within the magnetic surface. The re- 

sulting diamagnetic-type drift gives rise to a neoclassical fluxes. Here 

the local Maxwellian fi-') represents the pressure variation, and the 

shifted Maxwellian fro) accounts for the parallel return current. In the 

simulation, f1 reaches a steady state solution when the friction force 

on the return current due to collisions is balanced by the driving force 

from the gradient of the pressure perturbation. A plot of time history 

of the particle flux is shown in Fig. 5. It is found that the particles 

reach steady state in a few parallel diffusion times. 

2. Collisionless Limit 

In the collisionless (banana) regime, the pitch angle scattering pumps 

trapped particle into the untrapped population. At a giving magnetic 

surface, trapped particles with opposite parallel velocities comes from 

opposite sides of the surface, respectively, and hence carry different 

parallel momentum due to the density gradient. The circulating par- 

ticles gain this momentum due t o  the detrapping process, and the 

resulting parallel flow give rise to a bootstrap current. On the other 

hand, the circulating particles lose momentum due t o  ion-electron col- 

lisions. When the friction force of the collisions balances the driving 

force of the density gradient, f1 reaches a steady state solution. In 

this collisionless limit particles move freely along the magnetic field 

line to maintain uniform pressure, but the drift motions perturb free 

particle motion and give rise to stress anisotropy. The neoclassical 

fluxes again result from the diamagnetic outward drift due t o  this 

stress anisotropy. A example of the time history of the bootstrap cur- 

rent is shown in Fig. 6 where it is illustrated that this current reaches 

steady state in a few collision times. 
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C. Lorentz Model 

Since the Lorentz model is extensively used in neoclassical theory, it  is in- 

teresting to assess its accuracy for computing the actual transport. In Fig. 7 

the particle flux (represented by X )  obtained by using Lorentz model is com- 

pared to theoretical fluxes calculated with the full Fokker-Planck operator. 

We note that in the collisional limit, the Lorentz model is quite adequate to 

produce the neoclassical fluxes. However it generally gives smaller fluxes in 

the banana regime where electron-electron collision cannot be ignored. 

To include electron-electron collisions in the banana regime, note that 

only the pitch angle scattering part is important. It is convenient to adopt 

the model pitch angle scattering operator from Hinton and Hazeltine’s re- 

view paper; 

where, 

c = ( vee  + v e i ) i  , 

1 e-22  

+ ( x )  = (1 - - ) e T f ( x )  + - 
2x2 7r1/2x ’ 

and e r f ( x )  is the error function. The results of particle flux are also shown 

in Fig. 7 (represented by +). This form is accurate in the small collision 

frequency limit but overestimates the fluxes in the more collisional regimes. 

IV. FOKKER-PLANCK COLLISION OPERATION 

Realistic gyrokinetic particle simulation requires the implementation of 

accurate collision operators with all conservation properties retained. As 

shown by analytical theory, momentum conservation can play an important 

role in neoclassical transport. Therefore, this problem provides a relatively 

simple yet direct physical test for collision operators conserving momentum 

and energy. Appropriate accurate collisions operators conserving momen- 

tum and energy for a simple (electron-ion plasma) plasma are developed in 

this section. 
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A. Like-Species Collision Operators 

Following the approach introduced by Xu and Rosenbluth18 and then 

modified by Dimits and Cohen,16 we have developed a like-species particle 

collision operator which can (i) conserve all the collisional invariants(partic1e 

number, momentum and energy); and (ii) annihilate a shifted Maxwellian 

equilibrium distribution with small mean velocity. In dealing with collisions 

of test particles (cy) with background particles (p), we begin with the Rosen- 

bluth potential, assume both distribution functions fa and fp to be close t o  

Maxwellian, linearize, and keep terms responsible for momentum and energy 

consermtion. The linearized operator is1't20 

where the first term P accounts for the momentum and energy conserva- 

tion, and the other two terms are the test particle drag and diffusion parts. 

Functions F , G , H are defined by 

respectively. Here z = v2/v& and $(z) is the Maxwellian integral defbed 

bY 
2 "  

$(z) = - / e-t&dt. 
J ; ; O  

The basic collision frequency here is defined by 

4793q37; In nap 
uo = 

miv3 

The diffusion tensor can be diagonalized by transforming to the coordinate 

system w in which the z-axis is the direction of the test particle velocity, 

w I I  = w, = v . This lead t o  

d l a 2  1 a2 d2 

%I awl, 2 aw; dw,2 
C( Sf") = P(Fm, Sfp)+ - (vFSf")+- 7 ( v2HSfQ)+  - (-+ -) (~~G6.f" )  
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where wz and wy are orthogonal to WII and to each other. The test particle 

part can be readily implemented in this diagonalized form.21 

In the drift kinetic limit, we can transform the velocity space coordinate 

to cylindrical coordinate (v11,01 , 4) with 4 representing gyro-angle. After 

averaging over gyrophase 4 , we have (now Sf is guiding center distribution 

function) , 

where the collision coefficients are 

v.911 = v p  7 

U,I = 2 4 3 '  - v?H - ( 2 4  + v:)G, 

= $H + v?G, 

= 4v l (v lH + v ~ G )  , 
= 2v:vll(H - G) . 

2 2  
VI 

~ l l l  

The test particle drag and diffusion terms can be implemented by utiliz- 

ing the following Monte-Carlo method21T18T16 ; 

2111 = ~ 1 1 0  - v,llAt + a ( R 1  - 0.5)m , 
I n 

+ f i ( R ~  - 0.5)%@, 
Y I 

where R1, R2 are two independent uniform random numbers. 

In particle simulations using the Sf scheme, the momentum and energy 

conservation term P can be readily implemented. This term has been cal- 

culated analytically by Xu and Rosenbluth.18 Since it appears as a source 

term in the linearized gyrokinetic equation, Dimits and Cohen16 implement 

this term by changing particle weights to ensure the conservation of first 

order momentum and energy, 

v2 3 
AW = -v-SP - (- - -)SE, 

vt2ha 2 
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where SP and SE are weighted changes of the momentum (Av;) and energy 

(A$), respectively, of test particles due to test-particle collisions; i.e. , 

and 
n 

For like-species collisions, the collisional steady state solution is a shifted 

Maxwellian Fsm = Fm(v - qo), and the collision operators should accord- 

ingly annihilate this function. However, the implementation of Eq. 15 fails to 

maintain a shifted Maxwellian. This method compensates the test-particle 

momentum and energy loss due to test-particle collisions by putting them 

back into particle weights. However, this approach does not take into ac- 

count the velocity dependence of the momentum and energy loss rates gener- 

ated by collisions. As a result, the shifted Maxwellian is distorted in velocity 

space, and only three velocity moments ( < vo >, < v >, < v2 >) are con- 

served. As demonstrated in the next section, application of this procedure 

to the neoclassical transport problem will give incorrect energy flux, which 

is a quantity associated with third and higher order velocity moments. 

Note that for small mean velocity ( q o  << vth), a linearized shifted 

Maxwellian is linear both in v and v2 to second order in vIp/vth. We can 

therefore maintain a linearized shifted Maxwellian by restoring the momen- 

tum and energy according to their loss rates. The loss rates of momentum 

and energylg can be readily calculated from Eq. 12: 

m, =-Fv,  

d v 2 -  - -(2F - 2G - H ) v 2 .  
dt 

Substituting the functions F,  H and G defined in Eq. 11, we now can im- 

plement conservation properties with the correct velocity dependence, 

S P  - 3 6 [ 4 ( x )  - - d4(X)lv,h,SE (18) dx v 

with S P  and SE determined by Eq. 17. 

Eqs. 13 and 18 represent an appropriate set of Fokker-Planck collision 

operators. It is obvious that these operators conserve the collisional invari- 

ants and properly annihilate a Maxwellian. To test the second property, a 
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shifted Maxwellian Sf" = 2vllvo/V~ha is loaded and subjected to the test 

particles drag and diffusion processes (Eq. 13). We then comparing the re- 

sults obtained from applying Eq's (15) and (18), respectively. The shifted 

Maxwellian Sf" after three collisional times is shown in Fig. 8. It is clearly 

evident here that results using our new formulation, Le., Eq. 18, (represented 

by solid line) maintains the form of the shifted Maxwellian Sf", while result 

from the application of Eq. 15 (represented by dotted line) fails to do so. 

The older model pumps the momentum from low velocity particles to high 

velocity particles and generates an increase in the higher velocity moments 

associated with the momentum accumulation of these high velocity parti- 

cles. Fig. 9 compares the third velocity moment history of the same shifted 

Maxwellian under these two schemes. 

B. Inter-Species Collision Operators 

Collisions between ions and electrons can be simplified by neglecting the 

mass of the electron. In the ion frame, the electron-ion collision operator, 

accurate to first order in (1/z) and including pitch-angle scattering and 

energy diffusion can be expressed as, 

C,i(Sf") = Y0--(1- 1 8  t2)- a + vov-(--sfe 8 me + --Sf'). v?hi a 
2 at at av mi 2v av 

For the present analysis, only the pitch angle scattering needs to be retained. 

Ion-electron collisions can be simply modeled as ion Brownian motion in 

an electron fluid. Only the friction force by the electrons must be retained 

since the ion-ion collisions provide the ion-velocity-space diffusion on a time 

scale much faster than that of the ion-electron collisions. The local momen- 

tum loss of the electrons due to electron-ion collision is properly taken into 

account, and the first order ion momentum is then modifled to ensure that 

the local momentum conservation between ions and electrons is maintained. 

V. TWO SPECIES SIMULATIONS 

A. Role of Like-Species Collisions 

To the lowest order in the mass ratio expansion, the ion collision op- 

erptor only includes ion-ion collisions. It is well known that due t o  the 

momentum conservation like-species collisions alone should produce no neo- 

classical particle transport. It is demonstrated in Fig. 10 that ion particle 
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fluxes resulting from like-species collisions will indeed drop to zero when 

appropriate conservation properties are retained in the simulations. In the 

case of no temperature gradient, Kt = 0, the energy flux is also expected to 

vanish.’ In Fig. 11 , the new collision operator developed in Section IV gives 

the correct zero energy flux, while the Dimits and Cohen model produces 

an unphysical inward energy flux. We note that this is the first dynamic 

simulation which clearly verify the zero flux result for like-species collisions. 

The total f scheme has considerable difficulty in implementing kinetic colli- 

sion operators with all conservation properties retained. Although attempts 

have been made to implement binary collisions including all conservation 

properties for total f schemes,1° definitive results of the type reported here 

have not been published. Ion-ion collisions are known to produce a toroidal 

neoclassical rotation through the decay of poloidal rotation due to  magnetic 

pumping.22 Although this parallel flow is present, momentum conservation 

prevents collisions from generating frictional forces. As a result, since pres- 

sure variations or stress anisotropy cannot be set up, and no flux is induced 

because of the absence of outward diamagnetic-type drifts. A more impor- 

tant consequence of ion-ion collisions is the enhanced ion energy flux in the 

presence of a temperature gradient. Since this flux is a square root of the 

mass ratio larger than that of the electron, they can dominate ion thermal 

transport under certain circumstance. In Fig. 12 the dependence of ion en- 

ergy fluxes on the effective collision frequency is plotted, and a comparison 

of the simulations results to the theoretical results of Hinton and Hazeltine 

Complete electron dynamics requires including electron-electron colli- 

sions as well as electron-ion collisions since they are on the same time scale. 

To show the importance of conservation properties, we compare results from 

an electron-electron collision model conserving momentum and energy with 

a non-conserving model. In Figs. 13 and 14, the results of particle flux 

and bootstrap current are compared with theoretical predictions from Hin- 

ton and Hazeltine’s review paper (with T; = 0) .l Here it is seen that the 

momentum-conserving collision operators give a much better fit to  the the- 

oretical calculation results in the entire range of collisionality. Furthermore, 

as predicted, the electron-electron collisional contribution to neoclassical 

particle transport only occurs in the presence of electron-ion collisions. Es- 

timates for the particle flux from the non-conserving collision model overes- 

timates the neoclassical flux in the collisional regime. The reason is that the 

flux here is caused by parallel frictional forces due to first order parallel flows. 

is illustrated. 
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Since the electron-electron collisions do not contribute to this frictional force 

in lowest order because of momentum conservation, the associated flux is 

negligible. On the other hand, the test particle drag and diffusion operators 

without momentum conservation tend to drive the distribution function to 

a Maxwellian and thus artificially create frictional forces. In the banana 

regime, the particle fluxes are dominated by trapping and de-trapping pro- 

cesses. Thus only the test particle drag and diffusion terms are important. 

For the bootstrap current, the operators without momentum conservation 

underestimate the current. This is because the bootstrap current is governed 

by the momentum balance of circulating electrons. The electron-electron 

collisions should contribute to the rate of momentum transfer from trapped 

particles to circulating particles but not t o  that from electron to ions. Again, 

the operators without momentum conservation create an artificial frictional 

force and therefore cause additional unrealistic momentum loss of circulat- 

ing electrons to ions. Consequently, the results from such collision operators 

fit quite well only with the theoretical results of Z,,, = 00, where electron- 

electron collision can be neglected. 

B. Ambipolarity 

Ion dynamics affects electron transport through the collisional coupling 

and quasi-neutrality constrain. When ion dynamics is retained in two- 

species simulations with T; = T' and I C ~  = 0, the bootstrap current as 

well as electron particle and energy fluxes are doubled with respect to the 

single-species simulation results (corresponding to Ti = 0) (as expected from 

neoclassical theory). 

For a simple plasma, ion and electron particle fluxes are automatically 

ambipolar because of the momentum conservation between ions and elec- 

trons. This key ambipolar feature is demonstrated for the first time in 

the present dynamical simulations. Representative results are displayed in 

Fig. 15. 

VI. TOROIDAL FLOWS 

A. Basic Formalism 

In steady state, toroidal flow is a function only of the magnetic surface; 

i.e., uo = u(r)Gt = W ( r ) & &  Following the approach of Hinton and Wong,17 
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we transform to a rotating frame, v - uo -+ v, linearize and then gyro- 

average the Fokker-Planck equation for the ion distribution function. The 

inertial forces, and thus the guiding center drifts associated with these forces, 

are retained in this rotating frame. The governing linearized drift kinetic 

equation becomes, 

where r;, is the inverse of angular velocity scale length. Here the zeroth 

order distribution function is, 

where the invariants of motion are defined in the rotating frame, 

V 2  
p = 1  

2B ’ 

and 
1 2  2 e w2R2 

E = - ( v  +vl)+-@--. 
2 1’ m 2 

The guiding center drift velocity includes the usual vB, v x B and 

v@ xB drift terms together with new drift terms produced by the centrifugal 

force, w 2 R ,  and Coriolis force, 2mvll6 x w e ,  in the rotating frame. This 

has the form: 

The electrostatic potential is defined solely by charge neutrality, and can 

be represented as; 

Te mjw2 
e@ = -- (R2- < R2 >) . 

Te +Ti 2 

B. Effects of Toroidal Flows without Electrostatic Field 

To separate the effects of the poloidal electrostatic field and rotation, 

one approach is to set this potential to zero and assume charge neutrality 

is achieved by other mechanisms. The solution of Eq. (20) gives rise to 
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neoclassical viscosity (pi )  and ion thermal conductivity(X;). In the large 

aspect ratio limit of the banana regime, the results are,17 

and 
0.66q2 p? 

Ti 
x; = -- (1 + 2.24c - 3.62c2 + 2.32c3) , 

E1.5 (23) 

where c is defined by C G rn;w2R2/2(z + T,) . 
The radial derivative of the angular velocity appear in the linearized drift 

kinetic equation as a driving term. Therefore, Eq. 20 is a generalization of 

the usual linearized drift kinetic equation, Eq. 3, and can be readily solved 

by the numerical scheme developed in Section 11. 

Simulation results including toroidal viscosity are shown in Fig. 16. They 

agree quite well with the theoretical results of Hinton and Wong.17 Specif- 

ically, it is confirmed that the neoclassical enhancement of the viscosity is 

a Pfirsch-Schluter factor times the classical viscosity in banana regime and 

that there is no enhancement in the collisional regime. No anomalous vis- 

cosity is observed. It is noted that if energy conservation property of the 

collision operator is not incorporated, results indicate a much higher viscos- 

i ty. 

Fig. 17 shows the toroidal mass flow enhancement of ion energy fluxes 

in the banana regime, in agreement with Eq. 23. This enhancement comes 

from the additional guiding center drift associated with the centrifugal force. 

It is observed in these two species simulations that when the Mach number is 

much smaller than unity, the influence of toroidal flow on electron transport 

and the bootstrap current is negligible. 

C. Effects of Electrostatic Field Associated with Toroidal 
Flows 

The effects of the electrostatic field associated with the toroidal flows 

can be included by adding the equilibrium potential defined in Eq.(21). It 

is found that this electric field can enhance both the density gradient driven 

electron particle flux and the bootstrap current, but tend to reduce tem- 

perature gradient driven electron particle flux and the associated bootstrap 

current. The effect on electron thermal fluxes again tends to be negligibly 

small for small Mach number. This behavior is likely associated with the 
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fact that the poloidal electric field has a stronger influence(trapping and 

de-trapping) on low energy particles than on those at high energies. 

VII. NEOCLASSICAL TRANSPORT FOR STEEP GRA- 
DIENT PROFILE 

The standard neoclassical theory assumes that the ion poloidal gyrora- 

dius is much smaller than the equilibrium profile scale length ( p p  << Lp).  

However, this assumption breaks down both in the tokamak edge regime, 

where steep gradient profiles have been observed in the H mode plasmas, and 

in the region close to the seperatrix of diverted tokamaks. This motivates 

analysis of possible new physics effects when the usual small gyroradius or- 

dering is not invoked. Using the formalism developed in Section 11, both 

numerical and analytical studies have been carried out to investigate the 

finite banana width corrections to standard neoclassical theory. Simulation 

results indicate that the ion thermal flux and toroidal mass flow increase 

due to the finite banana orbit size. As shown in Fig. 18, simulation results 

show that the ion thermal flux increases linearly with (pp.)2. In order to 

analytically estimate the finite orbit size correction, we adopt the smallness 

ordering ( p p  < Lp).  The drift kinetic equation based on this small parameter 

is then expanded with the lowest order correction retained. 

A. Enhancement of Ion Thermal Flux 

For a qualitative estimate of the ion thermal flux, we consider the fol- 

lowing steady state drift kinetic equation, 

A simplified Lorentz model is employed in the banana regime; i.e., 

a d  
C = ~2ht-At- 

ax ax’  
Expanding f1 using banana ordering, the zeroth order equation becomes, 

Only the radial drift velocity needs to be retained here since the poloidal 

component make a neglecgible contribution to the banana size. Hence, 
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This equation can be solved iteratively by treating the term on the right 

side as a small perturbation; i.e., 

where 

fp) = (1 + EhJ)=Fm(hJ + fi) , , 
QP QP 

8.6 
m 
- = 0. 

We then apply the annihilator, 

t o  the first order equation 

Again, to simplify the orbit averaged collision operator, we employ the iter- 

ative scheme. 

where H is a simple model step function. The next order contribution from 

the drift term is proportional to ( P ~ K ) ~ .  Thus, the distribution function 

exact to first order is given by: 

Note that the first order correction does not contribute to the ion ther- 

mal flux, while the second order correction makes a positive contribution. 

Specifically, 

Here Qo is the usual neoclassical thermal flux with zero orbit size and CY is 

a positive number. This simple estimate confirms the same trend as that 

observed in the simulation; i.e., ion thermal flow is increased by a factor of 

order ( ~ ~ 6 ) ~ .  
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B. Density-Gradient-Driven Neoclassical Poloidal Rotation 

Using the fact that the ion-ion collision operator annihilates a shifted 

Maxwellian, we can solve Eq. (3) when temperature is uniform (K*  = 0). 

This yields 

(31) 

It then follows that the associated parallel mass flow is increased from the 

usual neoclassical toroidal flow by a factor of [1+ ( p , ~ ) ~ ] .  As a consequence, 

the poloidal component of the parallel flow no longer balances the ion dia- 

magnetic flow. A net poloidal rotation is thereby generated. If the impurity 

density gradient is the same as that of the main ion component, this effect 

should be stronger because of the larger gyroradius. 

VIII. CONCLUSIONS 

A gyrokinetic simulation of steady state, multi-species neoclassical trans- 

port has been successfully carried out for the first time. Simulation results 

using appropriate model collision operators are found to agree very well with 

standard neoclassical theory. 

A new Sf scheme to deal with this class of problem has been devel- 

oped and implemented including appropriate collision operators conserving 

momentum and energy. The importance of momentum and energy conser- 

vation is demonstrated; i.e. it is shown that significant qualitative errors are 

introduced if the conservation properties are violated. 

Ion dynamics are self-consistently retained for the first time in a multi- 

species simulation, and it is dynamically demonstrated that: (i) like-species 

collisions produces no particle flux, and (ii) neoclassical fluxes are automat- 

ically ambipolar for a simple ion-electron plasma. 

Toroidal flow has also been introduced for the f i s t  time into these sim- 

ulations. Trend from the neoclassical viscosity theory of Hinton and Wong 

is confirmed. The poloidal electric field associated with this flow is found to 

enhance the density gradient driven electron particle flux and the bootstrap 

current. 

Neoclassical theory appropriate for steep equilibrium gradient profiles is 

examined both analytically and numerically. It is shown that both the ion 

thermal flux and the toroidal mass flow increase by factors of [l + ( p ~ ) ~ ]  

when the finite banana width effects are taken into account. 
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Building on the advantages of the present approach, (e.g., multi-species 

capability, steady state, fully dynamical approach, low noise), we will explore 

in future studies potential significant modifications of neoclassical trans- 

port which are usually inaccessible by conventional calculation processes. 

These investigations will deal with sheared toroidal flows, energetic particle 

physics, fluctuating fields(non-self-consistent and self-consistent), and real- 

istic geometric effects in advanced tokamaks and stellarators. 
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FIGURE CAPTIONS 

FIG. 1. Particle flux I? versus v* computed using simplified Lorentz collision 

model. The solid line is the analytical neoclassical result. * 

FIG. 2. Energy flux Q versus v* computed using simplified Lorentz collision 

model. The solid line is the analytical neoclassical result. 

FIG. 3. Bootstrap current j b  (normalized by j o )  versus v* computed using 

simplified Lorentz collision model. 

FIG. 4. Poloidal variations of Sn(O)/no and ul(e)/v,,  in the collisional 

regime. 

FIG. 5. Time history of particle flux in the collisional regime. 

FIG. 6. Time history of bootstrap current in the banana regime. 

FIG. 7. Particle fluxes I? versus v* for the Lorentz model( x)  and pitch-angle 

scattering model of Hinton and Hazeltine(+). The solid line is theoretical 

the analytical result of Hinton and Hazeltine (1976). 

FIG. 8. Comparison of collision operators. Dashed line represents linearized 

shifted Maxwellian, solid line represents results using model improved oper- 

ator, and dotted line represents results using Dimits-Cohen operator. 

FIG. 9. Time history of the third velocity moment. Solid line represents re- 

sults using improved operator, and the dotted line represents results Dimits- 

Cohen operator. 

FIG. 10. Ion particle flux time history (time averaging) resulting only from 

ion-ion collisions. 

FIG. 11. Ion energy flux time history (time averaging) due only to ion-ion 

collisions (Q = 0). Solid line represents results using improved operator, 

and the dotted line represents results Dimits-Cohen operator. 

FIG. 12. Ion energy fluxes Q versus v* (Q # 0). The dashed line is the 

analytical neoclassical result. 

FIG. 13. Particle fluxes I? versus u* for ion-electron and electron-electron col- 

lisions with momentum conservation( x ) and without momentum conservation(+). 

The solid line represents the analytical result of Hinton and Hazeltine (1976) 

for Z,ff = 1. 
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FIG. 14. Bootstrap current jb (normalized by j o )  versus v* with ion-electron 

and electron-electron collisions with momentum conservation( x ) and with- 

out momentum conservation(+). The solid line represents the analytical 

result for Z e f f  = 00. The dashed line corresponds to Z e f f  '= 1. 

FIG. 15. Time history of Ambipolar particle fluxes (time averaged). Solid 

line is for the ion, and dashed line is for the electron. 

FIG. 16. Ion momentum flux versus v* normalized by analytical result in 

collisionless limit. 

FIG. 17. Ion energy fluxes Q versus ( normalized with the corresponding 

value in the zero rotation limit. Solid line represents the analytical results. 

FIG. 18. Increasing of ion energy flux with the parameter p ' ~ .  Here SQ = 

Q - Qo, and Qo is the ion flux in the limit of prc = 0 
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