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Abstract

We show that the MEMS gyroscopes found on modern smart phones are
sufficiently sensitive to measure acoustic signals in the vicinity of the phone.
The resulting signals contain only very low-frequency information (<200Hz).
Nevertheless we show, using signal processing and machine learning, that this
information is sufficient to identify speaker information and even parse speech.
Since iOS and Android require no special permissions to access the gyro, our re-
sults show that apps and active web content that cannot access the microphone
can nevertheless eavesdrop on speech in the vicinity of the phone.

1 Introduction

Modern smartphones and mobile devices have many sensors that enable rich user
experience. Being generally put to good use, they can sometimes unintentionally ex-
pose information the user does not want to share. While the privacy risks associated
with some sensors like a microphone (eavesdropping), camera or GPS (tracking) are
obvious and well understood, some of the risks remained under the radar for users
and application developers. In particular, access to motion sensors such as gyro-
scope and accelerometer is unmitigated by mobile operating systems. Namely, every
application installed on a phone and every web page browsed over it can measure
and record these sensors without the user being aware of it.

Recently, a few research works pointed out unintended information leaks using
motion sensors. In Ref. [27] the authors suggest a method for user identification
from gait patterns obtained from a mobile device’s accelerometers. The feasibility
of keystroke inference from nearby keyboards using accelerometers has been shown
in [28]. In [20], the authors demonstrate the possibility of keystroke inference on
a mobile device using accelerometers and mention the potential of using gyroscope
measurements as well, while another study [18] points to the benefits of exploiting
the gyroscope.



All of the above work focused on exploitation of motion events obtained from the
sensors, utilizing the expected kinetic response of accelerometers and gyroscopes. In
this work we reveal a new way to extract information from gyroscope measurements.
We show that gyroscopes are sufficiently sensitive to measure acoustic vibrations.
This leads to the possibility of recovering speech from gyroscope readings, namely
using the gyroscope as a crude microphone. We show that the sampling rate of the
gyroscope is up to 200 Hz which covers some of the audible range. This raises the
possibility of eavesdropping on speech in the vicinity of a phone without access to
the real microphone.

As the sampling rate of the gyroscope is limited, one cannot fully reconstruct
a comprehensible speech from measurements of a single gyroscope. Therefore, we
resort to automatic speech recognition. We extract features from the gyroscope
measurements using various signal processing methods and train machine learning
algorithms for recognition. We achieve about 50% success rate for speaker identi-
fication from a set of 10 speakers. We also show that while limiting ourselves to a
small vocabulary consisting solely of digit pronunciations (”one”, ”two”, ”three”,
...) we achieve speech recognition success rate of 65% for the speaker dependent case
and up to 26% recognition rate for the speaker independent case. This capability
allows an attacker to substantially leak information about numbers spoken over or
next to a phone (i.e. credit card numbers, social security numbers and the like).

We also consider the setting of a conference room where two or more people are
carrying smartphones or tablets. This setting allows an attacker to gain simultane-
ous measurements of speech from several gyroscopes. We show that by combining
the signals from two or more phones we can increase the effective sampling rate of
the acoustic signal while achieving better speech recognition rates. In our exper-
iments we achieved 77% successful recognition rate in the speaker dependent case
based on the digits vocabulary.

2 Gyroscope as a microphone

In this section we explain how MEMS gyroscopes operate and present an initial
investigation of their susceptibility to acoustic signals.

2.1 How does a MEMS gyroscope work?

All MEMS gyros take advantage of a physical phenomenon called the Coriolis force.
It is a fictitious force (d’Alembert force) that appears to act on an object while
viewing it from a rotating reference frame (much like the centrifugal force). The
Coriolis force acts in a direction perpendicular to the rotation axis of the reference
frame and to the velocity of the viewed object.
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Generally speaking, MEMS gyros measure their angular rate (ω) by sensing the
magnitude of the Coriolis force acting on a moving proof mass within the gyro.
Usually the moving proof mass constantly vibrates within the gyro. Its vibration
frequency is also called the resonance frequency of the gyro. The Coriolis force
is sensed by measuring its resulting vibration, which is orthogonal to the primary
vibration movement. Some gyroscope designs use a single mass to measure the
angular rate of different axes, while others use multiple masses. Such a general
design is commonly called vibrating structure gyroscope.

There are two primary vendors of MEMS gyroscopes for mobile devices: STMi-
croelectronics [14] and InvenSense [7]. According to a recent survey [17] STMicro-
electronics dominates with 80% market share. Teardown analyses show that this
vendor’s gyros can be found in Apple’s iPhones and iPads [16, 8] and also in the
latest generations of Samsung’s Galaxy-line phones [5, 6]. The second vendor, In-
venSense, has the remaining 20% market share [17]. InvenSense gyros can be found
in Google’s latest generations of Nexus-line phones and tablets [13, 12] as well as in
Galaxy-line tablets [4, 3]. These two vendors’ gyroscopes have different mechanical
designs, but are both noticeably influenced by acoustic noise.

2.1.1 STMicroelectronics

The design of STMicroelectronics 3-axis gyros is based on a single driving (vibrating)
mass (shown in Figure 1). The driving mass consists of 4 parts M1, M2, M3 and
M4 (Figure 1(b)). They move inward and outward simultaneously at a certain
frequency1 in the horizontal plane. As shown in Figure 1(b), when an angular rate
is applied on the mass, due to the Coriolis effect, some of the masses will move (as
shown by the red and yellow arrows in the figure) in a direction that is dependent
on the angular rate direction.

2.1.2 InvenSense

InvenSense’s gyro design is based on the three separate driving (vibrating) masses2;
each senses angular rate at a different axis (shown in Figure 2(a)). Each mass is
a coupled dual-mass that move in opposite directions. The masses that sense the
X and Y axes are driven out-of-plane (see Figure 2(b)), while The Z-axis mass
is driven in-plane. As in the STMicroelectronics design the movement due to the
Coriolis force is measures by capacitance changes.

1It is indicated in [1] that STMicroelectronics uses a driving frequency of over 20 KHz.
2According to [30] the driving frequency of the masses is between 25 KHz and 30 KHz.

3



(a) MEMS structure (b) Driving mass movement depending
on the angular rate

Figure 1: STMicroelectronics 3-axis gyro design (Taken from [15]. Figure copyright
of STMicroelectronics. Used with permission.)

(a) MEMS structure (b) Driving mass movement de-
pending on the angular rate

Figure 2: InvenSense 3-axis gyro design (Taken from [30]. Figure copyright of
InvenSense. Used with permission.)
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2.2 Acoustic Effects

It is a well known fact in the MEMS community that MEMS gyros are susceptible
to acoustic noise which degrades their accuracy [21, 22, 23]. An acoustic signal af-
fects the gyroscope measurement by making the driving mass vibrate in the sensing
axis (the axis which senses the Coriolis force). The acoustic noise has the most
substantial effect when it is near the resonance frequency of the vibrating mass.
Nonetheless, in our experiments we found that acoustic signals at frequencies much
lower than the resonance frequency still have a measurable effect on a gyro’s mea-
surements, allowing one to reconstruct the acoustic signal.

2.3 Characteristics of a gyro as a microphone

Due to the gyro’s acoustic susceptibility one can treat gyroscope readings as if they
were audio samples coming from a microphone. Note that the frequency of an
audible signal is higher than 20 Hz, while in common cases the frequency of change
of mobile device’s angular velocity is lower than 20 cycles per second. Therefore,
one can high-pass-filter the gyroscope readings in order to retain only the effects of
an audio signal even if the mobile device is moving about. Nonetheless, it should
be noted that this filtering may result in some loss of acoustic information since
some aliased frequencies may be filtered out (see Section 2.3.2). In the following we
explore the gyroscope characteristics from a standpoint of an acoustic sensor, i.e.
a microphone. In this section we exemplify these characteristics by experimenting
with Galaxy S III which has an STMicroelectronics gyro [6].

2.3.1 Sampling

Sampling resolution is measured by the number of bits per sample. More bits
allow us to sample the signal more accurately at any given time. All the latest gen-
erations of gyroscopes have a sample resolution of 16 bits [9, 11]. This is comparable
to a microphone’s sampling resolution used in most audio applications.

Sampling frequency is the rate at which a signal is sampled. According to
the Nyquist sampling theorem a sampling frequency f enables us to reconstruct
signals at frequencies of up to f/2. Hence, a higher sampling frequency allows
us to more accurately reconstruct the audio signal. In most mobile devices and
operating systems an application is able to sample the output of a microphone at
up to 44.1 KHz. A telephone system (POTS) samples an audio signal at 8000 Hz.
However, STMicroelectronics’ gyroscope hardware supports sampling frequencies
of up to 800 Hz [9], while InvenSense gyros’ hardware support sampling frequency
up to 8000 Hz [11]. Moreover, all mobile operating systems bound the sampling
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Sampling Freq. [Hz]

A
n
d
ro
id

4
.4

application 200
Chrome 25
Firefox 200
Opera 20

iO
S
7

application 100 [2]
Safari 20
Chrome 20

Table 1: Maximum sampling frequencies on different platforms

frequency even further – up to 200 Hz – to limit power consumption. On top
of that, it appears that some browser toolkits limit the sampling frequency even
further. Table 1 summarizes the results of our experiments measuring the maximum
sampling frequencies allowed in the latest versions of Android and iOS both for
application and for web application running on common browsers. The code we
used to sample the gyro via a web page can be found in Appendix A. The results
indicate that a Gecko based browser does not limit the sampling frequency beyond
the limit imposed by the operating system, while WebKit and Blink based browsers
does impose stricter limits on it.

2.3.2 Aliasing

As noted above, the sampling frequency of a gyro is uniform and can be at most
200 Hz. This allows us to directly sense audio signals of up to 100 Hz. Aliasing is
a phenomenon where for a sinusoid of frequency f , sampled with frequency fs, the
resulting samples are indistinguishable from those of another sinusoid of frequency
|f −N · fs|, for any integer N . The values corresponding to N 6= 0 are called
images or aliases of frequency f . An undesirable phenomenon in general, here
aliasing allows us to sense audio signals having frequencies which are higher than
100 Hz, thereby extracting more information from the gyroscope readings. This is
illustrated in Figure 3.

Using the gyro, we recorded a single 280 Hz tone. Figure 3(a) depicts the
recorded signal in the frequency domain (x-axis) over time (y-axis). A lighter shade
in the spectrogram indicates a stronger signal at the corresponding frequency and
time values. It can be clearly seen that there is a strong signal sensed at frequency
80 Hz starting around 1.5 sec. This is an alias of the 280 Hz-tone. Note that
the aliased tone is indistinguishable from an actual tone at the aliased frequency.
Figure 3(b) depicts a recording of multiple short tones between 130 Hz and 200
Hz. Again, a strong signal can be seen at the aliased frequencies corresponding to
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(a) A single 280 Hz tone

0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

Frequency (Hz)

T
im

e

(b) Multiple tones in the range
of 130 – 170 Hz
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(c) A chirp in the range of 420
– 480 Hz

Figure 3: Example of aliasing on a mobile device. Nexus 4 (a,c) and Galaxy SII
(b).

130 - 170 Hz3. We also observe some weaker aliases that do not correspond to the
base frequencies of the recorded tones, and perhaps correspond to their harmonics.
Figure 3(c) depicts the recording of a chirp in the range of 420 - 480 Hz. The aliased
chirp is detectable in the range of 20 - 80 Hz; however it is a rather weak signal.

2.3.3 Self noise

The self noise characteristic of a microphone indicates what is the most quiet sound,
in decibels, a microphone can pick up, i.e. the sound that is just over its self noise.
To measure the gyroscope’s self noise we played 80 Hz tones for 10 seconds at
different volumes while measuring it using a decibel meter. Each tone was recorded
by the Galaxy S III gyroscope. While analyzing the gyro recordings we realized that
the gyro readings have a noticeable increase in amplitude when playing tones with
volume of 75 dB or higher which is comparable to the volume of a loud conversation.
Moreover, a FFT plot of the gyroscope recordings gives a noticeable peak at the
tone’s frequency when playing tone with a volume as low as 57 dB which is below
the sound level of a normal conversation. These findings indicate that a gyro can
pick up audio signals which are lower than 100 HZ during most conversations made
over or next to the phone. To test the self noise of the gyro for aliased tones we
played 150 Hz and 250 Hz tones. The lowest level of sound the gyro picked up was
67 dB and 77 dB, respectively. These are much higher values that are comparable
to a loud conversation.

3We do not see the aliases corresponding to 180 - 200 Hz, which might be masked by the noise
at low frequencies, i.e., under 20 Hz.
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Figure 4: Coordinate system of Android and iOS.

Tone direction: X Y Z

Recording direction: x y z x y z x y z

Amplitude: 0.002 0.012 0.0024 0.01 0.007 0.004 0.007 0.0036 0.0003

Table 2: Sensed amplitude for every direction of a tone played at different orienta-
tions relative to the phone. For each orientation the dominant sensed directions are
emphasized.

2.3.4 Directionality

We now measure how the angle at which the audio signal hits the phone affects
the gyro. For this experiment we played an 80 Hz tone at the same volume three
times. The tone was recorded at each time by the Galaxy S III gyro while the
phone rested at a different orientation allowing the signal to hit it parallel to one
of its three axes (see Figure 4). The gyroscope senses in three axes, hence for each
measurement the gyro actually outputs three readings – one per axis. As we show
next this property benefits the gyro’s ability to pick up audio signals from every
direction. For each recording we calculated the FFT magnitude at 80 Hz. Table 2
summarizes the results.

It is obvious from the table that for each direction the audio hit the gyro, there is
at least one axis whose readings are dominant by an order of magnitude compared to
the rest. This can be explained by STMicroelectronics gyroscope design as depicted
in Figure 14. When the signal travels in parallel to the phone’s x or y axes, the
sound pressure vibrates mostly masses laid along the respective axis, i.e. M2 and
M4 for x axis and M1 and M3 for the y axis; therefore, the gyro primarily senses a
rotation at the y or x axes, respectively (see Section 2.1.1). When the signal travels
in parallel to the phone’s z axis then the sound pressure vibrates all the 4 masses

4This is the design of the gyro built into Galaxy S III.
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up and down, hence the gyro primarily senses a rotation at both x and y axes.
These findings indicate that the gyro is an omni-directional audio sensor allowing

it to pick up audio signal from every direction.

3 Speech analysis based on a single gyroscope

In this section we show that the acoustic signal measured by a single gyroscope is
sufficient to extract information about the speech signal, such as speaker charac-
teristics and identity, and even recognize the spoken words or phrases. We do so
by leveraging the fact that aliasing causes information leaks from higher frequency
bands into the sub-Nyquist range.

Since the fundamentals of human voices are roughly in the range of 80 – 1100
Hz [19], we can capture a large fraction of the interesting frequencies, considering the
results we observe in 2.3.2. Although we do not delve into comparing performance
for different types of speakers, one might expect that given a stronger gyroscope
response for low frequencies, typical adult male speech (Bass, Baritone, Tenor)
could be better analyzed than typical female or child speech (Alto, Mezzo-Soprano,
Soprano) 5, however our tests show that this is not necessarily the case.

The signal recording, as captured by the gyroscope, is not comprehensible to
a human ear, and exhibits a mixture of low frequencies and aliases of frequencies
beyond the Nyquist sampling frequency (which is 1/2 the sampling rate of the
Gyroscope, i.e. 100 Hz). While the signal recorded by a single device does not
resemble speech, it is possible to train a machine to transcribe the signal with
significant success.

Speech recognition tasks can be classified into several types according to the
setup. Speech recognition can handle fluent speech or isolated words (or phrases);
operate on a closed set of words (finite dictionary) or an open set6; It can also be
speaker dependent (in which case the recognizer is trained per speaker) or speaker
independent (in which case the recognizer is expected to identify phrases pronounced
by different speakers and possibly ones that were not encountered in the training
set). Additionally, speech analysis may be also used to identify the speaker.

We focused on speaker identification (including gender identification of the
speaker) and isolated words recognition while attempting both speaker independent
and speaker dependent recognition. We did not aim to implement a state-of-the-
art speech recognition algorithm, nor to thoroughly evaluate or do a comparative
analysis of the classification tests. Instead, we tried to indicate the potential risk by

5For more information about vocal range see
http://www.wikipedia.org/wiki/Vocal_range

6For example by identifying phonemes and combining them to words.
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showing significant success rates of our speech analysis algorithms compared to ran-
domly guessing. This section describes speech analysis techniques that are common
in practice, our approach, and suggestions for further improvements upon it.

3.1 Speech processing: features and algorithms

It is common for various feature extraction methods to view speech as a process that
is stationary for short time windows. Therefore speech processing usually involves
segmentation of the signal to short (10 – 30 ms) overlapping or non-overlapping win-
dows and operation on them. This results in a time-series of features that character-
ize the time-dependent behavior of the signal (such as mel-frequency cepstral coef-
ficients and short time Fourier transform). If we are interested in time-independent
properties we shall use spectral features or the statistics of those time-series (such as
mean, variance, skewness and kurtosis). We used MIRToolbox [24] for the feature
computation.

We have tried out a few standard machine learning classifiers that have been
used successfully to recognize speech. These classifiers are support vector machine
(SVM), Gaussian mixture model (GMM), and dynamic time wrapping (DTW).

Prior to processing we applied to the gyroscope recordings silence removal algo-
rithm in order to include only relevant information and minimize noise. Note that
the gyroscope’s zero-offset yields particularly noisy recordings even during unvoiced
segments.

3.2 Experiment setup

Our setup consisted of a set of loudspeakers that included a sub-woofer and two
tweeters (depicted in Figure 5). The sub-woofer was particularly important for
experimenting with low-frequency tones below 200 Hz. The playback was done at
volume of approximately 75 dB to obtain as high SNR as possible for our experi-
ments. This means that for more restrictive attack scenarios (farther source, lower
volume) there will be a need to handle low SNR, perhaps by filtering out the noise
or applying some other preprocessing for emphasizing the speech signal.

3.2.1 Data

Due to the low sampling frequency of the gyro, a recognition of speaker-independent
general speech would be an ambitious long-term task. Therefore, in this work we set
out to recognize speech of a limited dictionary, the recognition of which would still
leak substantial private information. For this work we chose to focus on the digits
dictionary, which includes the words: zero, one, two..., nine, and ”oh”. Recognition
of such words would enable an attacker to eavesdrop on private information, such
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Figure 5: Experimental setup

as credit card numbers, telephone numbers, social security numbers and the like.
This information may be eavesdropped when the victim speaks over or next to the
phone.

In our experiments, we use the following corpus of audio signals on which we
tested our recognition algorithms.

TIDIGITS This is a subset of a corpus published in [25]. It includes speech of
isolated digits, i.e., 11 words per speaker where each speaker recorded each word
twice. There are 10 speakers (5 female and 5 male). In total, there are 10×11×2 =
220 recordings. The corpus is digitized at 20 kHz. The samples of the subset we
used in our experiments can be found in ...........

3.2.2 Mobile devices

We primarily conducted our experiments using the following mobile devices:

1. Nexus 4 phone which according to a teardown analysis [12] is equipped with
an InvenSense MPU-6050 [11] gyroscope and accelerometer chip.

2. Nexus 7 tablet which according to a teardown analysis [13] is equipped with
an InverSense MPU-6050 gyroscope and accelerometer.

3. Samsung Galaxy S III phone which according to a teardown analysis [6] is
equipped with an STMicroelectronics LSM330DLC [10] gyroscope and ac-
celerometer chip.
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3.2.3 Recording utilities

To serve our experiments we implemented an Android application that samples the
gyro with the highest possible frequency for a given time interval. The application
code can be found at https://bitbucket.org/ymcrcat/gyromic/src (under the
App directory). Additionally, to facilitate easier gyro recordings of a large number
of audio files. We implemented a Python script which run on a lab computer
attached to speakers and automated the process of playing each audio file in turn
using the speakers, while at the same time launching the Andorid application on a
USB-attached mobile device to capture the gyro recordings. The application launch
was accomplished using the adb utility. The Python script, called run gyromic.py,
can be found under the same Git repository as the app.

3.3 Sphinx

We first try to recognize digit pronunciations using general-purpose speech recogni-
tion software. We used Sphinx-4 [31] – a well-known open-source speech recognizer
and trainer developed in Carnegie Mellon University. Our aim for Sphinx is to
recognize gyro-recordings of the TIDIGITS corpus. As a first step, in order to test
the waters, instead of using actual gyro recordings we downsampled the recordings
of the TIDITS corpus to 200 Hz; then we trained Sphinx based on the modified
recordings. The aim of this experiment is to understand whether Sphinx detects
any useful information from the sub-100 Hz band of human speech. Sphinx had a
reasonable success rate, recognizing about 40% of pronunciations.

Encouraged by the above experiment we then recorded the TIDIGITS corpus
using a gyro – both for Galaxy S III and Nexus 4. Since Sphinx accepts recording
in WAV format we had to convert the raw gyro recordings. Note that at this point
for each gyro recording we had 3 WAV files, one for each gyro axis. The final stage
is silence removal. Then we trained Sphinx to create a model based on a training
subset of the TIDIGITS, and tested it using the complement of this subset.

The recognition rates for either axes and either Nexus 4 or Galaxy S III were
rather poor: 14% on average. This presents only marginal improvement over the
expected success of a random guess which would be 9%.

This poor result can be explained by the fact that Sphinx’s recognition algo-
rithms are geared towards standard speech recognition tasks where most of the
voice-band is present and is less suited to speech with very low sampling frequency.

3.4 Custom recognition algorithms

In this section we present the results obtained using our custom algorithm while
using the three different classifiers: SVM, GMM, and DTW. We omit the from this
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SVM GMM DTW

Nexus 4 80% 72% 84%

Galaxy S III 82% 68% 58%

Table 3: Speaker’s gender identification results

SVM GMM DTW
N
ex
u
s
4 Mixed female/male 23% 21% 50%

Female speakers 33% 32% 45%
Male speakers 38% 26% 65%

G
a
la
x
y
S
II
I

Mixed female/male 20% 19% 17%
Female speakers 30% 20% 29%
Male speakers 32% 21% 25%

Table 4: Speaker identification results

white paper the technical details of the algorithms. The interested reader can find
more elaborate explanations in [26]. Based on the TIDIGITS corpus we randomly
performed a 10-fold cross-validation. We refer mainly to the results obtained using
Nexus 4 gyroscope readings in our discussion. We also included in the tables some
results obtained using a Galaxy III device, for comparison.

Results for gender identification are presented in Table 3. As we see, using DTW
scoring yielded a much better success rate.

Results for speaker identification are presented in Table 4. Since the results for
a mixed female-male set of speakers may be partially attributed to successful gender
identification, we tested classification for speakers of the same gender. In this setup
we have 5 different speakers. The improved classification rate (except for DTW for
female speaker set) can be partially attributed to a smaller number of speakers.

The results for speaker-independent isolated word recognition are summarized

SVM GMM DTW

N
ex
u
s
4 Mixed female/male 10% 9% 17%
Female speakers 10% 9% 26%
Male speakers 10% 10% 23%

G
a
la
x
y
S
II
I

Mixed female/male 7% 12% 7%
Female speakers 10% 10% 12%
Male speakers 10% 6% 7%

Table 5: Speaker-independent case – isolated words recognition results
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SVM GMM DTW

15% 5% 65%

Table 6: Speaker-dependent case – isolated words recognition for a single speaker.
Results obtained via ”leave-one-out” cross-validation on 44 recorded words pro-
nounced by a single speaker. Recorded using a Nexus 4 device.

in Table 5. We had correct classification rate of ∼ 10% using SVM and GMM,
which is almost equivalent to a random guess. Using DTW we got 23% correct
classification for male speakers, 26% for female speakers and 17% for a mixed set
of both female and male speakers.

For a speaker-dependent case one may expect to get better recognition results.
We recorded a set of 44 digit pronunciations using a single speaker, where each digit
was pronounced 4 times. We tested the performance of our classifiers using ”leave-
one-out” cross-validation. The results are presented in Table 6, and as we expected
exhibit an improvement compared to the speaker independent recognition7 (except
for GMM performance that is equivalent to randomly guessing).

4 Reconstruction using multiple devices

In this section we suggest that isolated word recognition can be improved if we
sample the gyroscopes of multiple devices that are in close proximity, such that they
exhibit a similar response to the acoustic signals around them. This can happen
for instance in a conference room where two mobile devices are running malicious
applications or, having a browser supporting high-rate sampling of the gyroscope,
are tricked into browsing to a malicious website.

We do not refer here to the possibility of using several different gyroscope read-
ings to effectively obtain a larger feature vector, or have the classification algorithm
take into account the score obtained for all readings. While such methods to ex-
ploit the presence of more than one acoustic side-channel may prove very efficient
we leave them outside the scope of this study.

Instead, we look at the possibility of obtaining an enhanced signal by using all
of the samples for reconstruction, thus effectively obtaining higher sampling rate.
Moreover, we hint at the more ambitious task of reconstructing a signal adequate
enough to be comprehensible by a human listener, in a case where we gain access
to readings from several compromised devices. While there are several practical

7It is the place to mention that a larger training set for speaker independent word recognition
is likely to yield better results. For our tests we used relatively small training and evaluation sets.
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obstacles to it, we outline the idea, and demonstrate how partial implementation of
it facilitates the automatic speech recognition task.

4.1 Reconstruction algorithm

To achieve successful speech reconstruction from multiple gyroscopes we must suc-
cessfully accomplish several tasks:

1. Signal offset correction – To correct a constant offset we can take the mean
of the Gyro samples and compare it to 0 to get the constant offset. It is
essentially a simple DC component removal.

2. Gain mismatch correction – We correct the signal gain produced by each gyro
by normalizing the signal to have standard deviation equal to 1.

3. Time mismatch correction – While gyroscope motion events are provided with
precise timestamps set by the hardware, which theoretically could have been
used for aligning the recordings, in practice, we cannot rely on the clocks
of the mobile devices to be synchronized. Even if we take the trouble of
synchronizing the mobile device clock via NTP, or even better, a GPS clock,
the delays introduced by the network, operating system and further clock-drift
will stand in the way of having clock accuracy on the order of a millisecond8.
One can also exhaustively search a certain range of possible offsets, choosing
the one that results in a reconstruction of a sensible audio signal.

We omit the from this white paper the technical details of the algorithm. The
interested reader can find more elaborate explanations in [26].

4.1.1 Evaluation

We evaluated this approach by repeating the speaker-dependent word recognition
experiment on signals reconstructed from readings of two Nexus 4 devices. Table 7
summarizes the final results obtained using the sample interleaving method.

There was a consistent noticeable improvement compared to the results obtained
using readings from a single device, which supports the value of utilizing multiple
gyroscopes. We can expect that adding more devices to the setup would further
improve the speech recognition.

8Each device samples with a period of 5 ms, therefore even 1 ms clock accuracy would be quite
coarse.
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SVM GMM DTW

18% 14% 77%

Table 7: Evaluation of the method of reconstruction from multiple devices. Results
obtained via ”leave-one-out” cross-validation on 44 recorded words pronounced by
a single speaker. Recorded using a Nexus 4 device.

5 Further Attacks

In this section we suggest directions for further exploitation of the gyroscopes:

Increasing the gyro’s sampling rate. One possible attack is related to the
hardware characteristics of the gyro devices. The hardware upper bound on sam-
pling frequency is higher than that imposed by the operating system or by applica-
tions9. InvenSense MPU-6000/MPU-6050 gyroscopes can provide a sampling rate
of up to 8000 Hz. That is the equivalent of a POTS (telephony) line. STMicroelec-
tronics gyroscopes only allow up to 800 Hz sampling rate, which is still considerably
higher than the 200 Hz allowed by the operating system (see Appendix B). If the
attacker can gain a one-time privileged access to the device, she could patch an
application, or a kernel driver, thus increasing this upper bound. The next steps
of the attack are similar: obtaining gyroscope measurements using an application
or tricking the user into leaving the browser open on some website. Obtaining such
a high sampling rate would enable using the gyroscope as a microphone in the full
sense of hearing the surrounding sounds.

Source separation. Based on experiments’ results presented in Section 2.3.4 it
is obvious that the gyro’s measurements are sensitive to the relative direction from
which the acoustic signal arrives. This may give rise to the possibility to detect
the angle of arrival (AoA) at which the audio signal hits the phone. Using AoA
detection one may be able to better separate and process multiple sources of audio,
e.g. multiple speakers near the phone.

Ambient sound recognition. There are works (e.g. [29]) which aim to identify
a user’s context and whereabouts based on the ambient noise detected by his smart
phone, e.g restaurant, street, office, and so on. Some contexts are loud enough and
may have distinct fingerprint in the low frequency range to be able to detect them
using a gyroscope, for example railway station, shopping mall, highway, and bus.

9As we have shown, the sampling rate available on certain browsers is much lower than the
maximum sampling rate enabled by the OS. However, this is an application level constraint.
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This may allow an attacker to leak more information on the victim user by gaining
indications of the user’s whereabouts.

6 Defenses

Let us discuss some ways to mitigate the potential risks. As it is often the case,
a secure design would require an overall consideration of the whole system and a
clear definition of the power of the attacker against whom we defend. To defend
against an attacker that has only user-level access to the device (an application
or a website), it might be enough to apply low-pass filtering to the raw samples
provided by the gyroscope. Judging by the sampling rate available for Blink and
WebKit based browsers, it is enough to pass frequencies in the range 0 – 20 Hz. If
this rate is enough for most of the applications, the filtering can be done by the driver
or the OS, subverting any attempt to eavesdrop on higher frequencies that reveal
information about surrounding sounds. In case a certain application requires an
unusually high sampling rate, it should appear in the list of permissions requested
by that application, or require an explicit authorization by the user. To defend
against attackers who gain root access, this kind of filtering should be performed
at the hardware level, not being subject to configuration. Of course, it imposes a
restriction on the sample rate available to applications.

Another possible solution is some kind of acoustic masking. It can be applied
around the sensor only, or possibly on the case of the mobile device.

7 Conclusion

We show that the acoustic signal measured by the gyroscope can reveal private
information about the phone’s environment such as who is speaking in the room
and, to some extent, what is being said. We use signal processing and machine
learning to analyze speech from very low frequency samples. With further work on
low-frequency signal processing of this type it should be possible to further increase
the quality of the information extracted from the gyro.

This work demonstrates an unexpected threat resulting from the unmitigated
access to the gyro: applications and active web content running on the phone can
eavesdrop sound signals, including speech, in the vicinity of the phone. We described
several mitigation strategies. Some are backwards compatible for all but a very small
number of applications and can be adopted by mobile hardware vendors to block
this threat.
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A Code for sampling a gyroscope via a HTML web-

page

For a web page to sample a gyro the DeviceMotion class needs to be utilized. In
the following we included a JavaScript snippet that illustrates this:

i f (window . DeviceMotionEvent ) {
window . addEventListener ( ’ devicemotion ’ , f unc t i on ( event ) {

var r = event . ro tat ionRate ;
i f ( r !=null ) {

conso l e . l og ( ’ Rotation at [ x , y , z ] i s : [ ’ +
r . alpha+’ , ’+r . beta+’ , ’+r . gamma+’ ]\n ’ ) ;

}
}

}

Figure 6 depicts measurements of the above code running on Firefox (Android)
while sampling an audio chirp 50 – 100 Hz.
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Figure 6: Recording audio at 200 Hz using JavaScript code on a web-page accessed
from the Firefox browser for Android.

B Gyroscope rate limitation on Android

Here we see a code snippet from the Invensense driver for Android, taken from
hardware/invensense/65xx/libsensors iio/MPLSensor.cpp. The OS is enforcing a
rate of 200 Hz.
stat ic int he r t z r e qu e s t = 200 ;
#define DEFAULT MPL GYRO RATE (20000L) // us
. . .
#define DEFAULT HW GYRO RATE (100) //Hz
#define DEFAULT HW ACCEL RATE (20) //ms
. . .
/∗ conve r t ns to hardware un i t s ∗/
#define HW GYRO RATE NS (1000000000LL / r a t e r e qu e s t ) // to Hz
#define HW ACCEL RATE NS ( r a t e r e qu e s t / (1000000L) ) // to ms
. . .
/∗ conve r t Hz to hardware un i t s ∗/
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#define HW GYRO RATE HZ ( he r t z r e qu e s t )
#define HW ACCEL RATE HZ (1000 / h e r t z r e qu e s t )
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