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The implementation and application ofh-adaptivity in an explicit finite element pro­
gramfor nonlinear structural dynamics is described. Particular emphasis is placed on 
developing procedures for general purpose structural dynamics programs and effi­
ciently handling adaptivity in shell elements. New projection techniques for error 
estimation and projecting variables on new meshes after fission or fusion are de­
scribed. Several problems of severe impact are described. © 1995 John Wiley & 

Sons, Inc. 

INTRODUCTION 

H-adaptivity is a technique for enhancing the ac­
curacy of nonlinear finite element simulations; 
moreover, it eliminates the user's need to antici­
pate where refinement will be needed to capture 
nonlinear phenomena adequately. Two charac­
teristics of nonlinear response favor adaptivity: 

1. localization of deformation, which means 
that high strains occur in very small por­
tions of a component, for example in a 
buckled thin-walled beam, the high strains 
will be localized areas that appear as kinks; 

2. the unpredictability of where high strains 
are going to occur. 

Adaptive finite element methods place the un­
knowns, that is, the degrees-of-freedom, where 

they are needed, so that the most accurate solu­
tion can be obtained for a given amount of re­
sources. This is of particular importance in buck-
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ling and localization problems, because the areas 

where localization occur are not known a priori. 
This article deals with the development of h­

adaptivity for general purpose structural dy­
namics programs with explicit time integration 
such as DYNA3D (Hallquist, 1983). This class of 
programs is widely used for accident analysis, 
automotive crashworthiness, etc. 

Adaptive methods have reached an advanced 
stage of development in linear stress analysis and 
in computational fluid dynamics. Extending the 
concepts developed in those contexts to general 
purpose structural dynamics programs is not 
straightforward. General purpose programs usu­
ally contain large libraries of elements and mate­
rials and interface with preprocessors and 

postprocessors. The design of an effective adap­
tive strategy must take these factors into account 
for a general purpose program. 

The application of many of the error criteria 
reported in the literature is quite difficult for shell 

elements. Shell finite elements for nonlinear 
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analysis are usually developed from the degener­

ated continuum approach. For these discretiza­

tions, residual methods of error criterion in 

which the error is related to the unbalance in the 

momentum equation is almost impossible to ap­

ply because the actual surface of the shell, and 

hence the divergence operator in the momentum 

equation, are never explicitly defined. Similarly, 

projection error criteria, such as the 

Zienkiewicz-Zhu criterion (1987, 1992a, 1992b) , 

are difficult to apply directly to the stresses. 

Here we have focused on some techniques for 

shell elements that lead to simpler algorithms and 

data structures. The motivation is that simplicity 

is the key toward successful implementation in a 

general purpose finite element program. It is the 

simplicity of finite element methods and particu­

larly explicit finite element programs that has 

made them so robust and useful. The intent here 

was to develop adaptivity so that this simplicity 
is maintained as much as possible. This is accom­

plished by using projections based on moving 
least square interpolations. These provide so­

called smooth solutions that can be used for two 
purposes: 

1. as a reference solution that can be used to 

make error estimates by comparing it with 

the finite element solutions, as in the 

Zienkiewicz-Zhu criterion; 
2. to provide nodal coordinates and element 

variables for the nodes and elements cre­

ated by the fission process. 

Another difficulty in the implementation of 

adaptivity is the burdensome requirements of 

data generation and manipulation and the long 

running times. Therefore, we have developed 

several schemes for reduction in running time. 

The moving least square method for solution 

recovery is described in the following section. 

Then, an error criterion is described. This is fol­

lowed by a section on adaptive strategies for 

dealing with the evolution of the mesh. Some 

numerical examples are given. Finally, there is a 

section for discussion and conclusion. 

MOVING LEAST SQUARE METHOD 
(MLSM) FOR ERROR ESTIMATE 

In the finite element approximation, the error is 

defined as 

e=s-sh (1) 

where s is an exact solution such as displacement 
U, strain e, or stress u, and Sh is the finite element 

solution. In most practical nonlinear dynamic 

problems, the exact solution is unknown, so that 

the exact solution s is replaced by approximated 

exact solution s*, which is often called projected 

solution. Then the error is defined by 

e = e* = s* - Sh. (2) 

The MLS interpolant s*(x) of the solution Sh(X) 

is defined in the domain n by 

m 

s*(x) = 2: pj(x)aix) == pT(x)a(x) (3) 
j 

where p(x) are polynomials in the space coordi­

nates for example, pT(X) = [1, x, y, z] and m = 4 

in three-dimensional space, and a(x) are the cor­

responding unknown coefficients. The coeffi­

cients aix) in the above equation are also func­

tions of x; a(x) are obtained at any point x by 

minimizing a weighted, discrete L2 norm as fol­
lows: 

n 

:J = 2: w(x - x[)[pT(x[)a(x) - s7F (4) 
I 

where n is the number of sampling points in the 

neighborhood (domain of influence) of x, w(x -

Xl) is a weight function that is nonzero over the 

domain of influence, and s7 is the finite element 
solution at x = x[. 

Nodal displacement values are used to re­

cover the approximated exact displacement solu­

tion, whereas for strains or stresses the values 

evaluated at the reduced integration points are 

used to increase the accuracy of the projected 

solution. Note that to avoid singularity of the 

linear equations for a(x) , the number of sampling 

points n should be equal to or greater than m. 
The stationary condition of :J in (4) with re­

spect to a(x) leads to the following linear relation: 

A(x)a(x) = B(x)Sh (5) 

or 

a(x) = A -1(x)B(x)Sh (6) 

where A(x) and B(x) are the matrices defined by 



n 

A(x) = L WI(X)pT(X/)P(X/) , WI(X) == W(X - XI) 
I 

(7) 

B(x) = [WI (X)P(XI), W2(X)P(X2), ... , wn(x)p(xn)] 

(8) 

(9) 

Hence, the approximated exact solution at any 

point x is obtained by 

n m 

S*(X) = L L p/X) (A -I (x)B(x»j1s7 . (10) 
I j 

The weight function w(x - XI) is chosen to be 

relatively large for the XI close to X, and relatively 

small as IIx - xIII increases; in other words, they 

should decrease in magnitude at the distance 

from X to XI increases. Therefore, the weight 

function is considered to be dependent only on 

the distance between two points X and XI as fol­

lows: 

(11) 

where d = Ilx - xIII is the distance between two 
points. 

In this study, we used the following bell­
shaped exponential weight function: 

(12) 

where k is a positive constant; c is a constant that 

controls the relative weights; dml is the size of the 

support for the weight function and determines 

the domain of influence of XI. Note that when c 
decreases, we obtain larger weights on points XI 

close to X and lower weights on points far re­
moved from x. In this study, we used k = 1, and 

c = ahmax where hmax is the maximum size of 
elements and 1 :::; a :::; 2. 

REMARK 1. The MLSM can recover projected 

solutions accurately even in irregular meshes or 

the meshes with partial refinement by adaptivity. 

REMARK 2. In the MLSM, the accuracy ofre­

covered solution can be further improved with a 

larger domain of influence, however big dmloften 

deteriorates the accuracy of solution in highly 

nonlinear deformations of shell structures unless 

the distance dl = Ilx - XIII is measured along the 
surface of the structure. 
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REMARK 3. The result of MLSM is identical to 
that of the solution recovery technique by 

Zienkiewicz and Zhu (1992a) when the weight 

function is constant and the number of sampling 

points in the domain of influence equals the num­
ber of sampling points in the local patch-in the 

Z-Z solution recovery technique, the patch con­

sists of the elements that surround a recovery 
point (nodal point x). 

ERROR CRITERION 

For dynamic finite element analyses, the sources 

of error are: 

1. time integration; 

2. space discretization; 

3. numerical integration over the element do­

main to compute internal forces. 

In explicit codes, time steps are small to as­

sure the stability of solutions, so error from time 
integration is not a major issue except for certain 

problems such as those with large rigid body mo­

tion or strain softening. We will therefore focus 

on an error criterion's ability to predict errors 

from spatial discretization and numerical spatial 

integration. A useful error criterion should indi­

cate when the error from these two major contri­
butions is large. 

Belytschko, Wong, and Plaskacz, (1989) and 

Belytschko and Yeh (1993) used the change in 

angles between shell elements as a measure of 

error. This is a useful criterion for highly nonlin­

ear three-dimensional problems when bending is 

the dominant behavior, but it is ineffective for 

problems where membrane behavior dominates. 

For example, it cannot indicate the error for 
membrane bending, in which the angle change is 

zero for all elements. Belytschko et al. (1992) 

also added a error criterion based on hourglass 

energy for the one-point integration quadrature 

element, which represents error due to numerical 

integration. 

A well-known error criterion is the 

Zienkiewicz-Zhu criterion (1987, 1992a, 1992b) 

where the measure of error in a linear problem is: 

()2 = ( «(Too - (T~o)(eoo - e~-) dO (13) J fl, IJ IJ IJ IJ • 

It is then assumed that the error can be estimated 

by replacing (Tij, eij by an approximated exact 



196 Lee and Belytschko 

solution, so 

where (fij, eij is the projected or approximated 

exact solution obtained by a least square fit to o-t 
or et, respectively. A similar criterion can be 

found in Torigaki (1989), where the nodal averag­

ing method is used to obtain the approximated 

exact solution. This criterion performs very well 

for linear continuum problems. However, the 

computation of the projection is quite compli­

cated in shell problems, because the stress and 

strain components for each element are com­

puted in local coordinates. These local compo­

nents need to be transformed to global compo­

nents to be assembled into the global stress and 

strain matrices in both the minimization and the 

nodal averaging methods. This entails many 

transformations, and the transformations are am­

biguous in a finite element model because a con­

sistent set of global components cannot be de­

fined unless a continuous surface is specified for 

the shell. Therefore, because the local coordinate 

systems are often related to the element node 

numbering, simply interpolating the local compo­

nents of tensors is not satisfactory. 

In this work, norms of strain invariants, as in 

Belytschko and Yeh (1993), with MLS projection 

are used for evaluating an error estimate. The 

reason for choosing the invariants of strain as an 

error indicator is that they characterize the elon­

gations of a solid and they are scalars with sign. 

The measure of strains in nonlinear structural 

dynamics codes such as DYNA3D is usually the 

rate of deformation. However, this is a rate mea­

sure and its integral is not path independent. A 

rate measure of deformation is not satisfactory as 

an error measure in an explicit code because it 

tends to be rather oscillatory. Therefore, the in­

variants of the Green-Lagrange strain are used 

as an error measure (the invariants are chosen 

for reasons already cited). 
Shell elements are in a state of plane stress 

(we treat the transverse shears as penalties to 

enforce the Kirchhoff-Love hypothesis), so the 

state of strain in the local system has three inde­

pendent components and three invariants. They 

are given by the standard equation 

1 
E = - (FTF - I) 

2 
(15) 

and F is the deformation gradient 

ax 
F = ax' 

The invariants of E are 

(16) 

II = tr E (17) 

1 
lz = "2 (E: E - (tr E)2) (18) 

h = det E. (19) 

The smoothed interpolants It are obtained by the 

MLSM described earlier. 

The error criterion for element e is then given 

by 

3 

(}e = L III((x) - I7(x)lln, (20) 
i~1 

where 17 is the invariant computed from the finite 

element solution. 

ADAPTIVE ALGORITHM 

In transient analysis, the structure of the adap­

tive strategy is crucial in obtaining accuracy and 

reasonable running time. In the algorithm used in 

Belytschko et al. (1989) and Sarwas (1989), at 

judgment time tn the mesh was reconfigured in 

accordance with an error check if any elements 

exceeded the tolerance; this mesh was used for 

the subsequent time segment (called adaptation 

interval). With this algorithm, we have found 

that for reasonable values of the adaptation inter­

val, fission (refinement) occurs too late and the 

lost accuracy can never be recovered. If the ad­

aptation interval is too small, considerable noise 

can be generated by successive fission and fu­

sion, and the cost is substantial. Bajer (1988) 

drew similar conclusions. 

Figure 1 shows the go-back adaptive algorithm 

used by Belytschko et al. (1992) and Belytschko 

and Yeh (1993). In this procedure, the time inter­

val during the adaptation interval prior to any 

adaptive assessment is repeated with the newly 

generated mesh to recover the lost accuracy. In 

Devloo, Oden, and Strouboulis (1987), a time in­

terval is repeated until error tolerance is met. 

This scheme is even more time consuming, but it 

does insure that a higher level of accuracy will be 
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FIGURE 1 Go-back adaptive procedure by 

Belytschko et al. (1992) and Belytschko and Yeh 

(1993). 

maintained. These two methods have the follow­

ing difficulties: 

1. programming is complicated because the 
data structure changes dramatically during 

the calculation; 

2. the writing of output tapes and other as­

pects of postprocessing are difficult be­

cause the data structure changes and while 

running any time segment. 

In the algorithm used here (shown in Figure 2) 

from Belytschko and Yeh (1992), some of these 

difficulties are avoided. The procedure is struc­

tured as follows. First, the problem is completely 

solved with a coarse mesh. During the coarse 

mesh run, assessments are made at selected in­

tervals, from which the level of adaptation for 

each adaptation interval is selected. On the basis 

of these assessments, a second complete run is 

then made with several meshes. A small adapta­

tion interval (such as 10 or 20 time steps) is used 
to make sure that critical phenomena such as bi­

furcation can be captured and that the depen­

dence of results on the adaptive periods is cir­

cumvented. This new strategy simplifies data 

structures and postprocessing because: 

1. geometric and material information do not 

need to be stored temporarily for the use of 

the go-back; 

2. the element arrangements for the adaptive 

runs are known prior to the run so that data 

files for time histories are easier to write. 

Of course, the total CPU time spent in the 

initial coarse mesh run and the error checks may 
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appear burdensome. Because we make error 

checks only in the coarse mesh run, the CPU 

time used for the second run is less than with 

procedures such as in Figure 1. Further, com­

pared to a uniformly refined mesh, this two run 

approach is quite cost efficient. The CPU time 

for a mesh with uniform refinement of level NL is 
gNL times the initial mesh. This figure reflects the 

fact that one level of refinement in a shell mesh 

quadruples the number of elements and entails a 

twofold reduction in the time step. The CPU time 

spent in the test run is therefore only a small part 

of the total, and if the adaptive mesh can save a 

significant fraction of the time required for a uni­
form refinement, then the potential CPU savings 

of this method are significant. Our results show 
that this strategy saves about 50% of CPU time 

compared to a computation with a uniformly re­

fined mesh. 
The method makes it necessary to relate the 

error in the coarse mesh to the number of subdi­

visions needed to obtain the requisite accuracy. 
Because a constant resource approach has been 

taken here, this is not of concern. The error in 

the second run can be tracked, and if it is unac­

ceptable, the run can be repeated. We found that 

in most runs, the behavior of the two meshes is 

not radically different, and the second run serves 

primarily to obtain more accuracy. Of course, if 

the behavior of the two runs is radically different, 

then careful monitoring of error in the second run 

is essential. 

Adaptivity 

H-adaptivity consists of two processes: fission 

(or refinement) and fusion (or unrefinement). 

MESH 2 

MESH 3 

MESH 5 

f'?Z'W//m-///~ 
MESH 4 I I 

fW/Mff&u!/eJ I , '111 I 
I 1 1 

F#ffl#$1'1~ : : 

I 1 I I 

~-~. ~ ~ :1 

MESH 1 + , • 
i I i 

o t 1 

Time 

FIGURE 2 New adaptive procedure using initial 

coarse mesh run (Belytschko and Yeh, 1992). 
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These procedures have been extensively de­

scribed in Belytschko et al. (1989, 1993) and 

Belytschko and Yeh (1992). In this article only 

the forward and reverse projections needed in 

fission and fusion, respectively, are described. In 

our previous work we used very simple projec­

tions, and we have found improvements in the 

performance of h-adaptivity by using better pro­

jections based on MLS approximations. 

The following variables are subject to forward 
projection: 

1. the coordinates XI of the new nodes; 

2. the velocities of the new nodes VI; 

3. the Cauchy stresses <T(x¥) and state vari­

ables, such as yield strength, etc. at the 

quadrature points x¥. 

For the purpose of making the projection, it is 

convenient to construct a reference plane for 

each element. This plane is constructed by a 

weighted least square fit to the nodes within the 

domain of influence of the weight functions. 

These projections must account for disconti­

nuities in the shell structures: smooth projections 

should not be continued across discontinuities in 
the surfaces. For example, in a box beam, pro­

jections should not extend across the edges. To 

implement this, nodes on discontinuities in sur­

faces must be labeled in the initial mesh. These 

labeled nodes are used to construct lines of dis­

continuity, r? which are then projected onto the 

reference plane. In computing a projection at any 

point XI, data at a point xQ is excluded from the 

domain of influence if the line from gI to gQ inter­

sect r? 

Prediction of Mesh Refinement 

The algorithm for determining levels of refine­

ment used in Belytschko and Yeh (1993) is sum­

marized in Table 1. Any element in which the 

error (ERR) exceeds the error criterion (CRIT) is 

fissioned one more level. Belytschko et al. (1989) 

use a similar algorithm, except they fission and 

fusion a fixed percentage of elements so the num­

ber of elements remains constant. These algo­

rithms have two shortcomings. 

1. CRIT is a factor that crucially affects the 
quality of the results (the other is the adap­

tation interval). A small value of CRIT will 

result in the fission of too many elements 

and lead to the waste of CPU time; too 

Table 1. Refinement Algorithm in Belytschko and 

Yeh (1992) 

for each adaptation assessment IT = 1 to NT: 

for each element IE = 1 to NELE: 

if ERR (IE) :::0: CRIT then 

LEVEL(JE, IT + 1) = LEVEL(JE, IT) + 1 

endif 

enddo for IE 

enddo for IT 

NT 

CRIT 

: the number of adaptation assess­

ments. 

: the error criterion input by the 

user. 
LEVEL(IE, IT) : level of refinement for element IE 

in the adaptation assessment IT. 

large a value of CRIT does not yield any 

improvement. An appropriate value of 

CRIT can only be obtained by experience 

from many test runs and is quite problem 

dependent. 

2. The initial refinement level given by the old 

algorithm is at most one level. As we de­

scribed before, lost accuracy cannot be re­

covered no matter how you fission your 

mesh, so if you start with a mesh in which 

all elements are fissioned at too Iowa level, 

the results will never reach the desired ac­

curacy. 

Devloo et al. (1987) circumvented the second 

difficulty by repeating the adaptive time seg­

ments until the error is reduced to the desired 
level at the assessment; however, this can lead to 

long and unpredictable running times that may be 

undesirable in practice. 

Here we describe a more easily used proce­

dure for setting the error criterion and the refine­

ment. To avoid more than one iteration over a 

given time interval, we have used the procedure 

shown in Table 2 to estimate the errors for sev­

eral levels of refinement based on the coarse 

mesh solution. In this procedure, two parameters 

are required: the maximum level of refinement 

(MAXLEV) and the target deviation e (0 :::; e :::; 

1); e is defined as the ratio of the error difference 

between the coarsest mesh and the adaptive 

mesh and the error difference between the coars­

est mesh and the MAXLEV level finest mesh: 

(error of adaptive mesh 

- error of finest mesh) 
e = (error of coarsest mesh (21) 

- error of finest mesh) 



Table 2. Refinement Level Selection Algorithm 

1. Use the extrapolation method to net nodal invari­

ant values. 

2. Approximate exact solution (AES) is constructed 

over the finite element mesh by assign ing the 

interpolated values at the centers of the elements 

in the MAXLEV + I level mesh , which is the 

finest mesh . 

3. Follow the same procedures of step (2) to obtain 

invariant values at the centers for all levels IL, 0 

s IL s MAXLEV. These will be called the 

lower level solution. 

4. After getting the AES from step (2) and the lower 

level solution from step (3) , we use the strain 

invariant norms of each element for each level 

IL, which is called CRIT(JE , IL). 

5. Take the sum of CRIT(JE, IL) as the norm of the 

whole object for level IL = 0 and MAXLEV , 

i.e ., 

NELE 

WCRIT(IL) = L CRIT(JE , IL) 
JE = i 

6. Based on the given target deviation , T AGDEV , 

the required error can be estimated by 

RCRIT = WCRIT(MAXLEV) + T AGDEV 

x (WCRIT(O) - WCRIT(MAXLEV)) 

7. Calculate the average of the required invariant 

error by 

ARI = RCRIT/NELE 

which will then be used as our fission crite­

rion; 

8. Use the following procedure to obtain the 

fission level of element IE, LEVEL(JE). 

a. for each element I s IE s NELE: 

b. for level 0 s IL s MAXLEV: 

c. If CRIT(JE , IL) s ARI then 

d . LEVEL(JE) = IL 

e . GOTO step i 

f. endif 

g. enddo for IL 

h. LEVEL(JE) = MAXLEV 

I. enddo for IE 

when e = 1, no elements will be refined ; 

when e = 0, all elements will be refined to the 

level MAX LEV . 

NUMERICAL EXAMPLES 

The examples were run on an HP-720 system. All 

use the one-point integration element developed 
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by Belytschko and Leviathan (1994) , which is an 

extension of the element (Belytschko and Tsay , 

1983). It uses physical hourglass control. All ex­

amples use elastic-plastic materials with the 

Mises yield criterion and five integration points 

are used through the thickness of the shell ele­

ment ; the material parameters of the example 

problems are given in Table 3. Several levels of 

adaptation are employed. For contact-impact 

problems the pinball contact-impact algorithm of 

Belytschko and Yeh (1993) was used. These 

problems were previously reported in Be­

lytschko and Yeh (1993). They are rerun here 

using our new adaptive algorithm and the split­

pinball scheme. 

The examples show that the stresses , strains , 

and displacements obtained by this adaptive 

mesh are very close to those obtained by the fin­

est mesh, and a great deal of CPU time is saved . 

The normalized CPU time (CPU time/CPU time 

of coarsest mesh) for different meshes are shown 

in Table 4, which shows that our adaptive algo­

rithm can save 20-30% of the CPU time with one 

level of fission , 35-50% with two levels of fis­

sion. For a given problem , a higher level of fis­

sion results in greater savings of CPU time. 

The first problem , shown in Figure 3, is an 

elastic , perfectly plastic , 120° cylindrical panel 

that is loaded impUlsively with an initial radial 

velocity over a portion of the top surface . On the 

loaded area of 3.08 x 10.205 in. , an initial veloc­

ity of 5650 in ./ s is applied to the panel. Two 

sides of this panel are clamped and two ends 

are hinged. Half of the panel is modeled due to 

symmetry. The initial mesh used in the coarse 

Region with 

Yo = 5650 in./sec 

FIGURE 3 Cylindrical panel problem. 
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Table 3. Material Properties of Test Problems 

Material Properties Cylindrical Panel S-Beam Box Beam Impacting Tubes 

Elastic modulus (E) 1.05 x 107 psi 3.00 x 107 psi 2.06 x 101 1 N /m2 0.25 x 10 11 N /m2 

Plastic modulus (E p) 0.00 psi 0.00 psi 6.30 x 108 N /m2 2.30 x 108 N /m2 

Yield stress (CTy) 4.40 x 104 psi 3.60 x 104 psi 2.00 x 108 N /m2 1.00 x 108 N /m2 

Density (p) 2.50 x 1O- 4 Ib-s2/in. 4 7.40 x 

Poisson ' s ratio (v) 0.33 0.30 

mesh run consists of 300 (12 x 25) elements. The 

time history of displacements at the center point 

A is given in Figure 4 for the coarse mesh , the 

fine mesh (1200 elements) , and the one and two 

level adaptive meshes. Figure 5 shows the evolu­

tion of the deformed geometry at selected times 

for two-levels adaptive solution . 

The second problem shown in Figure 6 is a S­

shaped T-section beam, fixed at one end and with 

axial loading applied to the other end. Axial dis­

placement and velocity of node A for the two­

level adaptive mesh are shown in Figures 7 and 

8, respectively. The deformed configurations and 

the development of element refinement by h­

adaptivity are shown in Figure 9. 

The third example is a thin-walled box beam 

that impacts a fixed rigid wall . Figure 10 gives the 

geometry for this problem. Only one-quarter of 

this beam is analyzed due to the symmetry. It 

was previously analyzed by Benson and 

Hallquist (1987) , Sarwas (1989) , and Belytschko 

and Neal (1991). The solution reported by 

Belytschko and Neal (1991) used imperfections 

of the same sign on the sides and top and bottom; 

0 

-0.2 
o experiment 

- - - --- 300 elem. 

-0.4 
-- 1200 clem. 

:3 -0.6 • ••••• level I 

" 0 
';;J 
<.> 

-0.8 " c 
-- - level2 

" '0 

-I ---

-1.2 

-1.4 

0 0.0002 0.0004 0.0006 0.0008 0.001 

time (sec) 

FIGURE 4 Deflections at the center of cylindrical 

panel. 

1O- 4 Ib-s2/in. 4 7.84 x 103 kg /m2 7.64 x 103 kg /m2 

0.30 0.30 

in Belytschko and Yeh (1993), the imperfection 

on the sides and bottom are of different sign but 

of the same magnitude. Although roundoff errors 

T = 0.000 I1lsec 

T = 0.091 msec 

T=0.28 msec 

T =0.81 msec 

FIGURE 5 Deformed shapes of cylindrical panel. 



Table 4. Normalized CPU Time for Sample Problems 

Cylindrical Panel S-Beam 

MESH Elem. # CPU Elem.# 

Llfinest 1200 8 960 

AdapLl 720 5.5 510 

L2finest 4800 64 3840 

AdapL2 2560 31.6 1970 

L1, one-level; L2, two-level. NA, not available. 
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FIGURE 6 Geometry of S-beam. 
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FIGURE 7 Axial displacement of point A in S-beam. 
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FIGURE 8 Axial velocity of point A in S-beam. 
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Box Beam Impacting Tubes 

CPU Elem. # CPU Elem. # CPU 

7 756 13 1536 15.3 

4.2 456 9 993 9.2 

51 NA NA NA NA 

24.9 NA NA NA NA 

will sometimes trigger folding type instabilities 

even in very symmetric structures such as this 

box beam, we found that the buckling modes can 
vary widely unless an imperfection is used to 

seed the buckling mode. Incidentally, in experi­

ments on this box beam, it has been reported that 
the buckling modes are also not easily reproduc­

ible. The initial mesh for the coarse mesh run 

consists of 189 elements. The comparison of ve­

locity at point A (where x = 0) is shown in Figure 

11. Figure 12 shows the one-level adaptive 

meshes. 
The last example is two impacting tubes 

shown in Figure 13. The initial coarse mesh has 

300 (10 x 15 x 2) elements. The comparison of 

velocity at point A is shown in Figure 14. Figure 
15 presents the adaptive mesh. 

DISCUSSION AND CONCLUSION 

A simplified h-adaptive strategy was studied for 

nonlinear structural dynamics with explicit inte­

gration. The algorithm was quite successful in a 

series of problems involving large displacement, 

elastic-plastic response with contact-impact. 
The procedure provides marked savings in com­

pute time over solutions run with uniform 
meshes. Although the problems treated are not of 

the complexity encountered in general engineer­

ing analysis, they do contain some of the compli­

cating features of these problems. Therefore, the 

success of these solutions is quite encouraging. 

H-adaptive methods provide the following ad­

vantages: 

1. they eliminate the need to mesh a problem 

on the basis of what is expected in various 

parts of the mesh; 
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T = 0.0009 msec T=0.90msec 

T=0.18 msec T= 1.98 msec 

T = 0.36 msec T =2.51 msec 

FIGURE 9 Two-level adaptive mesh of S-beam. 
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Geometry: L= 0.15 m, a=0.03 m, t=O.0015 m 

Initial condition: V=15.64 m/sec 

FIGURE 10 Box beam problem. 
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FIGURE 11 Velocity of point A (x = 0) in box beam. 
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TlDle = 0.64 ms ; 423 olemenls TImo = 1.28 ms ; 435 elemenls 

Timo = 1.92 ms ; 489 olemonls TIme = 2.56 ms ; 510 elemenls 

FIGURE 12 One-level adaptive mesh of box beam. 
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FIGURE 13 Two impacting tubes problem. 

50 

40 

30 

~ 20 
'13 
0 

~ 10 

0 

-10 

-20 

0 

H 

" 

--1536 elem 

- - -384 elem 

-Adap. L1 

0.002 

Time 

0.004 0.006 

FIGURE 14 Velocity of point A on impacting tubes. 
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FIGURE 15 One-level adaptive mesh of impacting 
tubes. 
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2. by refining the mesh where needed, and 
only where it is needed, they provide more 

accuracy in nonlinear simulations at less 
cost. 

Error criteria and adaptive strategies have 
been developed for nonlinear dynamics. The er­

ror criterion circumvents some of the difficulties 
associated with the treatment of shells by ex­

pressing errors in terms of strain invariants. As a 
consequence there is no need to deal with differ­
ent coordinate system transformations. 

The support of the Office of Naval Research is grate­
fully acknowledged. 
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