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Abstract. As a generalization of anti-invariant Riemannian submersions and Lagrangian
Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-
Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian
manifolds. We obtain characterizations and investigate some properties: the integrability
of distributions, the geometry of foliations, and the harmonicity of such maps. We also
find a condition for such maps to be totally geodesic and give some examples of such maps.
Finally, we obtain some types of decomposition theorems.
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1. INTRODUCTION

In 1960s, O’Neill in [17] and Gray in [10] introduced independently the notion of
a Riemannian submersion, which is useful in many areas: physics ([6], [25], [5], [12],
[13], [16]), medical imaging [15], robotic theory [1] (see [23]).

In 1976, Watson in [24] defined almost Hermitian submersions, which are Rieman-
nian submersions from almost Hermitian manifolds onto almost Hermitian manifolds.
Using this notion, he investigates a kind of structural problems among base manifold,
fibers, total manifold. This notion was extended to almost contact manifolds in [7],
locally conformal Kéhler manifolds in [14], and quaternion Kdhler manifolds in [11].

In 2010, Sahin in [22] introduced the notions of anti-invariant Riemannian sub-
mersions and Lagrangian Riemannian submersions from almost Hermitian manifolds
onto Riemannian manifolds. Using this notions, he studies total manifolds. In par-
ticular, he investigates some kinds of decomposition theorems.
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We know that Riemannian submersions are related with physics and have appli-
cations in Yang-Mills theory ([6], [25]), Kaluza-Klein theory ([5], [12]), supergravity
and superstring theories ([13], [16]). And quaternionic Kihler manifolds have appli-
cations in physics as the target spaces for nonlinear o-models with supersymmetry,
see [8].

The paper is organized as follows. In Section 2 we recall some notions, which
are needed in the later sections. In Section 3 we introduce the notions of h-anti-
invariant submersions and h-Lagrangian submersions from almost quaternionic Her-
mitian manifolds onto Riemannian manifolds, give examples, and investigate some
properties: the integrability of distributions, the geometry of foliations, the condition
for such maps to be totally geodesic, and the condition for such maps to be harmonic.
In Section 4 under h-anti-invariant submersions and h-Lagrangian submersions, we

consider some decomposition theorems.

2. PRELIMINARIES

Let (M, g,J) be an almost Hermitian manifold, where M is a C°°-manifold, g is
a Riemannian metric on M, and J is a compatible almost complex structure on
(M, g) (i.e., J € End(TM), J? = —id, g(JX,JY) = g(X,Y) for X,Y € T'(TM)).

We call (M, g, J) a Kihler manifold if VJ = 0, where V is the Levi-Civita con-
nection of g.

Let (M, gn) and (N, gn) be Riemannian manifolds.

Let F': (M,gn) — (N, gn) be a C*°-map.

The second fundamental form of F is given by

(VFE)(U,V):=VEFV - F.(VyV) for UV € I(TM),

where V¥ is the pullback connection along F' and V is the Levi-Civita connection
of g, see [3].

Then the map F is harmonic if and only if trace (VF,) = 0, see [3].

We call F a totally geodesic map if (VE,)(U,V) =0 for U,V € T'(T'M), see [3].

The map F is said to be a C*°-submersion if F' is surjective and the differential
(Fy)p has maximal rank for any p € M.

We call F' a Riemannian submersion ([17], [9]) if F is a C*°-submersion and

(2.1) (Fu)p: ((ker(F)p) ™ (90)p) = (Tem) N, (98) F@p)

is a linear isometry for any p € M, where (ker(F),)" is the orthogonal complement
of the space ker(F), in the tangent space T, M to M at p.
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Let F': (M,gm) — (N,gn) be a Riemannian submersion.
For any vector field U € T'(T'M) we write

(2.2) U = VU +HT,

where VU € T'(ker F,.) and HU € I'((ker Fy,)1).
Define the O’Neill tensors 7 and A by

(2.3) AuvV = HVyuVV + VVyoHV,
(2.4) ToV = HVyyVV + VVyyHV

for U,V € I'(T'M), where V is the Levi-Civita connection of gas ([17], [9]).
Let

(2.5) Vv W :=VVyW for V,W € I'(ker F}).
Then we have

(2.6) AxY = —Ay X = %V[X, Y],
(2.7) TV = TyU

for X,Y € T'((ker F,)*) and U,V € T'(ker F}).

Proposition 2.1 ([17], [9]). Let F' be a Riemannian submersion from a Rieman-
nian manifold (M, gpr) onto a Riemannian manifold (N, gn). Then we obtain

(2.8) Igm(ToV, W) = — gu(V, Tu W),
(2.9) gu(AvV, W) = — gu(V, Au W),
(2.10) (VFE)(U, V)= (VF)(V,U),
(2.11) (VE)(X,Y)=0

for U,V,W € T(TM) and X,Y € I'((ker F,)1).

We recall the notions of an anti-invariant Riemannian submersion and a La-
grangian Riemannian submersion.

Let F' be a Riemannian submersion from an almost Hermitian manifold (M, g, J)
onto a Riemannian manifold (N, gn). The map F is said to be an anti-invariant
Riemannian submersion, see [22], if J(ker F,) C (ker F,)*.

We call F' a Lagrangian Riemannian submersion, see [22], if J(ker F,.) = (ker F,)= .
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Let M be a 4m-dimensional C°°-manifold and let E be a rank 3 subbundle of
End(T'M) such that for any point p € M with a neighborhood U there exists a local
basis {J1, Jo, J3} of sections of F on U satistfying for all « € {1, 2,3}

2 .
Ja = —ld, JaJa+1 - - aJrlJa = Ja+2,

where the indices are taken from {1, 2,3} modulo 3.

Then we call E an almost quaternionic structure on M and (M, E) an almost
quaternionic manifold, see [2].

Moreover, let g be a Riemannian metric on M such that for any point p € M
with a neighborhood U there exists a local basis {Ji, Ja, J3} of sections of E on U
satisfying for all o € {1,2,3}

(2.12) JE=-id, Jadat1 = —Jat1Ja = Jasto,
(213) g(JaX; Jay) :g(XaY)

for X,Y € T'(T M), where the indices are taken from {1,2,3} modulo 3.

Then we call (M, E, g) an almost quaternionic Hermitian manifold, see [11].

For convenience, the above basis {Jy, Jz, J3} satisfying (2.12) and (2.13) is said to
be a quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.

We call (M, E,g) a quaternionic Kdihler manifold if given a point p € M with
a neighborhood U, there exist 1-forms w1, w2, ws on U such that for any a € {1,2, 3},

VxJo = wara(X)Jat1 — War1(X)Jare

for X € T'(T'M), where the indices are taken from {1, 2,3} modulo 3, see [11].

If there exists a global parallel quaternionic Hermitian basis {J1, Ja2, J3} of sections
of Eon M (ie., VJ, =0 for a € {1,2,3}, where V is the Levi-Civita connection
of g), then (M, E,g) is said to be a hyperkdihler manifold. Furthermore, we call
(J1,Ja, J3, g) a hyperkihler structure on M and g a hyperkihler metric, see [4].

Now, we recall the notions of almost h-slant submersions, almost h-semi-invariant
submersions, and almost h-semi-slant submersions.

Let (M, E, gpr) be an almost quaternionic Hermitian manifold and (N, gn) a Rie-
mannian manifold.

A Riemannian submersion F': (M, FE,gy) — (N,gn) is said to be an almost
h-slant submersion if given a point p € M with a neighborhood U, there exists
a quaternionic Hermitian basis {I,.J, K} of sections of F on U such that for R €
{I, J, K} the angle 0r(X) between RX and the space ker(F}), is constant for nonzero
X € ker(Fy)q and ¢ € U, see [19].
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A Riemannian submersion F': (M, E,gn) — (N, gn) is called an almost h-semi-
invariant submersion if given a point p € M with a neighborhood U, there exists
a quaternionic Hermitian basis {I, J, K} of sections of E on U such that for each
R € {I,J, K} there is a distribution D C ker F, on U such that

ker F, = DE o DE, R(DE)=DE R(DF)c (ker F,)*,

where DI is the orthogonal complement of DI in ker F,, see [18].

A Riemannian submersion F: (M, E,gn) — (N, gn) is called an almost h-semi-
slant submersions if given a point p € M with a neighborhood U, there exists
a quaternionic Hermitian basis {I,J, K} of sections of E on U such that for each
R € {I,J, K} there is a distribution D C ker F, on U such that

ker F, = D @ Df, R(DJ) = DF,

and the angle 0 = 0r(X) between RX and the space (D), is constant for nonzero
X € (D), and q € U, where D¥ is the orthogonal complement of DF in ker Fy,
see [20].

Throughout this paper, we will use the above notation.

3. H-ANTI-INVARIANT SUBMERSIONS

In this section, we introduce the notions of h-anti-invariant submersions and h-
Lagrangian submersions from almost quaternionic Hermitian manifolds onto Rie-

mannian manifolds and investigate their properties.

Definition 3.1. Let (M, E, g)r) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. Let F': (M, E, gpr) — (N, gn) be a Riemannian
submersion. We call the map F' an h-anti-invariant submersion if given a point
p € M with a neighborhood U, there exists a quaternionic Hermitian basis {I, J, K'}
of sections of E on U such that R(ker F,) C (ker F,)* for R € {I,J,K}.

We call such a basis {I, J, K} an h-anti-invariant basis.

Remark 3.2. As we see, an h-anti-invariant submersion is one of the particular
cases of an almost h-slant submersion, an almost h-semi-invariant submersion, and

an almost h-semi-slant submersion.

Remark 3.3. Let F' be an h-anti-invariant submersion from an almost quater-
nionic Hermitian manifold (M, E, gps) onto a Riemannian manifold (N, gx). Then
there does not exist a map F such that dim(ker F,) = dim((ker F,)*). If it did, then
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given a local quaternionic Hermitian basis {1, J, K} of F with R(ker F.) C (ker F,)*
for R € {I,J, K}, we should have

R(ker F,) = (ker F,)* for Re {I,J K}

so that
K(ker F,) = IJ(ker F,) = I((ker F,)1) = (ker F.),

contradiction!
Due to Remark 3.3, we need to define another type of such a map.

Definition 3.4. Let (M, E, gy) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. Let F': (M, E,grn) — (N, gn) be a Rieman-
nian submersion. We call the map F' a h-Lagrangian submersion if given a point
p € M with a neighborhood U, there exists a quaternionic Hermitian basis {I, J, K'}
of sections of E on U such that I(ker F,) = (ker F,)*, J(ker F,) = ker F, and
K(ker F,) = (kerF*)L.

We call such a basis {I, J, K} an h-Lagrangian basis.

Remark 3.5. (a) It is easy to check that J(ker F}) = ker F, implies J((ker F,)*) =
(ker F,)*.

(b) Let F' be a Riemannian submersion from an almost quaternionic Hermitian
manifold (M, E, gpr) onto a Riemannian manifold (N, gy) such that dim(ker F,) =

dim((ker F,)*). Then there does not exist a map F that for some local quaternionic
Hermitian basis {I, J, K} of E we have

I(ker F,) = ker F,, J(kerF,) =kerF,, K(kerF,) = (ker F,)*.

If it did, then K (ker Fy) = IJ(ker Fy) = I(ker F,) = ker F}, contradiction!

Now, we give some examples. Note that given a Euclidean space R*™ with co-
ordinates (x1, T2, ..., %4m), Wwe can canonically choose complex structures I, J, K on
R*™ as follows:

0 0 0 0
I<3$4k+1) - OTaksa’ I(3$4k+2) - 3$4k+1 I<3$4k+3) - OTapra’
0

- ) - B}
O0%4k+3 3£C4k+1 3$4k+3 OT4k+2  OTapia

) )=
0 0 0
J(al‘4k+3 ) - 8$4k+1 (8x4k+ ) 8$4k+2 K<8x4k+1 ) - 8$4k+4 ’

0 0 0 0
K = s K — —
<8Jl?41c+2 ) 0% 4k+3 <3$4k+3 3$4k+2 (3$4k+4 ) O0T4k+1
for k€ {0,1,...,m —1}.
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Then we easily check that (I,.J, K, (, )) is a hyperkihler structure on R*"™ where

(,) denotes the Euclidean metric on R*™.

Example 3.6. Define a map F: R'?2 — R? by
F(l’l, <o ,11,'12) = (1[,’10,1’11,1’12, X4,23,T2,T8,T6, IE7).

Then the map F' is an h-anti-invariant submersion such that

o 0 0
ker F, = <5‘_x17 3_%’ 8—x9>
g o0 9 0 0 0 0 0 0 >

<8J)2’ 81,‘3’ 8334’ 8336’ 8337’ 83387 83?10’ 83?117 81,‘12
0 0 0
I(a—l‘l) - 8—1‘27 I<8—x5) 83?6 I<8$g) 83310
0 0 0
( ) - 8—1‘3, J(8—x5) 83?7 d 8—9) - 83311
0 0 0 0 0 0
K(5e) = er ¥(oms) =7 ¥(am) = 7o

Example 3.7. Define a map F: R* — R? by

To + X3 x1+x4)

F(xl,...,x4):< AR

Then the map F is an h-Lagrangian submersion such that

0 0 0 0
ker £ = <Vl Dy 35637‘/2 T Oxy 8x4>’
0 0 0 0
(ker F2)* <X1 Dy * 3$37X2 - Oxy * 8x4>’

I(Vh) = =Xo, I(V2) = Xi,
J(V1) = Va, J(V2) = =V,
KW)=X1, KW=

Let F' be an h-anti-invariant submersion (or an h-Lagrangian submersion) from
an almost quaternionic Hermitian manifold (M, E, gas) onto a Riemannian manifold
(N,gn). Given a point p € M with a neighborhood U, we have an h-anti-invariant
basis (or an h-Lagrangian basis, respectively) {1, J, K} of sections of F on U.

Then given X € I'((ker F.)1) and R € {I,J, K}, we write

(3.1) RX = BRX + CrX,

where BpX € I'(ker F,) and CrX € I'((ker F,)1).
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If F: (M,E,gp) — (N, gn) is an h-anti-invariant submersion, then we get
(3.2) (ker F.)* = R(ker F,) @ ugr for R€ {I,J,K}.

Then it is easy to check that ug is R-invariant for R € {I,J, K'}.
Given X € I'((ker F,)*) and R € {I, J, K}, we have

(3.3) X = PrX + QrX,

where PrX € I'(R(ker Fy)) and QrX € I'(ur).
Furthermore, given R € {I, J, K}, we obtain

(3.4) CrX € T(ug) for X € I'((ker F,)*)
and
(3.5) gu(CrX,RV) =0 for V €T(ker Fy).

Then it is easy to have

Lemma 3.8. Let F' be an h-anti-invariant submersion from a hyperkihler mani-
fold (M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J, K) is an
h-anti-invariant basis. Then we get

(1)
TvRW = BRTyW

HVyRW = CpTyW + RVyW

for Vi(W € I'(ker F,,) and R € {I,J,K};

(2)
AxCRY + VVxBRrY = BRHVxY

HV xCRrY + AxBrY = RAxY + CpRHV Y
for X,Y € T'((ker F.)*) and R € {I,J, K};
3)
AxRV = BRAxV
HV xRV = CrRAxV + RVVxV

for Ve T'(ker F.), X € I'((ker F\)1), and R € {I,J,K}.
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Theorem 3.9. Let F' be an h-anti-invariant submersion from a hyperkéihler mani-
fold (M, I,J,K,gn) onto a Riemannian manifold (N, gn) such that (I,J, K) is an
h-anti-invariant basis. Then the following conditions are equivalent:

(a) the distribution (ker F,)* is integrable.

b

( ) gM(.AxB]Y — AyB[X, IV) = gM(C]Y, IA)(V) — gM(C]X, I.AyV)
for V€ T'(ker F,) and X,Y € T'((ker F,)"1).

c

( ) gM(.AxB]Y — AyBJX, JV) = gM(CJY, J.Axv) — gM(C]X, J.Ayv)
for V€ T'(ker F,) and X,Y € T'((ker F,)"1).

d

( ) gM(.AxBKY — AyBKX, KV) = gM(CKY, K.Axv) — gM(CKX, K.Ayv)
for V€ T'(ker F,) and X,Y € T'((ker F,)"1).

Proof. Given V € I'(kerF}), X,Y € I'((ker F,)*), and R € {I,J, K}, us-
ing (3.5) we get

g ([X, Y], V) =gu(VxRY —VyRX, RV)

= gM(VxBRY 4+ VxCrY —VyBrX — VyCrX, RV)
= gu(Ax BRY — Ay BrX, RV) — gu(CrY,Vx RV) + gu(CrX, Vy RV)
= gM(.AxBRY — ./Ll}/'BRAX7 RV) — gM(CRK RA)(V) + gM(CRX, R.Ayv).
Hence,
(a) & (b), (a) < (c), (a)< (d).
Therefore, the result follows. O

Lemma 3.10. Let F' be an h-Lagrangian submersion from a hyperkédhler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution (ker F,)* is integrable.

(b) AxIY = AyIX for X,Y € I'((ker F},)1).

() AxKY = Ay KX for X,Y € I'((ker F,)"1).
(d) AxJY = Ay JX for X, Y € T'((ker F,)™+).

Proof. By the proof of Theorem 3.9, we get (a) < (b) and (a) < (c).
Given V € T'(ker F,.) and X,Y € I'((ker F,)1), since J(ker F,) = ker F}, we obtain

m([X,Y],JV) = —gu(Vx JY — Vy JX, V)
= gu(Ay JX — A JY, V),

which implies (a) < (d).
Therefore, the result follows. O
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We consider equivalent conditions for distributions to be totally geodesic.

Theorem 3.11. Let F' be an h-anti-invariant submersion from a hyperkéhler
manifold (M, I, J, K, gy ) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The distribution (ker F,)* defines a totally geodesic foliation on M.

b
( ) gM(AxB[K IV) = gM(CIY, I.Axv)

for Ve T(ker F,) and X,Y € I'((ker F,)*

(© g (AxB;Y, JV) = gu(CsY, JAXV)

).
(
for Ve T'(ker Fy) and X,Y € T'((ker F*)L).
d
( ) gM(.AxBKY, KV) = gM(CKY, K.Axv)
for Ve T'(ker Fy) and X,Y € T'((ker F*)L).
Proof. Given V € T'(kerF.), X,Y € T((ker F.)*), and R € {I,J, K}, us-
ing (3.5) we have

g (VxY, V) =gu(VxBrY + VxCRrY,RV)
= gM(.AxBRY, RV) — gM(CRY, VxRV)
= gu(AxBRrY,RV) — gy (CrY, RAXV),

which implies (a) < (b), (a) < (¢), (a) < (d).
Therefore, the result follows. O

Lemma 3.12. Let F be an h-Lagrangian submersion from a hyperkéihler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution (ker F,)* defines a totally geodesic foliation on M.

(b) AxIY =0 for X,Y € I'((ker F})1).

() AxKY =0 for X,Y € I'((ker F,)1).
(d) AxJY =0 for X,Y € I'((ker F,)1).

Proof. By the proof of Theorem 3.11, we get (a) < (b) and (a) < (c).
Given V € I'(ker F,) and X,Y € I'((ker F,)*), we obtain

gu(VxY, JV) = —gu(VxJY, V) = —gu(Ax JY, V),
which implies (a) < (d).

Therefore, the result follows. O
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Theorem 3.13. Let I be an h-anti-invariant submersion from a hyperkéhler
manifold (M, I, J, K, gy ) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The distribution ker F, defines a totally geodesic foliation on M.
(b) TvB[X—I—.AcIXvEF(M[)

for V € I'(ker F.) and X € T'((ker F.)%).

(c) T By X + Ac,xV € T(1y)
for V € T'(ker F.) and X € T'((ker F.)%).

(d) TvBrX + AcyxV € D(ux)
for V € I'(ker F.) and X € T'((ker F.)%).

Proof. Given V,W € I'(ker F\), X € I'((ker F\)1), and R € {I,J, K}, us-
ing (3.5) we get

gm (Vv W, X) = gu(Vy RW, RX)
= —gu(RW,VyBrX + VyCrX)
= —gum(RW, Tv BrX) — g (RW,Vy CrX).

However,

g (RW,VyCrX) = gn(F.RW, F,.VyCrX) (since RW & I'((ker F,)1))
= —gn(FRW, (VE)(V,CrX))
= —gn(FLRW, (VFE,)(CrX,V)) (by (2.10))
= gu(RW,VepxV)
= g (RW, Ac,x V).

Hence,

g (Vy W, X) = —gu (RW, Ty BRX + AcpxV),

which implies (a) < (b), (a) & (¢), (a) < (d).

Therefore, we obtain the result. O
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Lemma 3.14. Let F be an h-Lagrangian submersion from a hyperkéihler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution ker F,. defines a totally geodesic foliation on M.

(b) TvIX =0 for X € T'((ker F.)*) and V € T'(ker F).

(¢) TvKX =0 for X € T((ker F,)1) and V € I'(ker F.,).

(d) TvJX =0 for X € I'((ker F,)*) and V € T'(ker F).
Proof. By the proof of Theorem 3.13, we have (a) < (b) and (a) < (c).
Given V,W € I'(ker F,) and X € I'((ker F,)1), we get

gM(va, JX) = —gM(VV,VvJX)
= —gu(W,TvJX) (since JX € I'((ker F.)h)),

which implies (a) < (d).
Therefore, the result follows. O

Now, we consider equivalent conditions for such maps to be either totally geodesic
or harmonic.

Theorem 3.15. Let ' be an h-anti-invariant submersion from a hyperkéhler
manifold (M, I, J, K, gy ) onto a Riemannian manifold (N, gn) such that (I,J, K) is
an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The map F is a totally geodesic map.

b
(b) AxIV =0, QrHVxIV =0, TvIW =0, QrHVyIW =0
for V,W € T'(ker F,) and X € ['((ker F})1).
(¢)

AxJV =0, QsHVxJV =0, TvJW =0, Q;HVyJW =0

for V,W € T'(ker F,) and X € ['((ker F})1).
(d)
AxKV =0, QrgHVxKV =0, TvKW =0, QrHVyKW =0
for V,W € T'(ker F.) and X € I'((ker F},)1).

Proof. By (2.11) we have (VF,)(X,Y) =0 for X,Y € I'((ker F,)1).
Given V,W € TI'(ker F.), X € I'((ker F,)1), and R € {I,J, K}, by using (3.2)
and (3.3) we obtain

(VE)(X,V) = —F.(VxV) = F.(RVxRV)
— F.(R(AxRV + HVxRV)) =0
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& R(AxRV + QRHVXRV) =0 AxRV =0, QrHV xRV =0 and

(VENV,W) = —F.(VyW) = F.(RVyRW)
= F.(R(TyRW + HVyRW)) =0

< R(TvBRW + QrHVyRW) =0< TyRW =0, QgHVyRW = 0.
Hence,

Therefore, the result follows. O

Lemma 3.16. Let F' be an h-Lagrangian submersion from a hyperkéihler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) The map F is a totally geodesic map.

(b) AxIV =0 and Ty IW =0 for V,W € T'(ker F,) and X € I'((ker F},)1).

(¢) AxKV =0 and Ty KW =0 for V,W € T'(ker F,) and X € I'((ker F,)1).
(d) AxJV =0 and Ty JW =0 for V,W € I'(ker F,) and X € T'((ker F,)*).

Proof. By the proof of Theorem 3.15, we have (a) < (b) and (a) < (c).
Given V,W € I'(ker F,) and X € I'((ker F,)"1), we get

— P (J(AxJV + V5 JV)) = FoJ AxJV = 0

& AxJV =0 and

(VE)(V,W) = —F,(VyW) = F.(JVyJW)
= F(J(Ty JW + VVy JW))
= FJTyJW =0

< Ty JW =0, which implies (a) < (d).
Therefore, we obtain the result. [l

Theorem 3.17. Let I be an h-anti-invariant submersion from a hyperkéhler
manifold (M, I, J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J, K) is
an h-anti-invariant basis. Then the following conditions are equivalent:

(a) The map F is harmonic.
(b) Qr(trace(T)) =0 on ker F, and trace (ITy) = 0 on ker Fy, for V & T'(ker Fy.).

569



(c) Qs(trace(T)) =0 on ker Fy, and trace (JTy) = 0 on ker Fy, for V & T'(ker Fy.).
(d) Qk(trace(T)) =0 on ker F, and trace (KTy) = 0 on ker F,. for V € I'(ker F).

Proof. By (2.11) we know that the map F' is harmonic if and only if ZT e; =0
for any local orthonormal frame {ej, es,..., e} of ker Fi. =t

Given VW € T(kerF.), R € {I,J,K}, and a local orthonormal frame
{e1,€2,...,em} of ker Fy, using (3.2) and (3.3) we obtain

TvRW = VVyRW = VRVyW
= VR(TVW + VVVW) =YVRPrTyvW

so that using (2.7) and (2.8) we get

m&Zn%mﬁ—memﬂm—meﬂmﬁw
=1 i=1 i=1

== gu(RPrTe.e;,V) ==Y gu(VRPRT ¢;, V)

i=1 i=1

== gu(Te,Rei, V) =Y gu(Rei, T, V)

i=1 i=1

Z (Re;, Tve;) = Z gum(ei, RTyve;) =

i=1

< trace (RTyv) =0 for V € I'(ker Fy).
Hence,

Therefore, the result follows. O

Lemma 3.18. Let F' be an h-Lagrangian submersion from a hyperkédhler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the map F' is harmonic.

Proof. Since J(ker F,) = ker F,, we can choose a local orthonormal frame
{e1,Je1, ... er, Jer} of ker F.
Given V,W € T'(ker F), we have

TvJW =HVyJW = HIVyW
= HJ(TVW + VVvW) =JhWW
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so that

k

E

k

i=1 i=1 i=1
k k
= 2(7;761 + J27—e¢e’i) = 2(7—6161 - ﬁiei) =0.
i=1 i=1
Therefore, the result follows. O

4. DECOMPOSITION THEOREMS

First of all, we recall some notions. Let (M, g) be a Riemannian manifold and L
a foliation of M. Let £ be the tangent bundle of L considered as a subbundle of the
tangent bundle T M of M.

We call L a totally umbilic foliation, see [21], of M if

(4.1) WX,Y)=g(X,Y)H for X,Y €T(¢),

where h is the second fundamental form of L in M and H is the mean curvature
vector field of L in M.

The foliation L is said to be a spheric foliation, see [21], if it is a totally umbilic
foliation and

(4.2) VxH eT(¢) for X € (),

where V is the Levi-Civita connection of g.
We call L a totally geodesic foliation, see [21], of M if

(4.3) VxY eT(&) for X,Y € T'(¢).

Let (Mi,g1) and (Ma, g2) be Riemannian manifolds, f;: M; x Mas — R a positive
C*°-function, and 7;: M7 X My — M; the canonical projection for i = 1, 2.

We call My Xy, 1,y M2 a double-twisted product manifold, see [21], of (M, g1) and
(M3, g2) if it is the product manifold M := M; x Ms with the Riemannian metric g
such that

(4.4)  g(X,Y) = fEgi(m, X, m1,Y) + f2 g2 (10, X, m2,Y) for X, Y € T(TM).

We call My Xy, t,) M2 nontrivial if neither fi nor fy are constant functions.
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The Riemannian manifold M; x; M» is said to be a twisted product manifold,
see [21], of (M1, g1) and (M, g2) if My Xy My = My x (1 5y Mo.

We call My x ¢ My nontrivial if f is not a constant function.

The twisted product manifold M; x ¢ My is said to be a warped product manifold,
see [21], of (M1,¢1) and (Ma,g2) if f depends only on the points of M;. (i.e.,
f € 0= (My,R))

Let M; and M5 be connected C'°°-manifolds and M the product manifold M7 x Ms.
Let m;: M — M, be the canonical projection for i = 1,2. Let & := kerms_;, and let
P;: TM — &; be the vector bundle projection such that TM = & & &. And let L;
be the canonical foliation of M by the integral manifolds of &; for i = 1, 2.

Proposition 4.1 ([21]). Let g be a Riemannian metric on the product manifold
My x My and assume that the canonical foliations Ly and Lo intersect perpendicularly
everywhere. Then g is a metric of

(a) a double-twisted product manifold My Xy, 7,y M2 if and only if Ly and Ly are
totally umbilic foliations,

(b) a twisted product manifold My Xy My if and only if Ly is a totally geodesic
foliation and Lo is a totally umbilic foliation,

(c) a warped product manifold My Xy My if and only if Ly is a totally geodesic
foliation and Lo is a spheric foliation,

(d) a (usual) Riemannian product manifold My x My if and only if Ly and Ly are
totally geodesic foliations.

Let F' be a Riemannian submersion from a Riemannian manifold (M, gas) onto
a Riemannian manifold (N, gy) such that the distributions ker F, and (ker F,)*
are integrable. Then we denote by Myer r, and My, )+ the integral manifolds of
ker F, and (ker F,)*, respectively. We also denote by H and H* the mean curva-

m

ture vector fields of ker F, and (ker F,)~, respectively, i.e., H = m~Y_ T;,e; and

i=1

Ht =n=1Y" A,,v; for alocal orthonormal frame {ey, ..., e} of ker F, and a local
i=1

orthonormal frame {vy,...,v,} of (ker F,)*.

Using Proposition 4.1, Theorem 3.11, and Theorem 3.13, we get

Theorem 4.2. Let F' be an h-anti-invariant submersion from a hyperkéhler mani-
fold (M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J, K) is an
h-anti-invariant basis. Then the following conditions are equivalent:

(a) (M, gn) is locally a Riemannian product manifold of the form M., p,)1 X
MkerF*-
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(b)
gju(.AxB[K IV) = g]\[(CIY, IA)(V) and TyB;X + -ACIXV S F(M[)

for Ve T'(ker Fy) and X,Y € T'((ker F*)J‘)
(c)
gm(AxBY, JV) = gu(C;Y, JAxV) and TyB;X + Ac,xV € F(,UJ)

for Ve T'(ker Fy) and X,Y € T'((ker F*)L)
(d)

gM(AxBKY, KV) = gM(CKY, K.AXV) and TyBrgX + .ACKXv S P(/LK)

for V€ T'(ker F,) and X,Y € T'((ker F,)%1).

Using Proposition 4.1, Lemma 3.12, and Lemma 3.14, we obtain

Lemma 4.3. Let F' be an h-Lagrangian submersion from a hyperkihler manifold
(M,I,J,K,gn) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gn) is locally a Riemannian product manifold of the form M., p,)1 X
MkerF*-

(®) AxIY =0 and TyIX =0
for X,Y € T'((ker F,)*) and V € T'(ker F).
(c) AxKY =0 and TyKX =0
for X,Y € T'((ker F.)*) and V € T'(ker F).
(d) AxJY =0 and T JX =0
for X,Y € T'((ker F,.)*) and V € T'(ker F).
Now, we deal with the geometry of distributions ker F, and (ker F,)*.
Theorem 4.4. Let F' be a Riemannian submersion from a Riemannian mani-
fold (M, gp) onto a Riemannian manifold (N, gn). Assume that the distribution

(ker F,)* defines a totally umbilic foliation on M. Then the distribution (ker F, )=+
also defines a totally geodesic foliation on M.

Proof. Given X,Y € I'((ker F,)1) and V € I'(ker F}), we get

(4.5) g (VxY, V) = gu(AxY,V) = gu(X,Y)gu(H, V)
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and
(4.6) g (VxY, V) = —gu(Y,VxV) = —gu (Y, AxV).

Comparing (4.5) and (4.6), we obtain AxV = —gn (H*, V) X.
Hence,

(4.7) gu(AxV, X) = —gu(H*, V)| X%
But
g (AxV, X) = gu(VxV, X) = —gu(V, Vx X)
=—gu(V,AxX) =0 (by (2.6))
so that from (4.7), we have H+ = 0.
Therefore, the result follows. O

Remark 4.5. From the equation AxY = —Ay X for X,Y € T'((ker F,)"1), we
can obtain Theorem 4.4. But the equation Ty W = Ty V for V,W € T'(ker F.), yields
no theorems like Theorem 4.4 on ker F..

Theorem 4.6. Let F' be an h-anti-invariant submersion from a hyperkéihler mani-
fold (M, I,J,K,gy) onto a Riemannian manifold (N, gn) such that (I, J, K) is an
h-anti-invariant basis. Then the following conditions are equivalent:

(a) the distribution ker F, defines a totally umbilic foliation on M.

b
( ) TvB X +HVyCiX = —gM(H,X)IV

for V€ T'(ker F,) and X € T'((ker F,)71).

(c) TvBsX + HVyCrX = —gui(H, X)JV

for V€ I'(ker F,) and X € T'((ker F,)%1).
d
( ) TvBKX—I—HVVCKX:—gM(H,X)KV
for V€ T'(ker F,) and X € T'((ker F,)%1).

Proof. Given V,;W € T'(kerF,), X € I'((ker F.)1), and R € {I,J, K}, we

obtain
gm(Tv W, X) = gu (Vv RW, RX)

= —gM(RW, VvBrX + VVCRX)
= —gu(BRW, Ty BRX + HVyCrX)
so that it is easy to check that

TvW = gM(V, W)H & TyBrX + HVyCrX = —gM(H,X)RV.
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Hence,

Therefore, we get the result. Il

Lemma 4.7. Let F' be an h-Lagrangian submersion from a hyperkihler manifold
(M, I,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) The distribution ker F,. defines a totally umbilic foliation on M.
(b) TvIX = —gp(H, X)IV for X € T'((ker F,)*) and V € T'(ker F).
(c) TvKX = —gn(H, X)KV for X € T((ker F,)*) and V € T'(ker F.).
(d) TvJX = —gn(H, X)JV for X € T'((ker F,)1) and V € T'(ker F}).

Proof. By the proof of Theorem 4.6, we have (a) < (b) and (a) < (c).
Given V,W € T'(ker F,) and X € I'((ker F,)1), we get

g (Tv W, X) = gu (Vv JW, JX)
= —gM(JW, ijX)
=—gu(JW, Ty JX)

so that we easily check that
TvW =gu(V,W)H & Ty JX = —gp(H, X)JV.

Hence, (a) < (d).
Therefore, the result follows. O

Using Proposition 4.1, Theorem 3.11, and Theorem 4.6, we get

Theorem 4.8. Let F' be an h-anti-invariant submersion from a hyperkéihler mani-
fold (M, I,J,K,gym) onto a Riemannian manifold (N, gn) such that (I,J, K) is an
h-anti-invariant basis. Then the following conditions are equivalent:

(a) (M, gnr) is locally a twisted product manifold of the form M e, p,y+ X Myer F, -

b
( ) gM(AxB[Y, IV) = gM(C]Y, I.Axv)

and
TvBr X +HVyCrX = —gM(H,X)IV
for V€ T'(ker F,) and X,Y € T'((ker F,)1).

(c) gai(Ax ByY, JV) = gar(CY, JAxV)
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and
TvB; X +HVy(C; X = —gM(H,X)JV

for Ve T'(ker F,) and X,Y € T'((ker F*)L).

d

( ) gM(.AxBKY, KV) = gM(CKY, K.Axv)
and

TvBgkX + HVyC X = —gM(H,X)KV

for V€ T'(ker F,) and X,Y € T'((ker F,)"1).

Using Proposition 4.1, Lemma 3.12, and Lemma 4.7, we have

Lemma 4.9. Let F' be an h-Lagrangian submersion from a hyperkéhler manifold
(M, 1,J,K,gy) onto a Riemannian manifold (N, gn) such that (I,J,K) is an h-
Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gnr) is locally a twisted product manifold of the form M, p,)1 X Myer F, -

b
() AxIY =0 and TyIX = —gy(H,X)IV

for X,Y € T((ker F,)*) and V € T'(ker F.).

© AxKY =0 and TyKX = —gu(H, X)KV

for X,Y € T'((ker F.)*) and V € T'(ker F).

d
@ AxJY =0 and TvJX =—gu(H,X)JV

for X,Y € T'((ker F.)*) and V € T'(ker F).

Now, we consider the non-existence of some types of Riemannian submersions.
Using Proposition 4.1 and Theorem 4.4, we get

Theorem 4.10. Let (M, E,gy) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. Then there exists no h-anti-invariant sub-
mersion from M = (M, E,gy) onto (N, gy) such that M is locally a nontrivial
double-twisted product manifold of the form M e p,)1 X Myer F, -

Lemma 4.11. Let (M, E,gy) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. Then there exists no h-Lagrangian submersion
from M = (M, E, gar) onto (N, gn) such that M is locally a nontrivial double-twisted
product manifold of the form My, )1 X MyerF, -
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Theorem 4.12. Let (M, E, gy) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. Then there exists no h-anti-invariant submer-
sion from M = (M, E, gar) onto (N, gn) such that M is locally a nontrivial twisted
product manifold of the form Myer p, X M (e p, )L -

Lemma 4.13. Let (M, E, gy ) be an almost quaternionic Hermitian manifold and
(N, gn) a Riemannian manifold. Then there exists no h-Lagrangian submersion from
M = (M, E, gn) onto (N,gn) such that M is locally a nontrivial twisted product
manifold of the form Myer r, X M(ier )+ -
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