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H∞ Control of 2-D Discrete State Delay Systems 

 
Jianming Xu and Li Yu* 

 
Abstract: This paper is concerned with the H∞ control problem of 2-D discrete state delay 
systems described by the Roesser model. The condition for the system to have a specified H∞ 
performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design 
procedure for H∞ state feedback controllers is given by solving a certain LMI. The design 
problem of optimal H∞ controllers is formulated as a convex optimization problem, which can be 
solved by existing convex optimization techniques. Simulation results are presented to illustrate 
the effectiveness of the proposed results. 
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1. INTRODUCTION 
 
Over the past several decades, two-dimensional (2-

D) systems have received much interest due to their 
extensive applications in several modern engineering 
fields such as process control, image enhancement, 
image deblurring, signal processing, etc. [1-3]. 2-D 
state-space theory originated from Givone and 
Roesser [4,5] who proposed the celebrated Roesser 
model in the seventies of the 20th century. Since then, 
other scholars have drawn several different state-space 
models from their own research fields [6,7], such as 
FM LSS model. A great number of fundamental 
results on one-dimensional (1-D) systems have been 
extended to 2-D systems [1,8]. H∞ control for 1-D 
systems has been one of most active research areas of 
control systems for the last two decades [9,10]. A 
main advantage of H∞ control is that its performance 
specification takes account of the worst-case 
performance for system in terms of the system energy 
gain. This is appropriate for system robustness 
analysis and robust control with modeling 
uncertainties and disturbances than other performance 
specifications [11], such as the LQ-optimal control 
specification. The H∞ control problem for 2-D 
systems was first addressed in [12]. Du and Xie 
established several versions of 2-D bounded real 
lemma [13]. 

On the other hand, time-delay phenomenon often 
appears in various engineering systems such as 
aircraft, chemical processes and networked control 
systems. It has been shown that the existences of 
delays in a dynamic system may result in instability, 
oscillations or performance deteriorated [14]. 
Therefore, the analysis and synthesis of 1-D time-
delay systems has received a great deal of attention 
and has been one of the most interesting topics in the 
control over the decades [15-17]. Similarly, time-
delay is often encountered in 2-D systems. However, 
few results have reported in literature on 2-D time-
delay systems. Paszke et al. presented a sufficient 
stability condition and a stabilization method for 
discrete linear state delay 2-D systems with FM LSS 
model [18]. To the authors’ knowledge, the H∞ control 
problem for 2-D state delay systems has not been 
investigated. We extend the bounded real lemma for 
2-D systems [13] to 2-D state delay systems and 
develop a design procedure for H∞ state feedback 
controllers via the LMI approach. 

In this paper, we are concerned with the H∞ control 
problem of 2-D state delay systems described by the 
Roessor model. A sufficient condition for such a 
system to have a specified H∞ performance is first 
presented via the LMI approach. Then a design 
procedure for H∞ state feedback controllers is given 
by solving a certain LMI. Finally, for a class of 2-D 
discrete state delay systems with norm-bounded time-
varying parameter uncertainties, the robust optimal 
state feedback H∞ controller is obtained using convex 
optimization techniques. 

 
2. H∞ PERFORMANCE ANALYSIS OF 2-D 

DISCRETE STATE DELAY SYSTEMS 
 

Consider the following 2-D discrete state delay 
system in the Roesser model:  
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where i and j denote integer-valued horizontal and 
vertical coordinates, respectively, 1( , ) ,nhx i j ∈R  

2( , ) ,nvx i j ∈R ( , ) mu i j ∈R  and ( , ) pz i j ∈R  denote, 
respectively, the horizontal state, the vertical state, the 
control input and the controlled output, ( , ) qw i j ∈R  
is the disturbance input which belongs to 2  
{ }[0, ), [0, )∞ ∞ , d1 and d2 are constant positive 
integers representing delays along horizontal direction 
and vertical direction, respectively. A, 
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For the system (1), assume a finite set of initial 
condition, i.e., there exist positive integers L and M, 
such that 
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Denote 
T TT ( , ) [ ( , ) ( , )]h vx i j x i j x i j=  and rX =  

sup{ ( , ) : },x i j i j r+ =  we first give the definition 
of asymptotic stability for the system (1). 

Definition 1: The 2-D discrete state delay system 
(1) is asymptotically stable if lim 0r

r
X

→∞
=  with zero 

input ( , ) 0u i j =  and the initial condition (3). 
Definition 2: Consider 2-D discrete state delay 

system (1) with the initial condition (3). Given a 
scalar 0γ >  and symmetric positive definite weighting 

matrices , ,h v hR R S  and ,vS  the 2-D state delay 
system (1) with zero input u(i, j)=0 is said to have an 
H∞ performance γ if it is asymptotically stable and 
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In the case when the initial condition is known to 
be zero, i.e., (0) 0,X =  then the H∞ performance 
measure (4) reduces to 
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It follows from that the 2-D Parseval’s theorem [3] 
that (5) is equivalent to 
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where max ( )σ ⋅  denotes the maximum singular value 
of the corresponding matrix, and 
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is the transfer function from the disturbance input 
( , )w i j  to the controlled output ( , )z i j  for the 2-D 

state delay system (1). 
The following theorem presents a sufficient 

condition for system (1) to have a specified H∞ 
performance. 

Theorem 1: Given a positive scalar γ, the 2-D state 
delay system (1) with the initial condition (3) has an 
H∞ performance γ if there exist symmetric positive 
definite matrices diag{ , }h vP P P=  and diag{ ,hQ Q=  

},vQ where 1 1, n n
h hP Q ×∈R  and ,v vP Q ∈ 2 2n n×R  

satisfy 2 ,h hP Rγ< 2 ,v vP Rγ< 2 ,h hQ Sγ<  and vQ <  
2 ,vSγ  such that 
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Proof: Suppose now that there exist symmetric 
positive define matrices diag{ , }h vP P P=  and Q =  
diag{ , },h vQ Q  such that the matrix inequality (8) 
holds. We denote the system state as 
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and choose a Lyapunov functional 
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It is clear that ( ( , ))V x i j  is positive. 
The forward difference along any trajectory of the 

system (1) with ( , ) 0u i j =  and ( , ) 0w i j =  is given by 
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This implies that the whole energies stored at the 
points {( , ) : 1}i j i j r+ = +  is strictly less than those 
at the points {( , ) : }i j i j r+ =  unless all ( , ) 0x i j = . 
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where τ is a positive scalar. 

It follows from the inequality (8) that there always 
exists a positive scalar τ being small enough such that 

 
T 2 T( ( , )) ( , ) ( , ) (1 ) ( , ) ( , ) 0.V x i j z i j z i j w i j w i jτ γΔ + − − <

 

Therefore, for any integers p1, p2 >0, we have 

[

]

1 2 T

0 0

2 T

( ( , )) ( , ) ( , )

( , ) ( , ) 0,

p p

i j
V x i j z i j z i j

w i j w i jγ

= =
Δ +

− <

∑∑
(15) 

 

where 
 

1 2

0 0
( ( , ))

p p

i j
V x i j

= =
Δ∑∑  

1 2

2

1

0 0

1
0

2
0

[ ( ( 1, )) ( ( , 1))

( ( , )) ( ( , )]

[ ( ( 1, )) ( (0, ))]

[ ( ( , 1)) ( ( , 0))].

p p
h v

h v
i j

h v
h v

p
h h

h h
j

p
v v

v v
i

V x i j V x i j

V x i j V x i j

V x p j V x j

V x i p V x i

= =

=

=

= + + +

− −

= + −

+ + −

∑∑

∑

∑

    

(16)

 

Let { }2 1 max , ,p p L M≥ ≥  it follows from (12) 
and the initial condition (3) that 

2

2

2

1
0

1 1 1
0

1 1 1 2

1
1

1 1 1 2

1 1

( ( 1, ))

[ ( ( , )) ( ( , )) ( ( , 1))]

( ( , 0)) ( ( , 0)) ( ( , 1))

( ( , ))

( ( , 0)) ( ( , 0)) ( ( , 1))

[ ( ( 1, )) ( ( 1,

p
h

h
j

p
h v v

h v v
j

h v v
h v v
p

h
h

j

h v v
h v v

h v
h v

V x p j

V x p j V x p j V x p j

V x p V x p V x p p

V x p j

V x p V x p V x p p

V x p j V x p

=

=

=

+

≤ + − +

= + − +

+

≤ + − +

+ − + −

∑

∑

∑

2

2

1

2

1

1

1

1 1 1

1 1 2

1 2 1
2

( ) ( )

1

))

( ( 1, 1))]

( ( , 0)) ( ( , 0)) ( ( 1, 1))

( ( 1, 1)) ( ( , 1))

( ( 1, 1)) ( ( 1, ))

[ ( ( , )) ( ( , ))]

( (0, ))

p

j

v
v

h v h
h v h

v v
v v

p
v h

v h
j

h v
h v

i j D p

p
h

h
j p

j

V x p j

V x p V x p V x p

V x p V x p p

V x p p V x p j

V x i j V x i j

V x j

=

=

+ ∈

= +

− − +

= + + −

+ − − +

− − + + −

≤ ≤ +

+ −

∑

∑

∑

∑
1

1

1

2
0

2
( ) ( ) 0

( ( , 1))

( ( , )) ( ( , 1)).

p
v

v
i

p
v

v
i j D p i

V x i p

V x i j V x i p

=

+ ∈ =

+

= − +

∑

∑ ∑
(17) 

This implies 

( )
2 1

1 2
0 0

( ( 1, )) ( , 1 )
p p

h v
h v

j i
V x p j V x i p

= =
+ + +∑ ∑  

1( ) ( )
( ( , ))

i j D p
V x i j

+ ∈
≤ ∑ .                 (18) 

Thus, when 2 1,p p →∞ , it follows from (14)-(18) 
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Therefore, it follows from Definition 2 that system (1) 
has an H∞ performance γ. This completes the proof.  

Remark 1: When the initial condition X(0) is 
known to be zero, we need not present the weighting 
matrices Rh, Rv, Sh and Sv on zero boundary condition. 
Therefore, the requirements for 2 2, ,h h v vP R P Rγ γ< <  

2 ,h hQ Sγ< and 
2

v vQ Sγ<  in Theorem 1 will become 
superfluous. 

Remark 2: Theorem 1 provides a sufficient 
condition for the 2-D discrete state delay systems to 
be bounded real in terms of a certain LMI. For the 2-D 
system (1) without state delay, the LMI (8) reduces to 

[ ]
T T T

1
1T T T 2

1 1 1 1

0,
A P H H H L

P A B
B L H L L Iγ

⎡ ⎤ ⎡ ⎤− +
+ <⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

which is a sufficient condition for the 2-D systems to 
be bounded real in [13]. Therefore, Theorem 1 is an 
extension of bounded real lemma for 2-D discrete 
systems to 2-D state delay systems.  
 

3. H∞ CONTROLLER DESIGN OF 2-D 
DISCRETE STATE DELAY SYSTEMS 

 
Consider the 2-D state delay system (1) and the 

following controller 
( , ) ( , ).u i j Kx i j=                         (21) 

The corresponding closed-loop system is given by 

12 1
( 1, ) ( , )

( ) ( , )
( , 1) ( , )

h h
h

dv v

x i j x i j
A B K A x i d j

x i j x i j

⎡ ⎤ ⎡ ⎤+
= + + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
 

2 2 1

2 1

( , ) ( , ),

( , )
( , ) ( ) ( , ).

( , )

v
d

h

v

A x i j d B w i j

x i j
z i j H L K L w i j

x i j

+ − +

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦

    (22) 

If there exists the controller (21) such that the closed-
loop system (22) is asymptotically stable, and the H∞ 
norm of the transfer function (7) from the disturbance 
input w(i, j) to the controlled output z(i, j) for the 
system (22) is smaller than γ, then the closed-loop 
system (22) has a specified H∞ performance γ, and the 
controller (21) is said to be a γ-suboptimal state 
feedback H∞ controller for the 2-D state delay system 
(1). 

Theorem 2: Consider the 2-D state delay system 
(1). Given a positive scalar γ, if there exist a matrix N 
and symmetric positive definite matrices W = diag{Wh, 
Wv} and Y = diag{Yh, Yv} such that 

1 2

2

2 1

2 1

0 0 0
0 0 0
0 0 0

0 0 0

0 0

h

v

d h d v

W Y
Y

Y

I
AW B N A W A W B

HW L N L

γ

− +⎡
⎢ −⎢
⎢ −
⎢

−⎢
⎢ +⎢
⎢ +⎣

 

1

2

T T T T T T
2 2

T

T

T T
1 1

0

0 0.

0
0

h d

v d

WA N B WH N L

W A

W A

B L
W

I

⎤+ +
⎥
⎥
⎥
⎥ <⎥
⎥
⎥

− ⎥
⎥− ⎥⎦

(23) 

Then the closed-loop system (22) has a specified H∞ 
performance γ, and 

1( , ) ( , )u i j NW x i j−=                     (24) 

is a γ-suboptimal state feedback H∞ controller for the 
2-D state delay system (1). 

Proof: By applying Theorem 1 and Schur 
complement, a sufficient condition for the closed-loop 
system (22) to have a specified H∞ performance γ is 
that there exist symmetric positive definite matrices P 
= diag{Ph, Pv} and Q = diag{Qh, Qv} such that 

1 2

2

2 1

2 1

0 0 0
0 0 0
0 0 0

0 0 0

0 0

h

v

d d

P Q
Q

Q

I
A B K A A B

H L K L

γ

− +⎡
⎢ −⎢
⎢ −
⎢

−⎢
⎢ +⎢
⎢ +⎣
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1

2

T T T T T T
2 2

T

T

T T
1 1

1

0

0 0.

0
0

d

d

A K B H K L

A

A

B L

P
I

−

⎤+ +
⎥
⎥
⎥
⎥
<⎥

⎥
⎥
⎥−
⎥

− ⎥⎦

          (25) 

Pre- and post-multiplying both sides of the inequality 
(25) by 1 1diag{ , , , , }P P I I I− −  and denoting W = 
P-1, N KW=  and Y WQW= , it follows that the 
inequality (25) is equal to the linear matrix inequality 
(23). This completes this proof.                

When time-varying norm-bounded parameter 
uncertainties appear in the 2-D discrete state delay 
system (1), that is, the system (1) becomes 

1 1

2 21 2

1 1 2 2

1 1

( 1, ) ( , )
( ) ( )

( , 1) ( , )

( , ) ( ) ( , )

( ) ( , ) ( ) ( , ),

( , )
( , ) ( ) ( ) ( , )

( , )

h h

d dv v

h v
d d

h

v

x i j x i j
A A A A

x i j x i j

x i d j A A x i j d

B B w i j B B u i j

x i j
z i j H H L L w i j

x i j

⎡ ⎤ ⎡ ⎤+
= + Δ + + Δ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

× − + + Δ −

+ + Δ + +Δ

⎡ ⎤
= + Δ + + Δ⎢ ⎥

⎢ ⎥⎣ ⎦

2 2( ) ( , ).L L u i j+ + Δ                   (26) 

Suppose these uncertain matrices 
1 2

, ,d dA A AΔ Δ Δ  

1 2 1, , ,B B H LΔ Δ Δ Δ  and 2LΔ  be of the following 
form 

1 2 1 2

1 1 2 3 4 5

1 2 2 1 4 5

[ ]

( , )[ ],
[ ] ( , )[ ],

d dA A A B B

D F i j E E E E E
H L L D F i j E E E

Δ Δ Δ Δ Δ

=

Δ Δ Δ =

(27) 

where D1, D2, E1, E2, E3, E4, and E5 are known 
constant matrices that structure the uncertainties and 

( , ) s tF i j ×∈R is an unknown matrix function 
satisfying 

T ( , ) ( , ) .F i j F i j I≤                      (28) 

We have the following robust H∞ control results. 
Theorem 3: Consider the 2-D state delay system 

(26) with parameter uncertainties. Given a positive 
scalar γ, if there exist a matrix N and symmetric 
positive definite matrices diag{ , }h vW W W=  and 

diag{ , },h vY Y Y= and scalar 1 0ε >  and 2 0ε >  such 
that 

1

2

1 2

T T T
2

T

T

2 T
1
T

2 1 1 1 1

2 1

1 5 2 3 4

1 5 4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
0

0 0 0

h h d

v v d

d h d v

h v

W Y WA N B

Y W A

Y W A

I B

AW B N A W A W B D D W

HW L N L
E W E N E W E W E
E W E N E

γ

ε

⎡ − + +
⎢
⎢ −
⎢
⎢ −
⎢
⎢ −
⎢
⎢ + −
⎢

+⎢
⎢ +⎢
⎢ +⎣

T T T T T T T T T
2 1 5 1 5

T
2
T
3

T T T
1 4 4

T
2 2 2

1

2

0 0

0 0

0,
0 0 0

0 0
0 0
0 0

h

v

WH N L WE N E WE N E

W E

W E

L E E

D D I
I

I

ε
ε

ε

⎤+ + +
⎥
⎥
⎥
⎥
⎥
⎥ <
⎥
⎥
⎥−
⎥

− ⎥
⎥− ⎥⎦
(29) 

then 
1( , ) ( , )u i j NW x i j−=                     (30) 

is a robust γ-suboptimal state feedback H∞ controller 
for the uncertain 2-D state delay system (26). 

The proof of Theorem 3 can be carried out by using 
Theorem 2, and hence it is omitted. 

In addition, by solving the following optimization 
problem: 

1 2

2
, , , ,

min

. . (29),
W Y N

s t
ε ε

γ
                        (31) 

we can obtain a state feedback controller such that the 
H∞ disturbance attenuation γ of the corresponding 
closed-loop system is minimized. This controller (30) 
is said to be the robust optimal H∞ controller for the 
uncertain 2-D discrete state delay system (26). 

 
4. AN ILLUSTRATIVE EXAMPLE 

 
This section gives an example to illustrate the 

proposed results. Consider the following discrete 2-D 
state delay system described by (26), where 

0.0410 0.2107
0.2879 0.4593

A
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

1

0.1453
0.0824dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2

0.0880
0.1867dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
0.3092
0.2288

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
0.7322
0.7708

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
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0.3043 0.0082
,

0.0079 0.0950
H

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 1
0.2035

,
0.0288

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

2
0.1838

,
0.3157

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 1
0.2

,
0.2

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 2
0.2

,
0

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

[ ]1 0.2 0.4 ,E =  2 0.2,E =  3 0.2,E =  4 0.4,E =  

5 0.4,E =  1 10,d =  2 10.d =  

By applying Theorem 3 and solving the 
optimization problem (31), we obtain 

2.1518 0
0 3.1089

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
0.6157 0

0 0.9183
Y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

[ ]0.3666 0.3861N = − − , 

and γ=0.4993. Thus, the robust optimal H∞ controller 
is obtained as 

[ ]( , ) 0.1704 0.1242 ( , ).u i j x i j= − −         (32) 

For F(i, j)=0, F(i, j)=1 and F(i, j)=-1, part (a), (b) 
and (c) of Fig. 1 respectively show the frequency 
response from the disturbance input w(i, j) to the 
controlled output z(i, j) for the corresponding closed-
loop system over all frequencies, i.e., 1 2( , )j jG e eω ω , 

10 2ω π≤ ≤ , 20 2 .ω π≤ ≤  The maximum value of 
1 2( , )j jG e eω ω  is 0.4401 that is below the specified 

level of attenuation γ=0.4993. 
 

5. CONCLUSIONS 
 

This paper has presented an LMI approach for the 
H∞ control of 2-D discrete state delay systems 
described by the Roesser model. The stability and H∞ 
disturbance attenuation condition has been developed 
via the LMI approach. The design of the H∞ controller 
can be recast as a convex optimization with 
constraints of LMI. All results can be extended to the 
multiple delay case. 
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