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Abstract. In this paper we describe all surjective gyrometric preserving maps on the three

models of gyrovector spaces, the Einstein gyrogroup, the Möbius gyrogroup and the Proper

Velocity gyrogroup.

1. Introduction

In the book [4] Ungar studied the gyrocommutative gyrogroup. The (gyro-
commutative) gyrogroup is a generalization of the (commutative) group, which
is not necessarily (commutative and) associative. In his book Ungar studied
the three models of gyrocommutative gyrogroup, the Einstein gyrogroup, the
Möbius gyrogroup and the Proper Velocity gyrogroup. These models also have
the structure of the gyrovector space and the gyrometric. The gyrometric on
the Einstein gyrogroup is related with the Bergman metric, and the gyromet-
ric on the Möbius gyrogroup is related with the Poincaré metric. In the paper
[2], Kim established an isomorphism between the Einstein gyrogroup and the
set of all qubit density matrices representing mixed states endowed with an
appropriate addition. Moreover, he established a relation between the trace
metric for the qubit density matrices and the Einstein metric on the Einstein
gyrogroup.

Let (X, dX) and (Y, dY ) be metric spaces. T : (X, dX) → (Y, dY ) is said
to be an isometry if it satisfies dY (Ta, Tb) = dX(a, b) for any pair a, b ∈ X.
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The study of isometry maps is important and many results are known. The
celebrated Mazur-Ulam Theorem states that a surjective isometry T from a
normed vector space X onto a normed vector space Y is of the form T (·) =
T (0) + T0(·), where T0 is linear. This theorem referred to about algebraic
structure of an isometry.

In this paper, we study surjective gyrometric preserving self-maps on Ein-
stein gyrogroups, Möbius gyrogroups and PV gyrogroups. We will show the
algebraic structures of these maps and representation theorems.

In the following of the paper, V denotes a real inner product space with the
vector addition + and a positive definite inner product 〈·, ·〉. We say that an
inner product 〈·, ·〉 is positive definite if the following holds; 〈u,v〉 = 0 for all
u ∈ V implies v = 0. We denote by ‖ · ‖ the norm on V induced by 〈·, ·〉 and
B denotes the open unit ball of V; B = {u ∈ V : ‖u‖ < 1}.

2. Gyrogroups

In this section, we recall necessary definitions and briefly sammarize funda-
mental results of gyrogroups based on the Ungar’s book [4].

Definition 2.1. ([4, Definition 2.1]) A groupoid (S,+) is a nonempty set, S,
with a binary operation, + : S × S → S. An automorphism φ of a groupoid
(S,+) is a bijective self-map of S, φ : S → S, which preserves its groupoid
operation, that is, φ(a+ b) = φ(a) + φ(b) for all a, b ∈ S. Aut(S,+) is the set
of all automorphism of a groupoid (S,+).

Definition 2.2. ([4, Definition 2.7]) A groupoid (G,⊕) is a gyrogroup if it
satisfies the following axioms.

(G1) There is a element, 0 ∈ G, called a left identity, satisfying

0⊕ a = 0,

for all a ∈ G;
(G2) For each a ∈ G there is an element 	a, called a left inverse of a,

satisfying

	a⊕ a = 0;

(G3) For any triple a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G
such that the binary operation obeys the left gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c;

(G4) The map gyr[a, b] : G→ G given by c 7→ gyr[a, b]c is an automorphism
of the groupoid (G,⊕),

gyr[a, b] ∈ Aut(G,⊕).
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The automorphism gyr[a, b] of G is called gyroautomorphism of G
generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
called gyrator of G;

(G5) The gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses
the left loop property

gyr[a⊕ b, b] = gyr[a, b]

for any a, b ∈ G.

Definition 2.3. ([4, Definition 2.8]) A gyrogroup (G,⊕) is gyrocommutative
if its binary operation obey the gyrocommutative law

(G6) a⊕ b = gyr[a, b](b⊕ a) for all a, b ∈ G.

Example 2.4. A (commutative) group is a (gyrocommutative) gyrogroup
which all the gyroautomorphism is the identity map on G.

Example 2.5. ([4, Definition 3.45]) Let B be the open unit ball of V. Einstein
addition ⊕E is a binary operation in B given by the equation

u⊕E v =
1

1 + 〈u,v〉

{(
1 +

γu〈u,v〉
1 + γu

)
u +

1

γu
v

}
=

1

1 + 〈u,v〉

{(
1 +

〈u,v〉
1 + αu

)
u + αuv

}
,

(2.1)

where αu =
√

1− ‖u‖2, γu = αu
−1. (B,⊕E) is a gyrocommutative gyrogroup

and called the Einstein gyrogroup. By a simple calculation we see that the
identity of (B,⊕E) is the zero vector of V and the inverse element of u ∈
(B,⊕E) is −u.

Example 2.6. ([4, p75]) Möbius addition ⊕M is a binary operation in the
open unit disc D = {z ∈ C : |z| < 1} given by the equation

a⊕M b =
a+ b

1 + ab
. (2.2)

(D,⊕M ) is a gyrocommutative gyrogroup. The identity of (D,⊕M ) is 0 and
the inverse element of a ∈ (D,⊕M ) is −a.

Let us identify the complex plane C with the Euclidean plane R2 in the
usual sense, we have a natural extension as the following.

Example 2.7. ([4, Definition 3.40]) Let B be the open unit ball of V. Möbius
addition ⊕M is a binary operation in B given by the equation
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u⊕M v =
(1 + 2〈u,v〉+ ‖v‖2)u + (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2
. (2.3)

(B,⊕M ) is a gyrocommutative gyrogroup and called the Möbius gyrogroup.
The identity of (B,⊕M ) is the zero vector of V and the inverse element of
u ∈ (B,⊕M ) is −u.

Example 2.8. ([4, Definition 3.47]) Let V be a real inner product space. The
PV (Proper Velocity) addition ⊕P is a binary operation in V given by the
equation

u⊕P v =

{
βu

1 + βu
〈u,v〉+

1

βv

}
u + v

=

{
1

1 + δu
〈u,v〉

}
u + v,

(2.4)

where δu =
√

1 + ‖u‖2, βu = δ−1u . (V,⊕P ) is a gyrocommutative gyrogroup
and called the PV (Proper Velocity) gyrogroup. The identity of (V,⊕P ) is the
zero vector of V and the inverse element of u ∈ (V,⊕P ) is −u.

Definition 2.9. ([4, Definition 6.2]) Let G be a subset of a real inner product
space V. A real inner product gyrovector space (gyrovector space, in short)
(G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) with a scalar multiplication
⊗ : R×G→ G that obey the following axioms:

(V0) 〈gyr[u,v]a, gyr[u,v]b〉 = 〈a, b〉 for all u,v,a, b ∈ G;
(V1) 1⊗ a = a for all a ∈ G;
(V2) (r1 + r2)⊗ a = (r1 ⊗ a)⊕ (r2 ⊗ a) for all a ∈ G, r1, r2 ∈ R;
(V3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) for all a ∈ G, r1, r2 ∈ R;

(V4)
|r| ⊗ a

‖r ⊗ a‖
=

a

‖a‖
for all a ∈ G, r ∈ R;

(V5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a for all u,v,a ∈ G, r ∈ R;
(V6) gyr[r1 ⊗ v, r2 ⊗ v] = idG for all v ∈ G, r1, r2 ∈ R;
(VV) ‖G‖ = {±‖a‖ ∈ R : a ∈ G} is an one-dimensional real vector space

with vector addition ⊕ and scalar multiplication ⊗, such that for all
r ∈ R and a, b ∈ G,

(V7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖;
(V8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖ .

Gyrovector spaces are defined only on a subset G of a real inner product
space V, and V is called a carrier of G. The gyrometric % on a gyrovector
space (G,⊕,⊗) is given by %(a, b) = ‖ 	 a ⊕ b‖ for any pair a, b ∈ G, where
‖ · ‖ be the norm on the carrier of G. Einstein gyrogroups, Möbius gyrogroups
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and PV gyrogroups turn themselves into gyrovector spaces and we can cosider
their gyrometrics.

Example 2.10. ([4, Definition 6.86]) An Einstein gyrogroup (B,⊕E) forms
a gyrovector space (B,⊕E ,⊗E) with the scalar multiplication ⊗E on (B,⊕E)
defined by

r ⊗E v = tanh(r tanh−1 ‖v‖) v

‖v‖
, (2.5)

where r ∈ R, v ∈ B \ {0}; and r ⊗E 0 = 0. The gyrometric on the Einstein
gyrogroup %E(u,v) = ‖ − u ⊕E v‖ called Einstein gyrometric and (B, %E) is
a metric space. Let dE(u,v) = tanh−1 %E(u,v) then dE is also the metric on
B. In fact, the metric dE on B corresponds to the Bergman metric on the
ball in Cn if V = Rn.

Example 2.11. ([4, Definition 6.83, Theorem 6.84]) A Möbius gyrogroup
(B,⊕M ) forms a gyrovector space (B,⊕M ,⊗M ) with the scalar multiplication
⊗M on (B,⊕M ) defined by

r ⊗M v = tanh(r tanh−1 ‖v‖) v

‖v‖
, (2.6)

where r ∈ R, v ∈ B \ {0}; and r ⊗E 0 = 0. The gyrometric on the Möbius
gyrogroup %M (u,v) = ‖−u⊕M v‖ called the Möbius gyrometric and (B, %M )
is a metric space. Let dM (u,v) = tanh−1 %M (u,v) then (B, dM ) is also the
metric space and we call dM the Möbius metric. In the special case when
we consider the Möbius gyrogroup on the complex open unit disc (D,⊕M ),
Möbius gyrometric reduces to

%M (a, b) = | − a⊕M b| =
∣∣∣∣ a− b1− ab

∣∣∣∣ .
The Möbius gyrometric on D is known as the pesudo-hyperbolic metric and
Möbius metric dM on D is also known as the Poincaré metric.

Example 2.12. ([4, Definition 6.87]) The PV gyrogroup (V,⊕P ) forms a
gyrovector space (V,⊕P ,⊗P ) with the scalar multiplication ⊗P on (V,⊕P )
defined by

r ⊗P v = sinh
(
r sinh−1 ‖v‖

) v

‖v‖
, (2.7)

where r ∈ R, v ∈ V \ {0}; and r ⊗P 0 = 0. %P denotes the gyrometric on the
PV gyrogroup; %P (u,v) = ‖ − u⊕P v‖.

Definition 2.13. ([4, Definition 6.15]) An automorphism τ of a gyrovector
space (G,⊕,⊗) is a bijective self-map of G, τ : G → G, which satisfies the
following conditions (a), (b) and (c):
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(a) τ(a⊕ b) = τa⊕ τb for any a, b ∈ G;
(b) τ(r ⊗ a) = r ⊗ τa for any r ∈ R, a ∈ G;
(c) 〈τa, τb〉 = 〈a, b〉 for any a, b ∈ G where 〈·, ·〉 be the inner product on

carrier of G.

Denote Aut(G,⊕,⊗) the set of all automorphism of a gyrovector space (G,⊕,⊗).

Ungar has shown that the gyrometric is invariant under automorphisms and
left gyrotranslations.

Theorem 2.14. ([4, Theorem 6.12]) Suppose that % be the gyrometric on a
gyrovector space (G,⊕,⊗). We have %(a⊕ b,a⊕ c) = %(b, c) and %(τb, τc) =
%(b, c) for any a, b, c ∈ G, τ ∈ Aut(G,⊕,⊗).

Gyrometrics %E , %M and %P can be treated into the equations in the fol-
lowing proposition.

Proposition 2.15. For any u,v ∈ B,

%E(u,v) =

{
1− (1− ‖u‖2)(1− ‖v‖2)

(1− 〈u,v〉)2

} 1
2

, (2.8)

%M (u,v) =

{
1− (1− ‖u‖2)(1− ‖v‖2)

1 + ‖u‖2‖v‖2 − 2〈u,v〉

} 1
2

. (2.9)

For any u,v ∈ V,

%P (u,v) = (〈u,v〉2 − 2δuδv〈u,v〉+ ‖u‖2 + ‖v‖2 + ‖u‖2‖v‖2)
1
2 . (2.10)

Proof. Put a = ‖u‖, b = ‖v‖ and x = 〈u,v〉. Since ‖αu + βv‖ = α2‖u‖2 +
β2‖v‖2 + 2αβ〈u,v〉 for any α, β ∈ R, we have

‖ − u⊕E v‖2 =

∥∥∥∥ 1

1 + 〈−u,v〉

{(
1 +
〈−u,v〉
1 + α−u

)
(−u) + α−uv

}∥∥∥∥2
=

∥∥∥∥ 1

1− x

{(
−1 +

x

1 + αu

)
u + αuv

}∥∥∥∥2

=

(
1− x

1+αu

)2
a2 + (1− a2)b2 − 2αu

(
1− x

1+αu

)
x

(1− x)2

=
x2 − 2x+ a2 + (1− a2)b2

(1− x)2
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=
(1− x)2 − (1− a2)(1− b2)

(1− x)2

= 1− (1− a2)(1− b2)
(1− x)2

,

‖ − u⊕M v‖2 =

∥∥∥∥(1 + 2〈−u,v〉+ ‖v‖2)(−u) + (1− ‖u‖2)v
1 + 2〈−u,v〉+ ‖u‖2‖v‖2

∥∥∥∥2
=

∥∥∥∥−(1 + b2 − 2x)u + (1− a2)v
1 + a2b2 − 2x

∥∥∥∥2
=

(1 + b2 − 2x)2a2 + (1− a2)2b2 − 2(1 + b2 − 2x)(1− a2)x
(1 + a2b2 − 2x)2

=
4x2 − 2(1 + a2)(1 + b2)x+ (a2 + b2)(1 + a2b2)

(1 + a2b2 − 2x)2

=
(1 + a2b2 − 2x)2 − (1− a2)(1− b2)(1 + a2b2 − 2x)

(1 + a2b2 − 2x)2

= 1− (1− a2)(1− b2)
1 + a2b2 − 2x

,

‖ − u⊕P v‖2 =

∥∥∥∥{ 1

1 + δu
〈−u,v〉+ δv

}
(−u) + v

∥∥∥∥
=

{
−x

1 + δu
+ δv

}2

a2 + 2

{
−x

1 + δu
+ δv

}
(−x) + b2

=
−(1− δu) + 2

1 + δu
x2 + {2δv(1− δu)− 2δv}x+ a2δ2v + b2

= x2 − 2δuδvx+ a2 + b2 + a2b2.

�

3. Main Results

LetX and Y be subsets of two inner product spaces respectively. S : X → Y
is an inner product preserving map if it satisfies 〈Su, Sv〉 = 〈u,v〉 for any pair
u,v ∈ X. Let (G,⊕) be a gyrovector space and % denotes the gyrometric on
(G,⊕). We say T : (G,⊕) → (G,⊕) is a gyrometric preserving map if it
satisfies %(Ta, Tb) = %(a, b) for any pair a, b ∈ G.

The following three theorems are main results of the paper.

Theorem 3.1. Let B be the open unit ball of a real inner product space V
and T : (B,⊕E) → (B,⊕E) be a map from the Einstein gyrogroup (B,⊕E)
into itself. Then the following conditions (E1), (E2) and (E3) are equivalent.
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(E1) The map T satisfies the following conditions (a), (b) and (c):
(a) T (0) = 0,
(b) T is a surjection,
(c) T is an Einstein gyrometric preserving map.

(E2) T = O|B for some surjective inner product preserving linear operator
O : V→ V.

(E3) T ∈ Aut(B,⊕E ,⊗E).

In particular, if dimV < ∞, then the condition (a) and (c) of (E1) together
imply the condition (b) of (E1).

Theorem 3.2. Let B be the open unit ball of a real inner product space V and
T : (B,⊕M ) → (B,⊕M ) be a map from the Möbius gyrogroup (B,⊕M ) into
itself. Then the following conditions (M1), (M2) and (M3) are equivalent.

(M1) The map T satisfies the following conditions (a), (b) and (c):
(a) T (0) = 0,
(b) T is a surjection,
(c) T is a Möbius gyrometric preserving map.

(M2) T = O|B for some surjective inner product preserving linear operator
O : V→ V.

(M3) T ∈ Aut(B,⊕M ,⊗M ).

In particular, if dimV < ∞, then the condition (a) and (c) of (M1) together
imply the condition (b) of (M1).

Theorem 3.3. Let V be a real inner product space. T : (V,⊕P ) → (V,⊕P )
be a map from the PV gyrogroup (V,⊕P ) into itself. Then the following con-
ditions (P1), (P2) and (P3) are equivalent.

(P1) The map T satisfies the following conditions (a), (b) and (c):
(a) T (0) = 0,
(b) T is a surjection,
(c) T is a gyrometric preserving map on the PV gyrogroup.

(P2) T is a surjective inner product preserving linear operator on V.
(P3) T ∈ Aut(V,⊕P ,⊗P ).

In particular, if dimV < ∞, then the condition (a) and (c) of (P1) together
imply the condition (b) of (P1).

4. Lemmas

In this section we give some lemmas with which Theorem 3.1, 3.2 and 3.3
will be proved.

For any nonnegative real number a, define πa = {u ∈ V : ‖u‖ = a}.
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Lemma 4.1. Let T : (B,⊕E)→ (B,⊕E) be an Einstein gyrometric preserv-
ing map from an Einstein gyrogroup into itself. Suppose that T (0) = 0. Then
〈Tu, Tv〉 = 〈u,v〉 for any u,v ∈ B.

Proof. We first note that T (πa) ⊆ πa for any 0 ≤ a < 1 since ‖Tu‖ =
%E(0, Tu) = %E(T0, Tu) = %E(0,u) = ‖u‖ for all u ∈ B. Let 0 ≤ a, b < 1 be
arbitrary and put

f(x) =

{
1− (1− a2)(1− b2)

(1− x)2

} 1
2

. (4.1)

Then the function f : [−ab, ab]→ R is a monotone function because x ≤ ab < 1
for any x ∈ [−ab, ab]. We infer that f is injective. Let u ∈ πa,v ∈ πb.
We have −ab ≤ 〈Tu, Tv〉 ≤ ab and %E(u,v) = f(〈u,v〉). We also have
%E(Tu, Tv) = f(〈Tu, Tv〉) because Tu ∈ πa and Tv ∈ πb. Hence

f(〈Tu, Tv〉) = %E(Tu, Tv) = %E(u,v) = f(〈u,v〉).
We conclude that 〈Tu, Tv〉 = 〈u,v〉. �

Lemma 4.2. Let T : (B,⊕M )→ (B,⊕M ) be a Möbius gyrometric preserving
map from a Möbius gyrogroup into itself. Suppose that T (0) = 0. Then
〈Tu, Tv〉 = 〈u,v〉 for any u,v ∈ B.

Proof. Note T (πa) ⊆ πa for any 0 ≤ a < 1 since ‖Tu‖ = %M (0, Tu) =
%M (T0, Tu) = %M (0,u) = ‖u‖ for all u ∈ B. Choose 0 ≤ a, b < 1 be
arbitrary and put

g(x) =

{
1− (1− a2)(1− b2)

1 + a2b2 − 2x

} 1
2

. (4.2)

Then the function g : [−ab, ab] → R is a monotone function because 1 +
a2b2 > 2ab ≥ 2x for any x ∈ [−ab, ab]. We infer that f is injective. Let
u ∈ πa,v ∈ πb. We have −ab ≤ 〈u,v〉 ≤ ab and %M (u,v) = f(〈u,v〉). We
also have %M (Tu, Tv) = g(〈Tu, Tv〉) because Tu ∈ πa and Tv ∈ πb. Hence

g(〈Tu, Tv〉) = %M (Tu, Tv) = %M (u,v) = g(〈u,v〉).
We conclude that 〈Tu, Tv〉 = 〈u,v〉. �

Lemma 4.3. Let T : (V,⊕P )→ (V,⊕P ) be a PV gyrometric preserving map
from a PV gyrogroup into itself. Suppose that T (0) = 0. Then 〈Tu, Tv〉 =
〈u,v〉 for any u,v ∈ V.

Proof. Note T (πa) ⊆ πa for any 0 ≤ a since ‖Tu‖ = %P (0, Tu) = %P (T0, Tu) =
%P (0,u) = ‖u‖ for any u ∈ V. Let a, b be arbitrary non-negative real numbers.
Put

h(x) = (x2 − 2δuδvx+ a2 + b2 + a2b2)
1
2 . (4.3)
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We show that h : [−ab, ab]→ R is a monotone function. We have

(h2)′(x) =
dh2(x)

dx
= 2x− 2δuδv. (4.4)

(h2)′(x) < 0 for any x ∈ [−ab, ab] because x ≤ ab < δuδv. Hence we have
that h2 is a monotone function and hence h is also monotone. Therefore h is
injective. Let u ∈ πa,v ∈ πb. We have −ab ≤ 〈u,v〉 ≤ ab and %P (u,v) =
h(〈u,v〉). We also have %P (Tu, Tv) = h(〈Tu, Tv〉) because Tu ∈ πa and
Tv ∈ πb. Hence

h(〈Tu, Tv〉) = %P (Tu, Tv) = %P (u,v) = h(〈u,v〉).
It implies that 〈Tu, Tv〉 = 〈u,v〉. �

The following lemma shows that an inner product preserving map on B is
extensible to the whole space.

Lemma 4.4. Let B be the open unit ball of a real inner product space V.
Suppose that T : B → B be an inner product preserving map. Then T can be
extended to an inner product preserving map S : V→ V defined by

S(w) = 2‖w‖T
(

w

2‖w‖

)
(4.5)

for any w ∈ V \ {0}; and S(0) = 0. Moreover, S is a linear operator if T is
surjective.

Proof. Put

S(w) = 2‖w‖T
(

w

2‖w‖

)
(4.6)

for any w ∈ V \ {0}; and S(0) = 0.
First we show that T = S|B . Let u ∈ B \{0}, r > 0 which satisfy ru ∈ B.

We have

〈T (ru), Tu〉 = 〈ru,u〉 = r‖u‖2 = ‖ru‖‖u‖ = ‖T (ru)‖‖Tu‖.
On the other hand, by the Cauchy-Schwarz inequality, 〈x,y〉 = ‖x‖‖y‖ if and
only if x and y are parallel. This means that T (ru) and Tu are parallel, that
is T (ru) = sTu for some s ∈ R. We have s = t by the equation

r‖u‖2 = 〈ru,u〉 = 〈T (ru), Tu〉 = 〈sTu, Tu〉 = s‖Tu‖2 = s‖u‖2.
Hence we have T (ru) = rT (u) for any u ∈ B \ {0} and r > 0 which satisfy
ru ∈ B. In particular,

S(u) = 2‖u‖T
(

u

2‖u‖

)
= T (u)

for any u ∈ B \ {0}.
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Next we show that S is an inner product preserving map. It is clear that
〈Sw, Sz〉 = 0 = 〈w, z〉 if w = 0 or z = 0. For any pair w, z ∈ V \ {0}, we
have

〈Sw, Sz〉 =

〈
2‖w‖T

(
w

2‖w‖

)
, 2‖z‖T

(
z

2‖z‖

)〉
= 2‖w‖2‖z‖

〈
T

(
w

2‖w‖

)
, T

(
z

2‖z‖

)〉
= 2‖w‖2‖z‖

〈
w

2‖w‖
,

z

2‖z‖

〉
= 〈w, z〉.

Finally, we show that S is a linear operator if T is surjective. Assume that
T is surjective. We can prove that S(sv) = sS(v) for any s > 0 and v ∈ V in
way similar as a T (ru) = rT (u) for any r > 0 and u ∈ V such that ru ∈ B.
Therefore, we have

S

(
2‖y‖T−1

(
y

2‖y‖

))
= 2‖y‖S

(
T−1

(
y

2‖y‖

))
= 2‖y‖T

(
T−1

(
y

2‖y‖

))
= 2‖y‖ y

2‖y‖
= y

for any y ∈ V \ 0. Clearly, S(0) = 0. Thus S is a surjective isometry from a
normed space onto itself. The Mazur-Ulam Theorem asserts that S is a linear
operator. �

The following lemma is appeared in [1, Excercise 2.4.1]. A proof is elemen-
tary and is omitted.

Lemma 4.5. Let (X, d) be a compact metric space. Suppose that T : (X, d)→
(X, d) is an isometry. Then T is surjective.

5. Proof of Main Results

Proof of Theorem 3.1. (E2)⇒(E3): Suppose that T = O|B for a surjective
inner product preserving linear operator O : V → V. First, T is an inner
product preserving map because O is so. Next,
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r ⊗E T (u) = tanh(r tanh−1 ‖Tu‖) Tu

‖Tu‖

= tanh(r tanh−1 ‖Ou‖) Ou

‖Ou‖

= O

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T (r ⊗E u)

for every r ∈ R, u ∈ B. Moreover,

T (u)⊕E T (v) =
1

1 + 〈Tu, Tv〉

{(
1 +
〈Tu, Tv〉
1 + αTu

)
Tu + αTuTv

}
=

1

1 + 〈u,v〉

{(
1 +

〈u,v〉
1 + αu

)
Ou + αuOv

}
= O

(
1

1 + 〈u,v〉

{(
1 +

〈u,v〉
1 + αu

)
u + αuv

})
= T (u⊕E v)

for any pair u,v ∈ B. Finally, O(B) = B since O is a surjective isometry. It
implies that T is surjctive.
(E3)⇒(E1): Suppose that T ∈ Aut(B,⊕E ,⊗E). By Theorem2.14 T is a gyro-
metric preserving map. By the definition of the automorphism of a gyrovector
space, T is surjective. Moreover, T (0) = 0 because T is an inner product
preserving map.
(E1)⇒(E2): Suppose that T satisfies the condition (E1). Then Lemma 4.1
asserts that T is a surjective inner product preserving map. Moreover, Lemma
4.4 asserts that T is extended to be a surjective inner product preserving linear
operator O : V→ V.

Finally, we show that if dimV < ∞, then the condition (a) and (c) imply
the condition (b). The condition (a) and (c) imply that T (πa) ⊂ πa for any
0 ≤ a < 1 since ‖T (u)‖ = ‖u‖ for all u ∈ B. If dimV <∞, then πa is compact
for all 0 ≤ a < 1. Lemma 4.5 asserts that T (πa) = πa for all 0 ≤ a < 1 and
hence T (B) = B. �

Proof of Theorem 3.2. (M2)⇒(M3): Suppose that T = O|B for a surjective
inner product preserving linear operator O : V → V. Then T is an inner
product preserving operator. Moreover,
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r ⊗M T (u) = tanh(r tanh−1 ‖Tu‖) Tu

‖Tu‖

= tanh(r tanh−1 ‖Ou‖) Ou

‖Ou‖

= O

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T (r ⊗M u)

for every r ∈ R, u ∈ B and

T (u)⊕M T (v) =
(1 + 2〈Tu, Tv〉+ ‖Tv‖2)Tu + (1− ‖Tu‖2)Tv

1 + 2〈Tu, Tv〉+ ‖Tu‖2‖Tv‖2

=
(1 + 2〈u,v〉+ ‖v‖2)Ou + (1− ‖u‖2)Ov

1 + 2〈u,v〉+ ‖u‖2‖v‖2

= O

(
(1 + 2〈u,v〉+ ‖v‖2)u + (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2

)
= T (u⊕M v)

for any pair u,v ∈ B. Finally, O(B) = B since O is a surjective isometry.
(M3)⇒(M1): Suppose that T ∈ Aut(B,⊕M ,⊗M ). By Theorem 2.14, T is
a gyrometric preserving map. By the definition of the automorphism of a
gyrovector space, T is a surjection. Moreover, T (0) = 0 because T is an inner
product preserving map.
(M1)⇒(M2): Suppose that T satisfies the condition (M1). Then Lemma 4.2
asserts that T is a surjective inner product preserving map. Moreover, Lemma
4.4 asserts that T is extended to be a surjective inner product preserving linear
operator O : V→ V.

Finally, we show that if dimV < ∞, then the condition (a) and (c) imply
the condition (b). The condition (a) and (c) imply that T (πa) ⊂ πa for any
0 ≤ a < 1 since ‖T (u)‖ = ‖u‖ for all u ∈ B. If dimV <∞, then πa is compact
for all 0 ≤ a < 1. Lemma 4.5 asserts that T (πa) = πa for all 0 ≤ a < 1, hence
T (B) = B. �

Proof of Theorem 3.3. (P2)⇒(P3): Suppose that T is a surjective inner prod-
uct preserving linear operator T : V→ V. Needless to say, T is surjective and
an inner product preserving map. Moreover,
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r ⊗P T (u) = sinh
(
r sinh−1 ‖Tu‖

) Tu

‖Tu‖

= sinh
(
r sinh−1 ‖u‖

) Tu
‖u‖

= T

(
sinh

(
r sinh−1 ‖u‖

) u

‖u‖

)
= T (r ⊗P u)

for every r ∈ R, u ∈ B and

T (u)⊕P T (v) =

(
1

1 + δTu
〈Tu, Tv〉

)
Tu + Tv

=

(
1

1 + δu
〈u,v〉

)
Tu + Tv

= T

((
1

1 + δu
〈u,v〉

)
u + v

)
= T (u⊕P v)

for any pair u,v ∈ V.
(P3)⇒(P1): Suppose that T ∈ Aut(B,⊕P ,⊗P ). By Theorem 2.14, T is
a gyrometric preserving map. By the definition of the automorphism of a
gyrovector space, T is a surjection. Moreover, T (0) = 0 because T is an inner
product preserving map.
(P1)⇒(P2): Suppose that T satisfies the condition (P1). Since T satisfies the
conditions (a) and (c), Lemma 4.3 asserts that T is an inner product preserving
map. Moreover, T is surjective and hence the Mazur-Ulam theorem asserts
that T is a linear operator. Indeed, T : V → V is a surjective inner product
preserving linear operator.

Finally, we show that if dimV < ∞, then the condition (a) and (c) imply
the condition (b). The condition (a) and (c) imply that T (πa) ⊂ πa for any
0 ≤ a since ‖T (u)‖ = ‖u‖ for all u ∈ V. If dimV < ∞, then πa is compact
for all 0 ≤ a. Lemma 4.5 asserts that T (πa) = πa for all 0 ≤ a and hence
T (V) = V. �

6. Gyrometric preserving maps on the Einstein gyrogroup, the
Möbius gyorogroup and the PV gyrogroup

We have exhibited in Theorems 3.1, 3.2 and 3.3 the form of gyrometric
preserving maps with the assumption T (0) = 0. Generally, a gyrometric
preserving map does not necessarily preserve the identity 0.
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We note that any gyrogroup (G,⊕) satisfies a⊕(	a⊕b) = b for any a, b ∈ G
(the left cancellation law) (See [4, p30])). Let T : (G,⊕,⊗) → (G,⊕,⊗)
be a map from a gyrovector space into itself. Put T0(·) = 	T (0) ⊕ T (·).
Then Theorem 2.14 shows that %(T0(a), T0(b)) = %(T (a), T (b)) for any pair
a, b ∈ G. Hence T0 is a gyrometric preserving map if and only if T is so.
Clearly, T0(0) = 0. Moreover, T0 is surjective if and only if T is so. Applying
Theorem 3.1, 3.2, 3.3 to T0 we obtain Corollary 6.1, 6.2, 6.3. These corollaries
gives us complete descriptions of all surjective gyrometric preserving self-maps
of our three models without the assumption T (0) = 0.

Corollary 6.1. Let B be the open unit ball of a real inner product space V.
Suppose that T : (B,⊕E) → (B,⊕E) is a map from the Einstein gyrogroup
into itself. Then the following conditions are equivalent.

(E-A) T is a surjective Einstein gyrometric preserving map.
(E-B) There exists a surjective inner product preserving linear operator O :

V→ V such that T (u) = T (0)⊕E Ou for any u ∈ B.
(E-C) T is a surjective isometry with respect to the metric dE.

Proof. (E-A)⇔(E-C): It is easy to be verified since dE(u,v) = tanh−1 %E(u,v)
for any u,v ∈ B.
(E-A)⇔(E-B): Let T : (B,⊕E)→ (B,⊕E). Put T0(·) = −T (0)⊕ET (·). First,
we assume that T satisfies the condition (E-A). Then we have T0(0) = 0 and
T0 is a surjective Einstein gyrometric preserving map. Theorem 3.1 shows
that T0 is the restriction of some surjective inner product preserving operator
O : V → V. It follows that T (u) = T (0) ⊕E Ou for any u ∈ B because
T (0)⊕E T0(·) = T (0)⊕E (	ET (0)⊕E T (·)) = T (·).

Conversely, let O : V → V be a surjective inner product preserving linear
operator and T (u) = T (0)⊕EOu for any u ∈ B. Then we have T0(u) = O(u)
for any u ∈ B. Theorem 3.1 asserts that T0 is a surjective Einstein gyrometric
preserving map, hence T is so. �

Corollary 6.2. Let B be the open unit ball of a real inner product space V.
Suppose that T : (B,⊕M ) → (B,⊕M ) is a map from the Möbius gyrogroup
into itself. Then the following conditions are equivalent.

(M-A) T is a surjective Möbius gyrometric preserving map.
(M-B) There exists a surjective inner product preserving linear operator O :

V→ V such that T (u) = T (0)⊕M Ou for any u ∈ B.
(M-C) T is a surjective isometry with respect to the Möbius metric dM .

Proof. (M-A)⇔(M-C): It is obvious since dM (u,v) = tanh−1 %M (u,v) for any
u,v ∈ B.
(M-A)⇔(M-B): Let T : (B,⊕M ) → (B,⊕M ). Put T0(·) = −T (0) ⊕M T (·).
First, we assume that T satisfies the condition (M-A). Then we have T0(0) = 0
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and T0 is a surjective Möbius gyrometric preserving map. Theorem 3.2 asserts
that T0 is the restriction of some surjective inner product preserving linear
operator O : V→ V. It follows that T (u) = T (0)⊕E Ou for any u ∈ B.

Conversely, let O : V → V be a surjective inner product preserving linear
operator and T (u) = T (0)⊕MOu for any u ∈ B. Then we have T0(u) = O(u)
for any u ∈ B. Theorem 3.2 show that T0 is a surjective Möbius gyrometric
preserving map, hence T is so. �

Corollary 6.3. Let V be a real inner product space. Suppose that T : (V,⊕P )→
(V,⊕P ) is a map from the PV gyrogroup into itself. Then the following con-
ditions are equivalent.

(P-A) T is a surjection such that %P (Tu, Tv) = %P (u,v) for all u,v ∈ V.
(P-B) There exists a surjective inner product preserving linear operator O :

V→ V such that T (u) = T (0)⊕P Ou for any u ∈ V.

Proof. Let T : (B,⊕P )→ (B,⊕P ). Put T0(·) = −T (0)⊕P T (·).
First, we assume that T satisfies the condition (P-A). Then we have T0(0) =

0 and T0 is a surjective PV gyrometric preserving map. Theorem 3.3 shows
that T0 is a surjective inner product preserving linear operator on V. Since
T (·) = T (0)⊕P T0(·), T satisfies the condition (P-B).

Conversely, let O : V → V be a surjective inner product preserving linear
operator and T (u) = T (0)⊕P Ou for any u ∈ V. Then we have T0(u) = O(u)
for any u ∈ V. Theorem 3.3 asserts that T0 is surjective and preserves the
gyrometric on the PV gyrogroup, hence T is so. �

In particular, if V = Rn then gyrometric preserving maps on our three
models are automatically surjective. We have the following three corollaries.

Corollary 6.4. Suppose that B be the open unit ball of the Euclidean space
Rn and T : (B,⊕E)→ (B,⊕E) a map from the Einstein gyrogroup into itself.
Then the following conditions are equivalent.

(E-A’) T is an Einstein gyrometric preserving map.
(E-B’) There exists a n × n orthogonal matrix O : V → V such that T (u) =

T (0)⊕E Ou for any u ∈ B.
(E-C’) T is an isometry with respect to the metric dE.

Corollary 6.5. Suppose that B be the open unit ball of the Euclidean space
Rn and T : (B,⊕M )→ (B,⊕M ) a map from the Möbius gyrogroup into itself.
Then the following conditions are equivalent.

(M-A’) T is a Möbius gyrometric preserving map.
(M-B’) There exists a n × n orthogonal matrix O : V → V such that T (u) =

T (0)⊕M Ou for any u ∈ B.
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(M-C’) T is an isometry with respect to the Möbius metric dM .

Corollary 6.6. Suppose that T : (Rn,⊕P )→ (Rn,⊕P ) is a map from the PV
gyrogroup into itself. The following conditions are equivalent.

(P-A’) %P (Tu, Tv) = %P (u,v) for all u,v ∈ V.
(P-B’) There exists a n × n orthogonal matrix O : V → V such that T (u) =

T (0)⊕P Ou for any u ∈ V.

Remark 6.7. If dimV = ∞, then some Einstein gyrometric preserving map
is not necessarily surjective. Let V = `2(N) and S be the shift operator
on `2, that is S(x1, x2, x3, ...) = (0, x1, x2, ...) for any (x1, x2, x3, ...) ∈ `2.
Then S is an inner product preserving linear operator and hence S is an
Einstein gyrometric preserving map. Nevertheless, S(B) is a proper subset of
B. Moreover S preserves the Möbius gyrometric and the gyrometric on the
PV gyrogroup.
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