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Abstract: The design of H2-optimal control with regional pole assignment via state feedback in 
linear time-invariant systems is investigated. The aim is to find a state feedback controller such 
that the closed-loop system has the desired eigenvalues lying in some desired stable regions and 
attenuates the disturbance between the output vector and the disturbance vector. Based on a 
proposed result of parametric eigenstructure assignment via state feedback in linear systems, the 
considered H2-optimal control problem is changed into a minimization problem with certain 
constraints, and a simple and effective algorithm is proposed for this considered problem. A 
numerical example and its simulation results show the simplicity and effectiveness of this 
proposed algorithm. 
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1. INTRODUCTION 
 
In the past years, the H2-optimal control theory has 

attracted much attention, see e.g., [1-3] and the 
references therein. The well known LQG (Linear 
Quadratic Gaussian) and LQR (Linear Quadratic 
Regulator) designs in control are examples of the H2 
synthesis procedure. The objective of the H2 optimal 
problem is to find a controller that minimizes a 
quadratic performance index (the H2 norm) of the 
system and offers a way of combining the design 
criteria of quadratic performance and disturbance 
attenuation. But such a controller design method 
cannot guarantee that the closed-loop systems have 
good transient responses. 

It is well known that the systems’ transient 
responses are determined mainly by the locations of 
the systems’ eigenvalues. As an important design 
method associated with eigenvalues and eigenvectors 
in control theory, eigenstructure assignment has 
attracted much attention of many researchers, such as 
[4-21]. One type of approach for eigenstructure 
assignment is the parametric approach, which 
parameterizes all the solutions to the problem, such as 

[12-16]. This method presents complete, explicit and 
parametric expressions of all the feedback gain 
matrices and the closed-loop eigenvector matrices. 
Moreover, this method offers all the design degrees of 
freedom, which can be further utilized to satisfy some 
additional performances, such as robustness [17-19].  

In this paper, we will consider the application of the 
parametric eigenstructure assignment approach to the 
H2-optimal control with regional pole assignment. 
There are a few publications on the similar kind of 
this problem, such as [22-25]. Yang et al. [22] 
investigate the H∞ design with pole placement 
constraints via an LMI approach in uncertainty linear 
systems and propose a necessary and sufficient 
condition for the solvability of the problem are given 
in terms of a set of feasible LMIs. Apkarian et al. [23] 
consider the problem of eigenstructure assignment, 
and H2 synthesis with enhanced LMI, and the 
proposed methods involve a specific transformation 
on the Lyapunov variables and a reciprocal variant of 
the Projection Lemma. Chilali et al. [24] addresses the 
design of state- or output-feedback H∞ controllers that 
satisfy additional constraints on the closed-loop pole 
location and sufficient conditions for feasibility are 
derived for a general class of convex regions of the 
complex plane. Lam et al. [25] present a computation 
method for pole assignment with eigenvalue and 
stability robustness and the robustness measure is 
constructed to balance the tradeoff between an 
eigenvalue sensitivity measure and a stability 
robustness measure, both defined in terms of the non-
differentiable spectral norm. In this paper, the design 
degrees offered by the parametric eigenstructure 
assignment method in [12] are utilized to consider the 
design of H2-optimal control with regional pole 
assignment in linear time-invariant systems. The aim 
is to design a state feedback controller such that the 
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closed-loop system has the desired closed-loop poles 
lying in some desired regions and the disturbance 
attenuation performance. By utilizing a parametric 
solution for state feedback eigenstructure assignment 
proposed, the disturbance attenuation index is 
parameterized and the considered H2-optimal control 
with regional pole assignment is changed into a 
minimization problem with certain constraints. And 
then an effective and simple algorithm is proposed. 

This paper is organized as follows. The next section 
gives the description of H2-optimal control with 
regional pole assignment. Section 3 proposes the 
parametric result of eigenstructure assignment via 
state feedback in linear time-invariant systems. Based 
on the proposed parametric method of state feedback 
eigenstructure assignment, solutions to the considered 
problem are proposed, and a simple and effective 
algorithm is developed in Section 4. Section 5 
presents an illustrative example to show the simplicity 
and effectiveness of the proposed algorithm. 
Concluding remarks are drawn in Section 6. 

 
2. PROBLEM FORMULATION 

 
Consider a linear time-invariant continuous system 

in the form of 

,
x Ax Bu Fw
y Cx Du
= + +

 = +
                       (1) 

where nx∈R is the state vector, ru∈R is the control 
vector, lw∈R is the exogenous input vector and 

my∈R  is the output vector, respectively; A, B, C and 
D  are known matrices with appropriate dimensions 
with rank( ) ,B r=  and satisfy the following assump-
tion: 

Assumption A: The matrix pair ( , )A B is 
controllable, that is, 

[ ]( )rank ,nA sI B n− =  .s∀ ∈C  

Applying the following state feedback controller 

,u Kx=  ,r nK ×∈R                       (2) 

to system (1), obtains the closed-loop system as 

( )
( ) .

x A BK x Fw
y C DK x
= + +

 = +
                    (3) 

Recall the fact that non-defective matrices possess 
eigenvalues which are less insensitive with respect to 
parameter perturbations, in this paper we only 
consider that the eigenvalues of the closed-loop 
system (3) are distinct and self-conjugate. Let the 
closed-loop eigenvalues of system (3) be ,is C∈  

1, 2, ,i n= , and their corresponding eigenvectors 

be ,n
iv C∈ 1, 2, , .i n=  Then there hold 

( ) ,i i iA BK v s v+ = 1, 2, , .i n=            (4) 

From system (3), the closed-loop system transfer 
function from w to y can be given by 

1( ) ( )( ) .yw nT K C DK sI A BK F−= + − −        (5) 

Let P  be the positive semi-definite solution of the 
equation 

( ) ( ) ( ) ( ) 0.T TA BK P P A BK C DK C DK+ + + + + + =  
(6) 

It can be shown that  

2
( ) trace( ),T

ywT K F PF=                (7) 

where P is the positive semi-definite solution to (6). 
Then the problem to be considered in this paper can 
be described as follows. 

Problem H2: Given system (1) satisfying Assumpt-
ion A, a group of self-conjugate and distinct scalars 

,is ∈C  1, 2, ,i n=  and a group of stable regions 
,iS  1, 2, ,i n=  on the left complex plane. The 

design objective is to find a state feedback controller 
(2) to achieve the minimization of 

2
( )ywT K  in (7), i.e., 

2
min ( ) ,yw

K
T K                           (8) 

which subject to the following conditions: 
1) Equations in (4) hold and det( ) 0,V ≠  
2) ,i is S∈  1, 2, , .i n=  
 

3. CLOSED-LOOP EIGENSTRUCTURE 
ASSIGNMENT 

 
Set 

 1 2diag[ ],ns s sΛ = 1 2[ ].nV v v v=  

Then (4) is equivalent with 

.AV BKV V+ = Λ                         (9) 

Denote 

,W KV=                              (10) 

there holds 

.AV BW V+ = Λ                         (11) 

Because Assumption A is satisfied, applying a 
series of element matrix transformations to [ nA sI−  
B], we can obtain a pair of unimodular matrices 
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( ) [ ]n nP s s×∈R  and ( ) ( )( ) [ ]n r n rQ s s+ × +∈R  satisfying 

( ) [ ] ( ) [0 ],n nP s A sI B Q s I− = .s∀ ∈C   (12) 

Partition ( )Q s  into the following form 

11 12

21 22

( ) ( )
( ) ,

( ) ( )
Q s Q s

Q s
Q s Q s
 

=  
 

 11( ) [ ].n rQ s s×∈R  (13) 

Based on the above reasoning, we can give the 
following theorem which offers the parametric 
solutions to state feedback eigenstructure assignment 
for system (1). 

Theorem 1 [12]: Given matrices n nA ×∈R  and 
n rB ×∈R  with full rank, if the matrix pair ( , )A B  is 

controllable, then the parametric expressions of all the 
state feedback gain matrices K  in (9) can be given 
as follows 

1,K WV −=                             (14) 

where 

1 2[ ],nV v v v=  11( ) ,i i iv Q s f=       (15) 

and 

1 2[ ],nW w w w=  21( ) ,i i iw Q s f=     (16) 

where ,r
if ∈C 1, 2, , ,i n=  are a group of free 

parametric vectors, and satisfy the following 
constraints: 

Constraint 1: , , 1 , 2 , , ;i j i js s f f i j n= ⇔ = =  

Constraint 2: ( )det 0.V ≠  
From the above Theorem 1, we can find this 

parametric eigenstructure assignment has the 
following advantages: 

Remark A: The above general parametric 
expressions (15) for the closed-loop eigenvectors 
associated with the assigned closed-loop eigenvalues 
are in a direct closed explicit parametric form, and are 
thus simpler and more convenient to use. They can be 
immediately written out as soon as the pair of right 
coprime polynomial matrices 11( )Q s  and 21( )Q s  
satisfying (12) are obtained.  

Remark B: Both the free parametric vectors 
,r

if C∈ 1, 2, ,i n=  and the undetermined closed-
loop eigenvalues ,is C∈  1, 2, ,i n=  can be 
regarded as the design freedom offered by this 
parametric method. When more requirements beyond 
the basic closed-loop eigenstructure are imposed on 
the closed-loop system, we can first turn these 
requirements into some additional constraints on the 
closed-loop eigenvalues or/and the parameters 

,r
if C∈  1, 2, , ,i n=  and then solve from (14)-

(16) the required solution to the problem by restricting 
parameters r

if C∈  and ,is C∈  1, 2, ,i n=  to 
satisfy the set of additional constraints. 

 
4. SOLUTION TO PROBLEM H2 

 
Based on the parametric results in Theorem 1, we 

can obtain the following lemma, which gives the 
parametric solution to (6). 

Lemma 1: Given matrices ,n nA ×∈R  ,n rB ×∈R  
,m nC ×∈R  and ,m rD ×∈R  where the matrix B  is 

full rank. If the matrix pair ( , )A B  is controllable, 
then all the solutions of P  in (6) can be given as 

1( )( )
,

T T T T
i i j jT

i j n n

v C w D Cv Dw
P V V

s s
− −

×

 + +
 = −

+  
(17) 

where  

1 2[ ],nV v v v=  1 2[ ]nW w w w=  

are determined by (15) and (16), respectively. 
Proof: Noticing (9), which is equivalent to the 

following equation 

 1.A BK V V −+ = Λ    (18) 

Substituting (18) into (6), obtains 

1 1( ) ( ) ( ).T TV V P PV V C DK C DK− −Λ + Λ = − + + (19) 

Again denote 

 TP V PV=  or 1.TP V PV− −=   (20) 

Then (19) can be changed into 

 ( ) ( ) .T TP P V C DK C DK VΛ + Λ = − + +  (21) 

Denote [ ] ,ij n nP p ×= noticing ,ij jip p= , 1, 2, ,i j =
,n  from (21) we can obtain 

 
( )( )

.
T T T T
i i j j

ij
i j

v C w D Cv Dw
p

s s
+ +

= −
+

 (22) 

From 1,TP V PV− −=  it is clear to see that (17) holds. 
According to Theorem 1 and Lemma 1, we can set 

 ( , , 1 , 2 , , ),i iP P s f i n= =   (23) 

which denotes that the matrix P in (7) is parame-
terized by is ∈C  and ,r

if ∈C  1, 2 , ,i =  n. From 
Theorem 1, Lemma 1 and the above reasoning, we 
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can obtain the following theorem, which gives the 
solutions to Problem H2. 

Theorem 2: Given matrices ,n nA ×∈R  ,n rB ×∈R  
,m nC ×∈R  ,m rD ×∈R  and n lF ×∈R  in system (1), 

where the matrix B is full rank. If the matrix pair 
( , )A B  is controllable, the desired state feedback 
gain matrix K in Problem H2 can be given by (14), 
where the parameters is ∈C  and ,r

if ∈C  1, 2,i =  
, n  are determined by the following minimization 

problem: 

{ } ,{ }
min trace( ( , ) ),

r
i i

T
i i

s C f
F P f s F

⊆ ⊆C
      (24) 

subject to Constraints 1, 2, and 
Constraint 3: ,i is S∈  1, 2, , .i n=  
Denote the real finite eigenvalues is  by ,iδ  and 

the corresponding parameter fi by ;ih  denote a pair 

of self-conjugate eigenvalues si and sl by i l is s δ= =  

,l jδ+  and the corresponding parameter i lf f= =  
,i lh h j+  where iδ  and ,ih  1, 2, ,i n=  are real. 

Then Constraint 1 automatically holds and Constraint 
3 is changed into 

Constraint 3’: ,i i ia bδ≤ ≤ 1, 2, , ,i n=  where 

ia  and ,ib  1, 2, , ,i n=  are some specified real 
numbers. 

With the above denotations, the minimization index 
(24) in Theorem 2 can be simplified into the following 
problem 

{ } ,{ }
min trace( ( , ) ),

r
i i

T
i i

R h R
F P h F

δ
δ

⊆ ⊆
      (25) 

s. t. Constraint 2 and 3’. 
Based on Theorem 2, we can develop the following 

algorithm, which give the detail steps to solve 
Problem H2. 

Algorithm H2:  
1. Compute a pair of unimodular matrices P(s) and 

( )Q s  satisfying (12), and partition Q(s) as in (13). 
2. Set the parametric expressions of free vectors 

,if 1, 2, , ,i n=  and compute the parametric 
expressions of matrices V and W from (15) and 
(16). 

3. From (17), compute the parametric expressions of P. 
4. Determine is ∈C  and ,r

if ∈C  1, 2, ,i n=  

satisfying Constraints 1-3 or iδ ∈R  and ,r
ih ∈R  

1, 2, ,i n=  satisfying constraint 2 and 3’, by 
solving the minimization problem (24) or (25). 

5. Compute the gain matrix K, from (14) and the 
obtained matrices V and W. 

Obviously, the above algorithm is in sequential 
order, while no ‘going back’ procedures are involved. 
Further, because of the completeness of the 
eigenstructure assignment approach used, the 
optimality of the solution to Problem H2 is totally 
dependent on the solution to the optimization problem 
(24) or (25). For solution to these minimization 
problems, there are many software packages that can 
be used, such as 

1) We have found that the Matlab package 
FMINCON is very reliable and suitable for solving 
these minimization problems, where FMINCON finds 
a constrained minimum of a function of several 
variables and solves problems of the form: 

min ( )
X

F X  

subject to AX B≤  or/and AX B= (linear constraints); 
( ) 0C X ≤  or/and ( ) 0C X = (nonlinear constraints); 

LB X UB≤ ≤ . 
2) We can also solve the optimal problem by the 

gradient method. Denote 

1 trace( ( , ) ),T
i iJ F P f s F=  

and 

2 trace( ( , ) ),T
i iJ F P h Fδ=  

then the necessary conditions for the optimal problem 
(24) or (25) are, respectively,  

1 0,
i

J
s

∂
=

∂
 1 0,

i

J
f

∂
=

∂
 1, 2, , ,i n=  

where the parameters is ∈C  and ,r
if ∈C  1, 2,i =  

, n  satisfy Constraints 1-3, and 

2 0,
i

J
δ
∂

=
∂

 2 0,
i

J
h

∂
=

∂
 1, 2, , ,i n=  

where the parameters iδ ∈R  and ,r
ih ∈R  1, 2,i =  

, n  satisfy Constraint 2 and 3’. 
 

5. AN ILLUSTRATIVE EXAMPLE 
 
Consider a linear system in the form of (1) with the 

following matrices 

0 1 0
0 0 1 ,
1 0 1

A
 
 =  
  

 

0 0
0 1 ,
1 0

B
 
 =  
  

 
1 0 1

,
0 1 1

C
− 

=  − 
 

1 1
,

1 1
D

− 
=  − 

 

1 0 0
0 1 0 .
0 0 1

F
 
 =  
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It is easy to find that the matrix pair ( , )A B  is 
controllable. Assume that the closed-loop eigenvalues 
are 

13 1,s− < < −  2,37 ( ) 4,re s− ≤ ≤ −  2,38 ( ) 8.im s− ≤ ≤  

Thus from Algorithm H2, we have the following steps: 
1) By applying a series of element matrix 

transformations to 3[ ],A sI B−  we can obtain the 
unimodular matrix ( )Q s  and partition it as follows 

2

1 0
0

0 1( )
0 1

1

s
Q s

s

s

× × × 
 × × × 
 × × ×=
 

− × × × 
 − × × × 

. 

2) Set [ ],i i if a b= 1, 2, 3.i =  From (15) and (16), 
we can obtain 

1 2 3

1 1 2 2 3 3

1 2 3

,
a a a

V s a s b s b
b b b

 
 =  
  

 

1 1 2 2 3 3
2 2 2
1 1 1 2 2 2 3 3 3

( 1) ( 1) ( 1)
.

s b s b s b
W

s a b s a b s a b

− − − 
=  

− − −  
 

3) From (17), we can easily obtain the parametric 
expression of P. 

4) By utilizing the function FMINCON in toolbox 
of Matlab, we can solve the minimization problem 
(25) and obtain the minimization value as 2.7424. In 
this case, 

1 1,s = −  2,3 4 0.1783 ,s i= − ±  

1
4.1987

,
3.3710

f
 

=  − 
 2,3

0.1439 0.3184
.

1.7984 0.3101
i

f
i

− 
=  
 

∓
∓

 

5) From (14), we obtain the desired gain matrix as 

3.5074 1.1046 4.9927
.

3.9225 5.0073 0.8945
K

− − − 
=  − − − 

 

Arbitrarily choosing  

0
1 1,s = −  0

2 4 0.1783 ,s i= − ±  

0
1

5
,

20
f

 
=  
 

 0
2,3

2 2
,

3 4
i

f
i

± 
=  ± 

 

obtains the value of (25) as 11.8867  and the 
arbitrarily choosing gain matrix as 

0 32.5117 6.6196 8.4730
.

17.9392 1.5270 5.6166
K

− 
=  − − 

 

 
 

Fig. 1. Comparisons of the first output errors under K 
and K0. 

 

 
 

Fig. 2. Comparisons of the second output errors under 
K and K0. 

 
In order to further show the effect of Algorithm H2, 

we select the random numbers in [ 1, 1]−  as the 
disturbance. In Figs. 1 and 2, “K” represents the 
output errors between the system without disturbances 
and the system with disturbances under the desired 
gain ,K  and “ 0K ” represents the output errors 
between the system without disturbances and the 
system with disturbances under the arbitrarily 
choosing gain 0.K  Then we can find that the outputs 
of the system with no disturbances are very close to 
those of the system with disturbances under the 
desired gain K, while the outputs of the system with 
no disturbances are far from those of the system with 
disturbances under the arbitrarily choosing gain K0.  

 
6. CONCLUSION 

 
By utilizing a parametric method of state feedback 

eigenstructure assignment, a new design method for 
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H2 –optimal control with regional pole assignment via 
state feedback in linear time-invariant systems is 
proposed in this paper. By using this proposed method, 
the closed-loop system has the desired eigenvalues 
lying in some desired stable regions and the H2 norm 
is minimized. Thus this method can guarantee that the 
closed-loop systems have good transient responses 
and the disturbances can be attenuated from the 
outputs. An illustrative example and the simulation 
results show the benefits of this proposed method. 
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