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Abstract

We propose a deblurring method that incorporates gy-

roscope measurements into a convolutional neural network

(CNN). With the help of such measurements, it can handle

extremely strong and spatially-variant motion blur. At the

same time, the image data is used to overcome the limita-

tions of gyro-based blur estimation. To train our network,

we also introduce a novel way of generating realistic train-

ing data using the gyroscope. The evaluation shows a clear

improvement in visual quality over the state-of-the-art while

achieving real-time performance. Furthermore, the method

is shown to improve the performance of existing feature de-

tectors and descriptors against the motion blur.

1. Introduction

Motion blur is often unavoidable when capturing images

with a fast moving camera. It not only degrades the visual

quality but it also has a negative impact on applications such

as visual odometry, augmented reality (AR) and simulta-

neous localization and mapping (SLAM). Even though the

blind deblurring methods have improved significantly over

the years, they generally struggle with strong and spatially-

variant motion blur. We intend to overcome these limita-

tions by utilizing inertial measurements.

Blind deconvolution methods aim to recover the sharp

image without any additional information about the motion

blur. This is an ill-posed problem since the blurred image

only provides a partial constraint on the solution. Promising

results have been obtained with recent deep learning based

approaches [12, 15]. These methods are especially good at

generating perceptually convincing images while avoiding

deblurring artifacts. To simplify the problem, the existing

methods typically assume a spatially-invariant blur, which

may not hold in practice. An example of such case is shown

in Figure 1.

Mobile devices are often equipped with an inertial mea-

surement unit (IMU), which provides information about the

motion blur. Accelerometers and gyroscopes have been suc-

Figure 1. Heavily blurred images captured with a fast moving cam-

era (top). Images deblurred by DeepGyro CNN (bottom).

cessfully used in motion deblurring [10, 20, 6, 7, 31, 14].

Most of these methods focus on the removal of the camera

shake blur. An application such as SLAM may involve a fast

moving camera, which generally results in much stronger

motion blur. The existing methods are also not capable of

running in real-time, apart from [14]. What further compli-

cates the problem is that inertial-based blur estimates may

be inaccurate. This can be due to noisy IMU readings, tem-

poral misalignment between the camera and IMU, unknown

scene depth or translation. These limitations should be con-

sidered in order to avoid deblurring artifacts.

We propose a deblurring method that incorporates gy-

roscope measurements into a convolutional neural network

(CNN). It can handle extremely strong and spatially-variant

motion blur as illustrated in Figure 1. When computing the

gyro-based blur estimates, we take into account that mobile

devices are usually equipped with a rolling shutter camera.

The method naturally overcomes the limitations of gyro-

based blur estimation by utilizing image data. We also in-

troduce a novel data generation scheme, which is an essen-

tial component needed to train our network. The evaluation

on real-world images shows a clear improvement in visual

quality over the state-of-the-art while achieving real-time

performance. The method will also improve the robustness

of existing feature detectors and descriptors against mo-

tion blur as indicated by the higher repeatability and better

matching performance.
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2. Related work

Despite being a classical image processing problem, de-

blurring continues to be an active research area with plenty

of recent progress. For example, regarding blind single-

image deblurring, the recent papers utilizing so called dark

and bright channel priors have shown promising results

[17, 29]. Nevertheless, these approaches typically assume

uniform and spatially invariant blur, which is often not the

case in practice. For example, if there is rotation around

optical axis, the blur kernel is clearly spatially variant.

Recently, there have emerged also several deep learning

based blind deblurring methods. For example, the con-

cept of generative adversarial networks has been utilized

for learning deep neural networks that perform deblurring

[12, 16, 15]. In particular, inspired by pix2pix [9], Deblur-

GAN [12] trains a conditional GAN for deblurring using

pairs of corresponding blurred and sharp images. However,

as the blind deblurring problem is severely ill-posed, the

results are often not good or satisfactory. In fact, we use

DeblurGAN as one of the baseline methods and Figures 5

and 8 illustrate that its results are clearly inferior to ours.

Besides methods that directly perform blind deblurring,

there are also approaches that first estimate a spatially-

variant motion field and blur kernels from a single image

using deep networks, and thereafter perform non-blind de-

convolution [24, 4]. Further, deep nets have been trained

to remove deblurring artifacts that non-blind deconvolution

typically creates, either directly predicting the sharp output

image [22] or the residual image between the deconvolution

result and the desired sharp output [28].

In addition to single-image deblurring methods, there

are also methods that utilize additional information, such

as multiple frames from a video [2, 23], bursts of rapidly

captured photographs [1], pairs of blurred and noisy images

captured with different exposure settings [30], or high- and

low-resolution image pairs [25]. While some of the afore-

mentioned methods provide promising results, they belong

to a different domain than our single-image deblurring ap-

proach. Moreover, multiple images are not always available

or easy to capture as dynamic objects and events may dis-

appear from the scene.

Our work deals with inertial-aided single-image deblur-

ring. That is, we learn a deep neural net for deblurring a

single RGB image so that the input to the net is the blurred

image and a spatially varying motion field estimated based

on gyroscope measurements recorded during the exposure

of the image. This problem setting is highly relevant in

practice since rotation is usually the main source of blur

due to hand shake [6] and most smartphones are equipped

with gyroscopes. There have been relatively many papers

that utilize inertial sensors (gyroscopes and/or accelerome-

ters) for image deblurring [10, 7, 6, 31, 14, 20]. Most of

them focus on estimating and characterizing the blur ker-

nels based on the inertial sensor data [10, 7, 6, 14, 20] and

then apply non-blind deconvolution. Nevertheless, due to

the limitations of consumer grade inertial sensors in smart-

phones, the motion estimates can never be perfect and, in

practice, there may also be dynamic objects in the scene and

their apparent motion is not explained by device motion.

Thus, it seems plausible to combine inertial measurements

and image based information for deblurring [31] and our

work does that by utilizing deep CNNs. To the best of our

knowledge, our method is the first one that combines gyro-

scope measurements and learnt neural network based image

priors for deblurring. This approach has significant benefits

as our results show a clear improvement in visual quality

over the previous state-of-the-art while achieving real-time

performance.

3. Blur estimation

Motion blur is caused by the relative motion of the cam-

era and scene during the exposure of the image. This work

focuses on static scenes, meaning the motion blur is only

due to the rotation and translation of the camera. The initial

estimate for the motion blur is obtained with the gyroscope.

A key challenge is to represent this information in a format

useful for the deep network. This process will be covered

in the next section. As a result, we get a spatially-variant

blur field, which is provided for the deblurring network as

an additional input.

3.1. Rotation from gyroscope measurements

In prior work [20, 6], it has been shown that motion blur

is typically caused by the rotation of the camera. Similar to

these works, we compute the rotations by integrating gyro-

scope readings. More specifically, we numerically integrate

the quaternion differential equation (e.g. [26])

dq(t)

dt
=

1

2
q(t) ⊙ ω(t), q(t1) = 1, (1)

where ω(t) is the 3-dimensional gyroscope measurement

and ⊙ denotes the quaternion product. The initial condition

is given at the starting time of exposure t1 and the solution

is computed at the end time of exposure t2. The rotation

matrix R(t2) is then formed as the direction cosine matrix

corresponding to the quaternion q(t2) (see, e.g., [26]).

In theory, the translation could also be recovered using

an accelerometer [31, 7, 10, 21]. However, this requires

knowledge of the initial velocity of the camera, or alterna-

tively, known stationary points or reference points which

can be used to aid zero-velocity updates or position updates

in a Kalman filter [21]. However, these are not assumed

to be available here. Furthermore, the motion blur caused

by translation will also depend on the scene depth, which

is difficult to estimate from a single image. We take these

limitations into account when generating training data.



3.2. Blur field computation

If the camera is moving during the image exposure, the

3D scene points will be projected to multiple points on the

image plane. This will appear as motion blur. To estimate

the blur, we need to consider the relative motion of the cam-

era during the exposure. Let R(t) and t(t) denote the rota-

tion and translation of the camera. Assuming that the scene

has a constant depth d, the motion can be modeled using a

planar homography [5]

H(t) = K[R(t)−
t(t)n⊤

d
]K−1, (2)

where K is the intrinsic camera matrix obtained via calibra-

tion. The normal vector of the scene is denoted by n. If the

translation is zero (or if the scene is far away), the previous

equation simplifies to

H(t) = KR(t)K−1 (3)

Let x = (x, y, 1)⊤ be the projection of the 3D point at the

beginning of the exposure. The rest of the projections can

be computed by x′ = H(t)x.

If the exposure time is relatively short (e.g. when cap-

turing a video), the motion blur can be assumed to be lin-

ear and homogeneous. This type of blur can be described

with a 2-dimensional blur vector (u, v), where u and v rep-

resent the horizontal and vertical components of the blur,

respectively. See the visualization in Figure 2. Note that

all blur vectors with equal lengths and opposite directions,

such as (u, v) and (−u,−v) will correspond to the same

blur. Therefore, we choose to constrain the horizontal com-

ponent u to be positive. We compute the blur vectors for

every pixel, which gives us the blur maps U and V in hori-

zontal and vertical directions. Together these are referred to

as blur field B = (U,V).

3.3. Rolling shutter effect

Mobile devices are typically equipped with a rolling

shutter camera. This means, each row of pixels will be cap-

tured at slightly different time. The formula 3 cannot be

used directly since the mapping of the point x depends on

its y-coordinate. Let tr denote the camera readout time, that

is the time difference between the exposure of the first and

last row of pixels. Then, the exposure of the y:th row starts

at

t1(y) = tf + tr
y

N
, (4)

where tf is the frame timestamp and N is the number of

rows. The end of the exposure is defined as t2 = t1 + te,

where te is the exposure time. The mapping of the point

then becomes

x′ = KR(t2)R
⊤(t1)K

−1x. (5)

u

v

(0, 0)

Figure 2. Comparison of the real blur and gyro-based blur kernel

estimates (u, v), in red. The local real blur is best visible at light-

streaks.

Note that the frame timestamp tf , readout time tr and ex-

posure time te can be typically obtained via the API of the

mobile device.

4. Deblurring

Deblurring is based on a fully-convolutional neural net-

work. It aims to produce a sharp image given a blurred im-

age and gyro-based blur field. The architecture of the net-

work is described in the next section. To train the network,

we propose a data generation scheme that utilizes gyroscope

readings. This topic is covered in Section 4.2.

4.1. Network architecture

The architecture of the network is shown in Figure 3.

The network is similar to U-Net [18], which was originally

used for image segmentation. This type of encoder-decoder

network has proven to be useful in various image-to-image

translation problems [9]. The input of our network consists

of a blurred RGB image and a gyro-based blur field. They

pass through a series of convolutional and downsampling

layers, until the lowest resolution is reached. After the bot-

tleneck, this process is reversed. A low-resolution image

is expanded back into a full resolution image with help of

upsampling layers. Skip connections are used to allow in-

formation sharing between the encoder and decoder. Given

two layers with equal size, the feature maps from the en-

coder are concatenated with those of the decoder. The input

images can be of arbitrary size since the network is fully-

convolutional.

4.2. Data generation

To train the network, we need a set of blurred and sharp

images along with gyro-based blur fields. There is no easy

way to capture such real-world data. As mentioned, the mo-

tion blur is mainly caused by the rotation of the camera. We

utilized gyroscope readings to generate realistic blur fields

and blurred images. Specifically, we use the sequences

room1 - room6 from an existing visual-inertial dataset [19].

These sequences consist of various types of camera motion,

which results to a diverse set of blur fields with varying lev-



Figure 3. The DeepGyro CNN architecture. All convolutional layers use a 3x3 window (except the last one, which is 1x1). The number of

channels is shown below the boxes. Downsampling is 2x2 max pooling with stride 2. Upconvolutional layers consist of upsampling and

2x2 convolution that halves the number of feature channels.

tf

tf + td

Figure 4. DeepGyro training. For each image, two slightly different blur fields are generated, one that is applied to the sharp image (exact

blur, top) and a noisy blur, modelling the IMU derived field (noisy, bottom).

els of spatially-variant motion blur. We also utilize images

from the Flickr image collection [8] to cover a wide range

of different scene types. With the proposed data generation

scheme, it is easy to generate practically unlimited amount

of realistic training data. The data generation tool will be

made publicly available upon the publication of the paper.

The overview of the data generation scheme is shown

in Figure 4. We compute two different blur fields, which

we refer as the ”exact” and ”noisy” blur fields. The ex-

act blur field is used for generating the blurred image. We

perform a spatially-variant convolution given a sharp image

and blur kernels for every pixel. The noisy blur field, which

is slightly different, is provided for the deblurring network

as an additional input.

To generate a blur field, we use the approach described in

Section 3. The start of the exposure tf is selected randomly,

which means every blur field is likely to be somewhat dif-

ferent. We set the exposure time te = 30 milliseconds. The

readout time tr is chosen randomly from the range [0,30]

milliseconds. The zero value corresponds to a global shut-

ter camera. To increase the overall level of motion blur, the

angular velocities were first multiplied by 2. However, the

maximum blur was limited to 100 pixels.

To simulate temporal misalignment between the camera

and gyroscope, we add a small delay td to the start of the

exposure when computing the noisy blur field. The delay is

sampled from normal distribution with µ = 0 and σ = 0.01
milliseconds. The translation will also affect the motion

blur if the scene is close to the camera. In such case, the

blur extents observed by the gyroscope will be somewhat

inaccurate. To this end, we multiply the gyroscope readings

with a small number k ∼ N(0, 0.2) before computing the

noisy blur field. This will mainly affect the blur extents,

rather than the direction of the blur.

4.3. Training

DeepGyro was trained on 100k images with resolution

of 270 × 480 pixels. We used the Adam [11] as the solver.

At the beginning, the learning rate was set to 0.00005. Af-

ter every 10-th epoch, the learning rate was halved. The

network was trained for 40 epochs. For comparison, we

also trained a blind deblurring network, which we refer to

as DeepBlind. In contrast to DeepGyro, it does not take

the blur field as input. The network and training details are

otherwise identical.

5. Experiments

Deblurring performance is evaluated on both syntheti-

cally and naturally blurred images. We compare the pro-

posed approaches against DeblurGAN [12] and Mustaniemi



et al. [14]. DeblurGAN is a blind deblurring method based

on the conditional generative adversarial networks. Similar

to our DeepBlind approach, it only takes the blurred image

as input. The gyro-based deblurring method [14], referred

to as FastGyro, is the closest competitor to our DeepGyro

approach. We use a slightly modified version of the origi-

nal implementation. The blur kernels are estimated for each

pixel instead of image patches. This minimizes the artifacts

near the edges of the patches.

5.1. Synthetic blur

For the quantitative comparison, we add synthetic mo-

tion blur and 30 dB Gaussian noise to sharp images [13].

The evaluation metrics include peak-signal-to-noise ratio

(PSNR) and structural similarity (SSIM). For fairness, the

motion blur is spatially-invariant since DeblurGAN [12] is

not designed to handle spatially-variant blur. Note that we

also need to generate noisy blur fields for the non-blind

methods because the gyroscope readings do not really ex-

ist.

Figure 5 shows the deblurring results on a heavily

blurred image. DeepBlind and DeepGyro clearly outper-

form the rest of the methods. Their performance is compa-

rable to each other, although DeepGyro results to a slightly

higher PSNR and SSIM values. The average results for all

scenes are summarized in Table 1. DeepGyro benefits from

the initial blur estimates, especially when there is significant

amount of blur.

Figure 6 shows the performance of DeepGyro for in-

creasing levels of motion blur. The method is able to handle

extremely strong motion blur. It performs well even when

the input blur is not perfect. Figure 7 investigates the effects

of blur estimation errors in more detail. Notice that Fast-

Gyro [14] is quite sensitive to these errors as there are major

ringing artifacts. Another important property of DeepGyro

is that it never ruins an already sharp image.

5.2. Natural blur

Naturally blurred images were captured with the

NVIDIA Shield tablet while simultaneously logging gyro-

scope at 100 Hz. In this section, we rely on visual assess-

ment since the ground truth sharp images are not available.

Figure 8 shows the deblurring results. The resolution of the

images is 512 x 512 pixels. DeepGyro performs consis-

tently better than the other methods. In many cases, Deep-

Blind leaves some parts of the image blurred. FastGyro [14]

is able to recover a lot of details but the artifacts reduce

the quality of the image. DeblurGAN [12] struggles with

strong motion blur. It also seems to produce a grid-like pat-

tern over the image. We also tested our method on a blurred

video sequence. Figure 1 (left) shows the result for a single

frame with a resolution of 270 x 480 pixels. The deblurring

takes around 35 milliseconds on NVIDIA GeForce GTX

1080 GPU. The full video is provided in the supplementary

material.

None of the methods is designed for dynamic scene de-

blurring. Nevertheless, Figure 9 shows a dynamic scene in

which a moving car is tracked by the camera. DeepGyro

is able to remove most of the blur caused by the camera

motion. The car also remains sharp, although a small area

around the car is left blurred. This problem is likely due

to the fact that the blur does not vary smoothly across the

image (as it would in case of camera motion only).

The results are generally quite impressive but there is

still room for an improvement. The entrance scene in Fig-

ure 8 contains bright light sources, which cause some of the

pixels to saturate. Consequently, this area is not deblurred.

The light streaks also indicate that the blur is somewhat non-

linear. This will likely reduce the deblurring performance

because such images are not present in the training set. The

flower scene also shows that a significant translation can

cause problems when the scene is close. In this case, it

is probable that the gyro-based blur field differs too much

from the real blur.

5.3. Feature detection and matching

Motion blur degrades the performance of existing fea-

ture detectors and descriptors [3]. In this section, we use the

proposed methods to improve the robustness against motion

blur. Specifically, we use the publicly available implemen-

tation of Difference of Gaussian (DoG) detector and SIFT

descriptor [27]. The experiment is performed on real-world

images with spatially-variant motion blur. The images are

shown in Figure 10.

For the evaluation, we need to know the ground truth ho-

mography between the images. It defines the mapping of

image points in the first and second image given a planar

scene. Normally, the homography can be estimated by se-

lecting corresponding points from the images. In this case,

the images are blurred, which makes it difficult to select the

points accurately. To solve the issue, we adapt the procedure

from [14]. The idea is to capture a burst of images while al-

ternating short and long exposure time. The corresponding

points are easier to select from the short exposure images,

which are sharp but noisy. The blurred images in Figure

10 also suffer from the rolling shutter distortion. Therefore,

a homography cannot necessarily perfectly define the map-

ping of image points. Nevertheless, we concluded that the

homographies are sufficiently accurate for this experiment.

To evaluate feature detection, we compute the repeata-

bility, i.e. how well does the detector identify the corre-

sponding image regions. It is well known that the repeata-

bility criteria might favor detectors that return many key-

points. To eliminate this issue, we fix the number of detec-

tions. The results of the experiment are shown in Figure 10.

DeepGyro and DeepBlind clearly outperform the standard



Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours) Sharp

Figure 5. Deblurring results on an image with synthetic linear blur, length 60 pixels. The blur passed to the non-blind methods – FastGyro

and DeepGyro – is biased, ǫ = [5, 3] pixels is added to the blur vector in the x and y directions, respectively.

Blurred images DeepGyro (exact) DeepGyro (noisy)

Figure 6. DeepGyro performance for increasing levels of blur. Blurred images (green). Results obtained when passing the exact blur

ǫ = [0, 0] as input (orange), and when the blur vector has an error ǫ = [5, 3] pixels (blue). Testing with blur sizes: 10, 40, 60, 80 pixels.

Input images FastGyro [14] DeepGyro

Figure 7. The effects of blur estimation errors on the FastGyro [14] (orange) and DeepGyro (blue). Showing the results when the input is

sharp (top row) and when it is blurred (bottom row). The error of the blur is gradually increased ǫ = k ∗ [5, 3] pixels, where k = 0, 2, 4.

detector without deblurring as well as the FastGyro [14].

For the feature matching evaluation, we compute the

number of correct matches and the matching score. The

nearest neighbour in the descriptors space corresponds to a

match. The matching score is the ratio between the num-

ber of correct matches and the smaller number of detected

features in the pair of images. The results of the experi-

ment are shown in Figure 10. Again, the performance of

DeepGyro and DeepBlind is superior compared to the other

approaches.

In this experiment, the performance of DeepGyro and

DeepBlind is close to equal. The scene in Figure 10 has a lot

of texture, which helps especially the DeepBlind. The in-

formation from the gyroscope seems to be redundant when

DeepBlind performs well.



Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours)

Figure 8. Deblurring images blurred by camera motion. From top to bottom: bridge, tower, church, entrance, flower, posters, office.



Table 1. Quantitative comparison of deblurring methods on synthetically blurred images: the average PSNR and SSIM metrics for increas-

ing levels of motion blur on the first image from the graf, ubc, bikes and leuven image sets [13]. DeepGyro* - results when the input blur

is exact (blur only caused by rotation).

Blur size Blurred image DeblurGAN [12] FastGyro [14] DeepBlind DeepGyro DeepGyro*

(pixels) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 23.41 0.792 21.46 0.694 18.55 0.567 29.10 0.920 28.91 0.918 29.34 0.921

20 20.69 0.705 20.23 0.642 19.54 0.611 27.14 0.879 26.93 0.880 27.10 0.880

40 18.64 0.647 18.39 0.593 19.73 0.642 24.32 0.815 24.58 0.821 24.74 0.823

60 17.61 0.617 17.27 0.565 19.18 0.633 21.92 0.746 22.55 0.757 22.66 0.759

80 16.97 0.598 16.70 0.557 18.28 0.605 19.13 0.652 20.20 0.684 19.97 0.681

Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours)

Figure 9. Deblurring a dynamic scene.

Figure 10. The evaluation of feature detection and matching. Images used in the experiment (bottom). The left-most image is used as the

reference. Repeatability scores computed for each image pair (left). The overlap criteria is set to 40 % and the number of detections is

fixed to 800. Number of correct nearest neighbour matches (center) and matching scores (right).

6. Conclusion

We proposed a deblurring method that is first to pass

gyroscope readings to a CNN. The network learns that

gyro-based blur estimates are noisy, which allows it to

avoid deblurring artifacts common to non-blind deconvo-

lution methods. The evaluation shows that the method han-

dles extreme and spatially-variant motion blur in real-time,

unlike existing methods, and that it does not damage im-

ages that are sharp. Many of the aforementioned benefits

are made possible by the proposed data generation scheme,

which utilizes gyroscope readings to produce realistic train-

ing data. Finally, it was demonstrated that the method im-

proves performance of existing feature detectors and de-

scriptors against the motion blur.
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