
85-IGT-73THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
345 E. 47 St, New York, N.Y. 10017

The Society shall not be responsible for statements or opinions advanced in papers or in dis-

cussion at meetings of the Society or of its Divisions or Sections, or printed in its publications.

Discussion is printed only if the paper is published in an ASME Journal. Papers are available

from ASME for fifteen months after the meeting.

Printed in USA.

Gyroscopic Mode Synthesis in the Dynamic Analysis of a
Multi-Shaft Rotor-Bearing System

ZHENG ZHAO-CHANG, ZHOU XIAO-PING, LI DE-BAO

Department of Engineering Mechanics, Tsinghua University, Beijing

ZHANG LIAN -XIANG, LIU TING -YI, YUE CHENG - XI

Shenyang Aero Engine Research Institute, Shenyang

ABSTRACT

A mode synthesis method used in the dynamic ana-

lysis of multi-shaft rotor-bearing system has been

developed in this paper. By introducing the idea of

connecting springs and dampers, and using gyroscopic

modes instead of complex modes in the mode synthesis

, this method differs not only from classical com-

ponent mode synthesis method, but also from complex

mode synthesis. Several numerical examples show the

advantages of this method.

NOMENCLATURE

A,B,C component state vector matrices, modal coor-

dinates

A s ,Bs system state vector matrices, modal coordi-

nates

C
BL


damping matrix of a bearing

D component damping matrix

f
b
force vector coupled on component boundary

coordinates

f
bn

nonlinear part of force vector coupled by

bearings

f
u


external excitation force vector on component

F
s


external excitation force vector on system,

modal coordinates

G component gyroscopic damping matrix

K component stiffness matrix

K
BL

stiffness matrix of a bearing

M



component mass matrix

N
s

nonlinear force vector coupled of system

qk

component modal coordinate vector

u
component generalized coordinate vector

system generalized coordinate vector

x
component displacement vector

Y,Z



component state vector, physical coordinates

'3
	

transformation matrix of component from phy-

sical coordinate to modal coordinate

A
	

component precessional frequency matrix

constrained mode matrix

gyroscopic mode matrix

.n.	spin speed

SUBSCRIPTS

boundary

i
interior

system

INTRODUCTION

In a series of works by Nelson and others (1,2,

3) dealing with rotor-bearing systems,.. mode syn-

thesis method has taken account of the gyroscopic

effect of the disks and shafts, and the asymmetry

of the stiffness and damping of the bearings. Com-

plex modes consist of left and right vectors with
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biorthogonality which have been adapted in those wor-

ks. The complex mode synthesis method has been utili-

zed in the work of Hasselman and Kaplan (4). Li and

Gunter (5) used real modes in the synthesis of a mu-

ltiple component system. Childs (6), Lund (7) and

others have also suggested the use of modal reduction

in the analysis of rotor system.

Considering the gyroscopic effect at a high speed

of rotation of the shafts and the factors of viscous

and hysteristic damping, as well as the asymmetric

stiffness and damping of the bearings, and using the

complex mode synthesis method, Nelson and others stu-

died the stability, transient response and nonlinear

response of rotor system the work Of theirs demonstra-

tes several advantages, e.g., it can take into accou-

nt various complex effects in practice and may reduce

the DOF in a large scale and the calculation can sti-

ll retain the engineering precision.

Since the various complex factors mentioned above

have been taken into account in the motion equation

of the component, in order to decouple the equations

in the state space, it is necessary to seek the

approprite left and right complex vectors which are

orthonomalized with respect to the generalized matri-

ces. This task is substantial and may take a large

amount of computer time. Therefore, it is important

and desirable to seek a method which is more effici-

ent when dealing with the modal analysis of the com-

ponent.

A method of calculated eigenvalues for gyroscopic

systems has been presented by Meirovitch (8), trans-

forming the skew symmetric matrix eigenproblem into

the generalized symmetric matrix eigenproblem. The

real modes obtained provide orthonomality with res-

pect to the generalized matrices, and constitute a

set of complete orthogonal vectors which can be used

in modal transformation. It is simple and less costly

to calculate these gyroscopic modes. Many ready-made

programs are available for this computational task.

When applying the mode synthesis method to the

complex structures with nonlinear connections (9), we

divide the rotor system into a number of components

with the fixed boundary points in accordance with

its configuration or its natural component constitu-

ent, and the bearings are considered to be isolated

from the system as separate connection elements. In

dealing with the modal analysis of the component,

only the most important modes need to be considered,

i.e., besides the constrained modes, less gyroscopic

modes with fixed boundary coordinates have to be cal-

culated. The matrix composed of the gyroscopic modes

and the constrained modes is used as the modal tran-

sformation for every component of the system. The

bearings are regarded as the coupling forces of the

connections, and depend only on the relative displa-

cements and velocities of the boundary points, and

may take into account the asymmetry and nonlinearity.

The system equation obtained after assembly of the

boundary forces will generally be asymmetric and may

have nonlinear terms, however, the equations will be

purely real.

THE MODAL ANALYSIS OF COMPONENT

When analysing the multiple shaft rotor-bearing

systems, modal analysis can be executed for every

shaft component with the fixed boundary coordinates.

The support bearings and intermediary bearings can

be regarded as the coupling elements which include

elastic and damping forces. Fig.1 (a) illustrates how

to divide the system into components I and II , and

their connection representing the intermediary bear-

ings and support bearings; (b) is the model for modal

analysis of the gyroscopic modes and constrained mo-

des with fixed boundary points; (c) indicates the

coupling forces caused by the bearings and how to

form the integrate system through the equilibrium

requirements.

(a)
(b)
(c)

Fig.1 System Divided Into Components

The motion equation of an arbitrary shaft com-

ponent descreted by FEM can be expressed as follows

Mz +
+ Dz + Kx = T
b 
+ f

u

(1)
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(5)A
ii
 Y

i 
+ B Y

i 
= 0

( 8)= I	41‘k	=Ak

M 0 .n G
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0 K -K

Ai i A ib i
A
bi 

A
bbj

F
b 

=A.. =
11 Bii =

mii 0

0	k
ii

ngii k1111

-kii 
0

U = xb

xb

According to the interior coordinates xi and boun-

dary coordinates kb , Eq.(1) can be arranged in com-

patible block shape

mii mib 1

mbi mbb Xbj

gii gib

gbi gbb

rd	d
ib

'
ii

dbi 
dbbJ

k.	k.	x.
li lb 1

bi 
k
bb,

x
b

f
ui

f
ub

+41.
Xi

X
b

x.
1

X
b

0

f
b

where A ii is symmetric and positive definite.Eq.(5)

represents a gyroscopic eigenproblem. According to

the method of solving a gyroscopic eigenproblem (8),

every precessional frequency Jo, and its related gy-

roscopic modes 0 3. and W
1 

( 1 = 1,2, --• , k ) can

be obtained and arranged to form a tri-diagonal skew

symmetric frequency matrix A k and a gyroscopic modal

matrix 4J k as follow

where M, K and D are symmetric matrices, G is a skew

symmetric matrix.

The first term on the right side of Eq.(1) re-

presents the boundary force which may be a nonlin-

ear function of spin speed and relative motion of

the boundary points between the components. The be-

arings represent the relative action which will

occur between neighbouring components in pair with

opposite directions; The second is external excita-

tion, e.g., unbalance force or others.

Introducing the state vector Z and its special

arrangement Y, Z and Y have a relation as follow

ki
I

0 0 0 '

Xb 0 0 I 0
Z =

x
i

0 I 0 0

xb
0 0 0 I

Eq.(1) can be rewritten as

K

0
Z +

D	0

0	0
Z =

7
13

0

f
u

0
(3)

into (3) and premultiplying byckT ,

B
	Biblb

Y.
1

D..	D.
11
lb

Y i

B
bi 

B
bb

Y
b

D
bi 

D
bb

Y
b

F
u 

+ F
b	(4)

,T	\T
'1.1b '

	)T,
	

P
= (
0	,	0	,	fTb ,	0 ) T

From Eq.(4) the undamped free vibration equation

with fixed boundary coordinates can be obtain as

A k = block-diag(	
0 w

l )
-c.j 1. 0

	

,	4j kv

	

"Pk = L 49 1, 1, ••• , (Pk, gi k,1	kx

where 4, k has been normalized, satisfying the follow-

ing generalized orthogonal conditions

As for the constrained modes, they can be obtai-

ned as follow

(4) . (4) (9),	=
: 0	4), [

-kii
 -1 k

ib

Yi

Y
b

kv
4) 0

qk
Y

b

1.) kx
0

0

I

4),

0

qk
Xb = u (10)

0 I
x

b

The modal transformation relation may then be

written as

In order to reduce the DDF, matrixiP k includes only

the first k order ( pairs ) modes of the component.

Executing the A matrix transformation for Eq.(4),

gives

Ad +

A =

( B + C )u

I	A
12	

0

A
21	

A
22	

0

F + Fb

B

A
k	

B
12	

0

B
21	

B
22	

B
23

(	 )

0 0 A33 0	B
32	

0

kv fui
C 1111 12

C = C 21 C 22 0 F = 414 ,fui + fub
0 0 0

0

0

f
b

0

(6)

(7)

Y.
1

= ,GY (2)
Y

b

Substituting (2)

we obtain

F
= fTui , 0 ,

x.
1

x
i

X
b

x
b
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be expressed by

C
B 

K
B

I-CB -KB

-C
B 

-K
BI b

C
B


K
0 •

x (I)
b-)
(:)x

j b
)

where the second term on the right side of the equa-

where A is symmetric, and B is skew symmetric. The

sub-matrices are expressed from the subelements of

M, D, G and K as follow

Al t =	m et) +

T mibib

A22 = 4" mii4'	mib mbb 4 mbi4)

A 33 
B23

k. + K

33
23
lb
bb

C11 = ,p
kv 

d
ii kv

B12 C12 and B22 , C22 have the same form as A12 , 12
 Al2

and A22 but using m instead of g or d.

For an arbitrary bearing between components I

and
, the linear characteristic of stiffness and

damping can be expressed by the following matrices

yy 
K
yz
C


Yz
BL


C
K =
C

BL 
= YY

K
K
C Czy
zz )
zy
zz

For a system with several bearings, the matrices can

be augmented to form the following matrices

KB = block-diag( K BL ) , CB = block-diag( C BL )

Thus, the boundary forces between two components may

tion represents nonlinear term.

ESTABLISHMENT OF THE SYNTHESIS EQUATION ITS SOLUTION

Collection of all the modal coordinates of each

component and the boundary coordinates, and arranged

them in sequence, yield the overall set of indepen-

dent coordinates of the system

(s)
T(I) T , (I)

T

v =
qk
"k
' *** ' q k
'

(101)
T 

Y (I,I)'Y
b


(s-1, ^ )
T 

Yb
(s,s-1)

T 
) T'
b
***
""b

Thus, the elements of each component motion equation

can be arranged according to their relative position

to form the overall equation of the system, i.e.

Air + Bv= F +N
 (12)
$
s s
s

where As is the assemblage of all component matrices

A , Bs is the collection of all component matrices B

and C plusing contribution from the linear part of

the right side boundary force. The matrices of lin-

ear stiffness and damping of the bearings are arr-

anged in the lower right area corresponding to the

boundary coordinates. F s is the collection of the

external force vectors with modal coordinates such

as unbalance force and inertia force caused by the

base motion. Whereas N s is the nonlinear part of

bearing coupling force. When the nonlinearities are

presented in the component, those can also be inclu-

ded into N
s
. The details can be consulted in author's

works (10)(11). Because the linear term has been mo-

ved to the left side of the equation, the nonlinear

term which is the function of the system state ve-

ctor appears in a relatively small number of loca-

tions. This nonlinear equation can be solved by

using an iterative method.

We have obtained the overall system equation in

which various complex factors have been considered.

Owing to the separation of the system into subsystems

, every component can be analized in detail by FEM

and the asymmetricity and nonlinearity of the bear-

ings can be fully taken account. Using the gyrosco-

pic modal synthesis method, the DOF of the system

can be reduced sufficiently and calculation can be

simpfied.

From Eq.(12), neglecting the nonlinear and for-

cing terms, we can obtain the free vibration equa-

tion as follows

As + Bs v = 0
 (13)

Let v = V e
xt 

, to obtain

( Bs + N A s ) V = 0



(14)

Using a complex eigenvalue program of real coeffici-

ent matrices, the complex eigenvaluesx r and associ-

ate complex modes V r can also be obtained. The ei-

genvaluex r can be expressed as

>\

nr +
Pr

4
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elastic modulus

E = 2000000.0 kg/cm2

K
K = 104 kg/cm

10
4 RPM

yy	zz

where n
r 
is the exponent damping coefficient, and p

r
is the damped precessional frequency. If p r is a for-

ward precessional frequency, frequency curve p r -

intersect with the 45 ° line at the point p r	g

and spin speed n is some critical speed of the system.

Because the external force vector F
s 
is known, it

is easy to obtain the linear response. For example,

in the case of unbalance response, let

Fs = Fy cos n.t + F 5 sin At = F1 e
j t + F2 e

jAt 
(1 5)

and substitute ( 15) into Eq. (12) , to obtain

( jnA s + Bs ) x 1 = F 1

( -jr1A
s 
+ B

s 
) x

2 
= F

2

Then, x1 and x2 solved from above equation provide

conjugate vector pair.

As for the nonlinear response , it can be obtai-

ned by means of numerical integration.

NUMERICAL EXAMPLES

Example 1. A Uniform Shaft Supported on Springs

y
2
3
4
5



6

K zz

Fig.2 A Uniform Shaft

diameter
1
cm

length
30
cm

mass density 0.0078 kg/cm 3

Poisson ratio 0.3

component modes (24 pairs ) are agreed with the re-

sults calculated by FEM (12). It is interesting that

, the first k pairs of the component modes being re-

tained, the errors of the first k/2 pairs of the

precessional frequencies of the system are less than

1% in comparison with that by FEM. The node orbit

radii excited by the unbalance amount with the di-

fferent component modes retained is given in Table 2.

It is seen that effect of the high order modes of

the component for unbalance response is very small.

The results with only 4 pairs of the modes retained

are less than 1% in comparison with the results with

all component modes retained.

Table 1. Precessional Frequencies
with Different Component Modes
Unit: rad/sec

P
r

24 16 8 4

1
B 216.8958 216.8958 216.8958 216.8958

F 217.1168 217.1168 217.1168 217.1168

B 846.6977 846.6981 846.6995 846.7191
2

F 847.4984 847.4987 847.5002 847.5201

B 1829.799 1829.817 1830.464 3799.219
3 F 1831.322 1831.340 1831.990 3800.194

B 3067.097 3067.329 3072.816 4663.915
4 F 3069.285 3069.519 3075.031 4666.095

B 4445.738 4450.488 5574.485
5

F 4448.822 4453.596 5578.530

B 5959.879 5971.478 6680.882
6

F 5964.950 5976.601 6687.524

B 7485.165 7538.220
7

F 7492.756 7546.011

B 10652.76 10719.59
8

F 10664.57 10731.70

B 14034.54 14666.10
9 F 14050.38 14685.44

B 18537.92 19229.15
10

F 18558.21 19253.60

zz

X
--..-

K
YY

A uniform shaft which is divided by FEM into 6

elements and has 28 DOF is shown in Fig.2 . There is

a unbalance amount me = 0.01 kg-cm at node 4. The

structure is symmetric. The component with fixed

boundary coordinates has 24 DOF.

The precessional frequencies of the system with

different component modes retained is given in

Table 1. Among other things, the results with all

Table 2. Orbit Radii or Unbalance Response
with Different Component Modes
Unit: cm

node
R
24 16 8 4

1 10-3x 1.578244 1.578240 1.578125 1.579892

2 10
-2

x 7.766927 7.767475 7.760528 7.841186

3 10-1 x 1.345331 1.345320 1.346523 1.346568
-1

4 10
x 1.56187' 1.561809 1.560422 1.552438

5
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IMEmum

1111111111111111111wazurt	.....Imusammammm

1111111111111
4
12
1*
24
SPEED RPM x 1000

Fig.3
Fig.3 in Paper (13)

1.0

0.1

Example 2. Lund' Rotor

lund and Orcutt (13) performed an unbalance res-

ponse experiment of a rotor system, and gave a the-

oretical calculation by transfer matrix method. A

group of complete parameters of the structure was

given in their paper. In reference (12) Lund' Rotor, 

was divided by FEM into 14 elements. The first 8

pairs of the component modes have been used in syn-

thesis. The results calculated were marked " + " in

the figues of the paper (13) as a comparison. Only

four figues from the paper (12) are cited, from

Fig. 3 to Fig. 6 seen. The results of this paper

well agree with the experimental results (13).

1-1

MMNMMIHIMMMMIIMMMIMIMI=MM

■■■■■■■■■■■■■■

111111111111111111111
•	 ,Ammm 	10
sim■INUffiriaA■Milig■ ....
IMMIIMMIIIMMIIIIMME2M1TIMMINIV=111111
IMIIIIII=IFIPM•1111•1111111•1•MaS•111•M11

■EN■■	■
mum	

NUMMUMNIMENOMMIEN

11.11.11.1.1111..1.11111.M.

1111111
1111

0)

1

.1 1.

4


4
8
12 16
SPEED, RPM x 1000

Fig.4* Fig.6 in Paper (13)

SPEED8 RPM2 x 1000
2 4
4
1 2
1.
24


Fig.5
Fig.11 in Paper (13)

4
8
1
16
SPEED, RPM

2
 x 1000


24

Fig.6* Fig.16 in Paper (13)

Example 3. Dual Rotor System

In a dual rotor system shown in fig.7 , inner

shaft is treated as component 2, and outer shaft the

component I . Both of them are divided into 10 ele-

ments. There is a unbalance amount at node 5 on the

outer shaft. In working process, spin speed of the

inner shaft is a constant, i.e., 11
(I) 

= 10100 RPM.

The first 6 pairs of modes for every component are

used in synthesis. The first 3 forward frequencies


 THEORETICAL RESULTS

6	• • EXPERIMENTAL DATA

+ PRESENT PAPER RESULTS

of the system are given in Table 3. The critical

speeds determined by 45 ° line method are

n
cr1 

= 10104 RPM
n
cr2 

= 15230 RPM

n
cr3 

= 20206 RPM

The approximate modes for 1st and 2nd critical speeds

are shown in Fig.8 and Fig.9 respectively. Fig.10 and

Fig.11 show the orbit radius curves of unbalance res-

ponse of the 6th node on the inner shaft and the 5th

node on the outer shaft. It can be seen that response

crests well correspond with critical speeds.

6
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40
Table 3. The First 3 Forward Precessional

Frequencies of Dual Rotor System	Unit: RPM

tl

p 10100 10500 15000 16000 18000 19000 20000 ,
r

1 10104 10118 10237 10260 10303 10323 10341

2 13128 13334 15169 15434 15850 15977 16099

3 16080 16208 17778 18206 19146 19632 2010F

30

E_
-

cr)
20

ttiX10

rC
o8.
r-4

0
o 

	'5	1 6

Fig.7 Dual Rotor System Configuration

2.

U

INNER SHAFT

OUTER SHAFT

p
1
 = 10104 RPM

Fig.8 Mode Corresponding to 1st Critical Speed

Fig.9 Mode Corresponding to 2nd Critical Speed

8
	

10	12 14	16 ,18	20
SPEED, RPM x 10'
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CONCLUSION

In this paper, the use of gyroscopic modes in the

modal synthesis of multiple shaft rotor-bearing sys-

tems allows for the including of various factors su-

ch as the nonlinearity and asymmetricity of bearings

, gyroscopic moments of shafts and disks, damping

and others. Through modal reduction the size of sys-

tem equation can be very small before solving the

precessional frequencies, complex modes, and linear

and nonlinear response for the system.

There are the following advantages in the use of

gyroscopic mode synthesis: (i) It can use real mode

programs for calculation of the gyroscopic modes in

component modal analysis; (ii) The synthesis equa-

tion of the system is an asymmetric matrix equation

with real coefficients. Therefore, the important

advantage is saving computer time and memory in com-

parison with the complex mode synthesis method.
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