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Abstract

Results from a fully nonlinear three dimensional toroidal electrostatic gyrokinetic

simulation of the ion temperature gradient instability are presented. The model has

fully gyro-averaged ion dynamics, including trapped particles, and adiabatic electrons.

Simulations of large tokamal( plasma volumes are made possible due to recent advances

in J.f methods and massively parallel computing. Linearly, a coherent ballooning eigen-

mode is observed, where the mode is radially elongated. In the turbulent steady-state,

the spectrum peaks around kop, .- 0.1-0.2 and k,p, _, 0, with the ballooning structure

reduced, but still prevalent.

DIS_T,'_..rTIO,N Cll_"FH,_ DO(_U_NT Ul LIN,LI_IF_)



1 Introduction

Recent advancesin both nonlinear_f methods forgyrokineticsimulation[I,2],and

massivelyparallelsupercomputingnow make itpossibleto simulatea sizablefraction

of a tokamak plasma usingrealisticphysicalparameters.As a firststepin utilizing

theseadvances,a threedimensionalelectrostatictoroidalgyrokineticsimulationhas

been developed.Here,the code isused to investigatethe nonlinearevolutionofthe

ion temperaturegradient(ITG) driveninstabilityand the associatedturbulenceand

transport.The ITG mode has longbeen considereda plausiblecandidateto explain

theanomalousionheattransportabove neoclassicalvaluesintokamak plasmas[3,4].

Inthesesimulations,theionsarefullygyrokinetic,includingtrappedparticles.The

electronsaretreatedas adiabaticwhich permitsa moderatesizetimestep(simulations

with kineticelectronsare feasible,but thetimestepwould need to be smallerby the

factorvie/vtz).The simulationisefficientlyrunningon massivelyparallelsupercom-

puters(currentlythe CM-200 and CM-5) which allowssimulationsof relativelylarge

systems(e.g.,a _ 100plminor radius,Az _ p#).Typicalrunsup to thispointhave

rangedfrom one to eightmillionparticlesand gridcellsusuallywith one to two par-

tidesper gridcell,and witha cpu timeof2-3microsecondsper particleper timestep

on a full64K processorCM200. Finegridresolutionisneeded inthe toroidaldirec-

tionbecausethe mode structureisthe helical(elongatedalongthe the magneticfield

linesi.e.,kll<Kkj.),resultingina smallernumber ofparticlesper gridcellrelativeto

conventionalslabsimulations.

In theinitialphaseoftherun,we observea cleanlineargrowthofthemost unstable

toroidalharmonic and the associated2D eigenmodein (r,0) with a ballooningtype

structurewhere the mode isradiallyelongated.[Fig.1 (a)and (b)].In the steady-

state,both longand shortperpendicularwavelengthsareenhanced withthespectrum

peakingat/:rP,_ 0 and kep,_ 0.1-0.2,and theballooningstructurereduced,but still

prevalent [Fig. 1 (d) and (e)]. Broad scale (i.e., many modes are present) turbulence

with fluctuation levels of el_k[/T _ 1% is observed. The parameters and more details

will be given in Sec. 3, where it will be shown that the k, and k0 spectrum (Fig. 3) show
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very similar features as the the recent beam emission spectroscopy (BES) fluctuation
P

measurements on TFTR [5].

2 Model Equations

Starting with the electrostatic gyrokinetic equations with a nonuniform equilibrium B-

field [6], we write f(z,t) = f0(z) + cff(z,t), where z = (R, vll,p); and expand i into

its equilibrium and perturbed parts: z = _0 + _x f0(z) is a Maxwellian and satisfies:

_0.0zf0(z) = 0. The equation for ihe perturbed ion distribution function Jf is then [1]

OtJf + _. . OzJf = __1. Ozfo. (1)

, where the magnetic moment # is time independent and the other equilibrium and per-

turbed phase space variables are evolved using

R  11 = (3)

where l_° =_b + _1_ x !). VI_, _ is the gyro-averaged electrostatic potential, and

dimensionless gyrokinetic units are used R/p, --+ R, Vll/C, -+ vii, e¢/Te _ ¢, f2_t _ t,

B/Bo -'+ B, Bo is a reference value of B, p = (v±/c,)U/(2B/Bo), _ = eBo/(m_c),

c, = V/'_e/m_, and p, = c,/f_,.

The particles follow their full nonlinear trajectories, Jf is represented by BJf(z, t) =

_wi6(z- z,), and particle weight wi is then evolved using [1]
i

--(l-w,) [zl 0zf0] (4)
rb,

•

Electromagnetic equations have been formulated [1], but not yet implemented in the

code. Equations (2)-(3) are similar to those of Hahm's [6], and accurate to the same

order but, we have assumed B ° = B for numerical efficiency. As usual, finite size

particles are used in the configuration space. The electrons are are assumed adiabatic
e
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(She = noe¢/Te). A square cross-section is used which is suitable for spectral solution t

of the field equation. The coordinates (z, y, _b) in terms of the usual toroidal coordi-

nates (r, 0, ¢) are: ( z = r cos0, y = rain0, ¢ ). Using these coordinates, assuming

(kll/k_.)(Bo/B¢) << 1 where Bo and Be, are the poloidal and toroidal components of B,

one can transform the electrostatic field equation [7] to obtain:

til - ro(k_/T_/Te)]¢(kj., ¢) = $fi_(k±, ¢) - ¢(k±, ¢), (5)

where $fi_ = (yfi - no)/no, fi_ is the gyro-averaged ion density, k± = (kxp,, kyps)

and higher order terms have been neglected, p, is assumed constant in Eq. (5). For

the radial boundary condition we set 5fi_ to zero for r > (a -4p,) within the square

cross-section. The magnetic field is fixed and specified using B_ = BoRo/R, Bo =
0

rB_/(Roq(r)), and q(r) = qo + Aq(r/a) 2. Initial equilibrium density and temperature

profiles are used such that L_ 1 - IVnl/n and LYrI -_ ]VT]/T have a radial variation

proportional to sech_[(r - ro)//], where ro and 1 as well as the peak normalized gradients

L_l(ro) and LYrl(ro) are ali specified parameters. For the results presented, the particles

are loaded homogeneously and the variation in the profile appears only in the right hand

side of Eq. (4).

3 Simulation Results

The results shown here are for a run using the following numerical parameters: 1 million

particles, a 128x128x64 grid in (z, y, _b), with a perpendicular grid cell size Az = Ay =

p,, and a time step ofAtc,/LT = 0.45. The physical parameters are: eT -- LT(ro)/Ro =

0.075, 1/L,_(ro) = O, T_ = Tc, a = 64p,, and Ro = 892p,, q0 = 1.25, Aq = 3, l =

20p,, r0 = ½a is the location of maximum temperature gradient (see Sec. 2), q(r0) =
rdq

2, } _- = 0.75 at ro. The local parameters at r = ro are similar to the TFTR

perturbed supershot experiment [8], except for the aspect ratio. As mentioned above

Figures l(a) and (b) are the poloidal and toroidal slices of the potential in the linear '

phase. Figure l(c) shows the relative amplitude of the various (m, n) modes in the
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linear phase at the q(r = !a)2 = 2 flux surface for ¢ = _ ¢,nn exp(-im0 - in¢). One
m.,

dominant toroidal harmonic is present (n = 4) with a dominant poloidal harmonic

(m = 8, k0 = m/r0 = 0.25) plus a few lower amplitude sidebands to produce the

ballooning envelope. Figures l(a)-(e) are snapshots taken just before the saturation of

the dominant mode.

The measured real frequency is _, - -O.06c,/LT and the growth rate is -y =

O.03eo/LT. The closest analytic theory for toroidal ITG modes in terms of the assumed

ordering is the slab branch in the long wavelength limit[4] with o_ wt, e_./2..., ._ ¢d, T i ,

kepi ~ e_,/2, AO --. _Tt/4, where AO is the mode width in the extended poloidal angle;

and the approximate dispersion relation given by

, _ = q_0 (7v/7)'/5 [(qk, p,)_/_r] 1_/5) e'7"_1°, (6)

which gives w, = -O.05e,/LT and 3' = O.07e,/LT. Comparisons with more detailed

' eigenmode calculations of Rewoldt and Tang [3] show agreement is within 15% in terms

of real frequency, growth rate, and mode structure [9]. This dominant eigenmode grows

linearly and saturates at a level of el¢(v = r0,_ = 0, n = 4)l/Te = 0.03, which is

in the range of the mixing length level 1/(k_LT) = 0.06, where we used LT since

1/L,_ = 0 and kj..._ /co. The local shearless slab mode coupling calculation of Lee

and Tang [10] predicts a saturation level e/T,l¢(2:)l = v/'31ca+ i71/1¢_ '_ 0.03, which

is in agreement with the toroidal simulation result. This may be due to the fact that

the radially elongated mode structure is not strongly localized by the magnetic shear.

Toroidal effects on the mode coupling calculation will be investigated in the future. At

saturation, Xi = 1.6p2,c,/L7 ' taken at r = ro, then drops and comes to a steady-state

value of Xi = 0.2p_,c°/Lr, for comparison 7/k_ = 0.hp2,c,/LT, again using k± _. k0.

Figures l(d)-(f) are the corresponding plots during the nonlinear saturated steady-

sta_e. These snapshots were taken at a time 300LTe° after the saturation of the fastest

growing mode. Figures l(c) and (f) show that the poloidal and toroidal harmonics (m, n)

I have appreciable activity for the linear phase and the nonlinear state, respectively.

After the system settles down to a steady-state, the activity is at a lower (rh, n) than
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the (m,n) associatedwith the most unstablemode. We alsonote that the peak of

activitylieson the m = qn lineasexpected.Figures2(a)and (b)arethe ke and kr

spectrumtakenat theturbulentstead-state.These measurementswere made overthe

half annular region of 0 E [-lr/2, +1r/2], r E [¼a, _a] and _ E [-Tr, Tr]. The region has

approximately a 32ps (= a/2) radial width and a 100p, (= 7ra2) poloidal length. Figure

2(a) shows S(ko) - _ I_(k,.,ko, n)l 2. and Fig. 2(b) shows S(k,.) - _ 14p(ke,ke,n)l 2,
n,kv. rl,k#

These diagnostics are an attempt at mimicking the recent BES measurements on TFTR

[5]. The spectrum shows similar features as the experimental measurements in that the

k,. spectrum peaks at zero and ks spectrum peaks in the range of kop, ~ O.1-0.2. These

properties of the spectrum have so far been found to be fairly insensitive to the choice

of simulation parameters. One notable difference between the numerical result and the

experimental measurement is that the width in the in the k,. spectrum is broader in the

simulation. One possible explanation is the small minor radius of the simulation causes
B

more localization of the modes radially, hence artificially broadening the kr spectrum.

,_ This will be tested in the future, as the size of the simulations can be increased.

Figure 3(a) shows the initial temperature profile (solid line) and the flattened profile

in the quasi-steady state(dashed line). The dashed line is measured at a time 750LTC,

past the saturation of the most unstable mode, at which time the center temperature

has dropped by 8%. We use the term quasi-steady-state because the profile continues to

relax clue to diffusion, but on a much slower timescale than the initial transients and the

ensuing fluctuations. Figure 3(b) shows the radial variation in Xi, which appears fairly

fiat, except towards the edge where Xi goes to zero because the ion density fluctuations

are set to zero in the simulation for r _> (a - 4pi). Simulations with larger volumes will

probably be needed to compare with the experimentally observed trends in the Xi(r)

profile. The peak (and overall) level is approximately Xi _ 0.2p2,c,/LT [Fig. 3(b)]. We

have also run a case with the same parameters except for using a finite Lh, such that

rli - LTLh = 2.3, the purpose being to see the effect of running closer to marginal
t

stability and compare with the unperturbed supershot parameters [8]. In r/i = 2.3 case,

the steady-state Xi is reduced to approximately O.06p2,c,/LT.



D

Though, not identical parameters (e.g., T_/T_ is held fixed for both simulation cases),

• and simplifi,'d physics it is interesting to compare the simulation results to the thermal

diffusivity in gyro-Bohm units for the perturbation experiment on TFTR [8], where for

both the perturbed and unperturbed case ._:i_ 0.3p_c,/Lv. In comparison, the simula-

tion shows a considerable reduction in the gyro-Bohm coefficient for the case closer to

marginal stability ('7i = 2.3). This discrepency may be in part due simplified physics

model. Effects that have been found to play an important role in linear calculations,

but are not in our nonlinear model include trapped electrons, collisions, energetic ions,

and impurities [11, 12, 13]. Also, collisions have been shown to have a significant effect

on the steady-state fluxes in nonlinear gyrokinetic simulations [10].

To gain some insight of the scaling treads of ITG driven transport, one can examine

, the invariance properties [14] of the governing equations. In the gyrofluid limit, the

scaling can be written as [10]

* Xi o¢ (k.Lp,)-P(p,/LT)(cT/eB), (7)

using kll _ l/qR and LT/R = const. Although the quasilinear theory gives p = 5/3 [10],

in general, the exponent p does not have a unique solution (because of the insufficient

number of allowable transformations). Nevertheless, this scaling indicates that, if k±p,

spectrum in the turbulent steady state remains unchanged for different sizes of minor

radius, a, the magnitude of Xi should remain constant, which would give gyro-Bohm

scaling. However, preliminary indications from larger simulations show that :_i increases

with system size. Thus, the scaling is not entirely gyro-Bohm. Furthermore, the sim-

ulation has a minor radius which is 5-10 times smaller, in comparison with the TFTR

experiments [5, 8], and has a wider k_ spectrum and a smaller Xi. This is a signature

of non-gyro-Bohm scaling and the trend is consistent with Eq. (7).

4 Discussion

Results from a three dimensional toroidal electrostatic gyrokinetic simulation were pre-

sented. A coherent ballooning eigenmode is observed in the initial linear phase. This
i.
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dominant mode first saturates, then a turbulent steady-state develops, in which the kr
#

and b0 spectrums show similar features as the recent BES measurements on TFTR. We

have demonstrated the feasibility of using large scale gyrokinetic simulations to study

the nonlinear evolution of kinetic microinstabilities. Current whole tokamak simulations

are limited to minor radii of 100-200p,. In the future, teraflop scale massively parallel

supercomputers will allow simulations with a minor radius in the range of 400p,, which

is typical of the size of present day tokamaks. Such simulations can serve as a useful

tool for better understanding of tokamak turbulence. In the interim, it may also be

possible to simulate a reduced volume such as an annulus or flux tube. However, using

smaller domains typically require more assumptions to be made about the underlying

mode structure and/or turbulence. Global kinetic simulations such as these presented

here should help identify, as well as, verify such simplified models. Future work will

include adding a more detailed kinetic electron model (including the trapped fraction),

electromagnetic perturbations, and collisional effects.
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Figures

Figure 1: Plots of the electrostatic potential during the linear phase and nonlin-

early saturated steady-state. (a) poloidal cross-section during the linear phase,

(b) toroidal cro_-_=tion during the linear phase, (c) excited toroidal and poloidal

harmonics during the linear phase, the size of the circle indicates amplitude of

the potential, measurement is made at the q = 2 surface; (d)-(f) sre the same

diagnostics, taken during the saturated steady-state.

Figure 2: Wavelength fluctuation spectrum for ke and kt. (a) Fluctuation ampli-

tude vs. /_e, and (b) fluctuation amplitude vs. k,. k, and k0 are in units of p_-i

and S is in arbitrary units.

Figure 3: Radial temperature profile and heat diffusivity. (a) Temperature vs. ra- *

dius, initial equilibrium is the solid line, dashed line is the steady-state; (b) heat

diffusivity Xi vs. radius at steady-state, the solid line is Xi calculated using initial •

equilibrium and the dashed line is calculated using the evolved equilibrium.
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