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Abstract:
Conventional passive constrained layer damping treatments with visco-elastic cores are

provided with built-in sensing and actuation capabilities to actively control and enhance their
vibration damping characteristics. Two configurations of the resulting hybrid treatment are
considered in this paper. In the first configuration the active control and passive operate
separately; whereas in the second configuration, the two operate in unison in order to maximize
the energy dissipation characteristics. In this study, three objectives are accomplished. The first
objective aims at the design and implementation of rodustontrollers for the separated and
unified control strategies. In the second, the performance oHtheontrollers at different
operating frequencies and temperatures is compared with that of a conventional
proportional/derivative controller in order to demonstrate robustness. Finally, a control effort
study involving theH,, controllers for the separated and unified control strategies is shown in
order to assess the efficiency of the active control scheme in controlling structural vibration. The
results obtained emphasize the potential of the optimally design unified control strategy as an
effective means for providing broad-band attenuation capabilities over a wide range of operating

temperatures.
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INTRODUCTION

Active Constrained Layer Damping (ACLD) treatments have been successfully utilized as
effective means for damping out the vibration of various flexible structures (Agnes and
Napolitano, 1993; Azvine et. al., 1994; Baz, 1996-1998; Baz and Ro, 1993-1995; Edberg and
Bicos, 1992; Plump and Hubbard, 1986; Shen, 1993; and Van Nostrand et. al., 1994). Such
effectiveness is attributed to the high energy dissipation characteristics of the ACLD treatments
as compared to conventional constrained damping layers (Baz, 1997-1998 and Chen and Baz,
1996). Furthermore, the ACLD treatments combine the simplicity and reliability of passive
damping with the low weight and high efficiency of active controls to attain high damping
characteristics over broad frequency bands. These characteristics are particularly suitable for

suppressing the vibration of critical systems where damping-to-weight ratio is very important.

The effectiveness of the ACLD treatments is validated experimentally and theoretically using
simple proportional and/or derivative (PD) feedback of the transverse deflection or the slope of
the deflection line of the base structure. The control gains have generally been selected
arbitrarily to be small enough to avoid instability problems, computed based on the stability
bounds developed by Shen (1994) for full ACLD treatments or determined using the optimal
control strategies devised by Baz and Ro (1995) and Liao and Wang (1995) for partial and full
ACLD treatments. In all these attempts, no effort has been exerted to accommodate the
uncertainties of the ACLD parameters, particularly those of the visco-elastic cores which arise
from the variation of the operating temperature and frequency. Also, in all these studies the
controllers are designed without any provisions for rejecting the effects that the external
disturbances have on the ACLD/beam system. Only recently, Baz (1998) has theoretically
developed a robugt, controller to control the ACLD treatments in the presence of parameter
uncertainty and external disturbances. The small gain theory is used to guide the selection of the
controller gain in order to ensure system stability. The rdbBusbntroller is shown to perform
successfully over a wide operating temperature and frequency ranges. It has also outperformed

the conventional PD controller, which was found to have limited stability margins in the presence



of parameter uncertainty and external disturbances.

In the present study, the work of Baz (1998) is extended to include the theoretical design and
experimental evaluation of robubt., controllers which are used to control the operation of
surface treatments. The controllers are selected to guarantee stability of the treatments in the
presence of parametric uncertainties which may result from variation of the properties of the
visco-elastic core of the treatments due to its operation over wide temperature and frequency
ranges. At the same time, the selected controllers ensure that the disturbance rejection

capabilities of the treatments are maximized over a desired frequency band.

It is important here to note that in the present study, the emphasis is placed on comparing the
damping characteristics of beams controlled with the ACLD treatments with those of beams
controlled with Active Control (AC) and conventional Passive Constrained Layer Damping
(PCLD) treatments. Such an attempt is essential to quantifying the individual contribution of the
active and passive damping components, to the overall damping characteristics, when each
operates separately as in the case of the AC/PCLD treatments and when both are combined to
interact in unison as in the ACLD treatments. In this manner, the selection between AC/PCLD
versus ACLD treatments can be based on rational basis. In this study, these rational procedures
are based on experimentally validated models which describe the dynamics of beams controlled
with AC and PCLD as well as beams treated with ACLD treatments.

To achieve such objectives finite element models and transfer functions are developed to
describe the dynamics of beams which are fully-treated with the ACLD and AC/PCLD
treatments. The theoretically developed transfer functions of the treatments are validated
experimentally using the Eigensystem Realization Algorithm (ERA) (Juang, 1994). The transfer
functions are then used to find a robdstcontroller (Dorato et. al., 1995; Crassidis et. al., 1994;
Dahleh and Diaz-Bobillo, 1995; and Boyd and Barratt, 1991). The controller is selected to
minimize theH.-norm of the transfer functions between the external disturbances and the
deflections at critical locations along the structure to guarantee optimal disturbance rejection

capabilities.

The paper is organized as follows. First, the concepts of the ACLD and the AC/PCLD are

presented. Then, the finite element models and the transfer functions of the ACLD and



AC/PCLD are developed. Next, the robudt, controller is devised. The performance
characteristics of the ACLD with the robust, controller are then presented in comparison with
that of the AC/PCLD. Comparisons are also presented when simple PD controllers are used.

Finally, a brief summary of the conclusions is given.

ACLD AND AC/PCLD TREATMENTS
The ACLD treatment consists of a conventional passive constrained layer damping which is

augmented with efficient active control means to control the strain of the constrained layer in
response to the structural vibrations, as shown in Figure 1a. The visco-elastic damping layer is
sandwiched between two piezo-electric layers. The three-layer composite ACLD when bonded
to the beam acts as a smart constraining layer damping treatment with built-in sensing and
actuation capabilities. The sensing, as indicated by the sensor voljaigepvovided by the
piezo-electric layer which is directly bonded to the beam surface. The actuation is generated by
the other piezo-electric layer which acts as an active constraining layer that is activated by the
control voltage Y. With appropriate strain control, through proper manipulationspthé shear
deformation of the visco-elastic damping layer can be increased, the energy dissipation

mechanism can be enhanced and the structural vibration can be damped out (Baz, 1996).

As for the AC/PCLD treatment, a typical arrangement is shown in Figure 1b. In this
arrangement, a conventional PCLD treatment is formed by sandwiching a visco-elastic layer
between two piezo-electric layers. The first piezo-layer, which is bonded to the vibrating beam,
acts as a sensor whereas the second piezo-layer is inactive and acts as a passive constraining
layer. An additional piezo-layer is bonded to the other side of the beam to actively control its
vibration. This layer is activated by a control voltagewiich is generated by feeding back the

sensor control voltagesV In this manner, the PCLD and the AC components operate separately.

It is important to note here that the ACLD provides a practical means for controlling the
vibration of massive structures with the currently available piezo-electric actuators without the
need for excessively large actuation voltages. This is due to the fact that the ACLD properly
utilizes the piezo-electric actuator to control the shear in the soft visco-elastic core which is a
task compatible with the low-control authority capabilities of the currently available piezo-

electric materials. Such desirable characteristics are generally not possible to achieve with the



AC/PCLD treatments as its low-control authority AC component has to operate directly on the

vibrating structure. This limits its applicability to relatively soft structures.

THEORETICAL MODELING
In this section, finite element models are outlined, which describe the behavior of Bernoulli-

Euler beams with ACLD and AC/PCLD treatments. The models extend the studies of Trompette
et. al, (1978) and Rao, (1976) which have been used to analyze the dynamics of passive
constrained layer damping. Details of the models are presented in the work of Baz and Ro
(1995). The models account for the behavior of the distributed piezo-electric sensor (Miller and

Hubbard, 1987) and the distributed piezo-electric actuator (Crawley and de Luis, 1987).

Figure 2 shows a schematic drawing of the ACLD and AC/PCLD treatments of a sandwiched
beam which is divided into N finite elements. It is assumed that the shear strains in the piezo-
sensor/actuator layers and in the base beam are negligible. The transverse displacements of all
points on any cross section of the sandwiched beam are considered to be equal. Furthermore, the
piezo-sensor/actuator layers and the base beam are assumed to be elastic and dissipate no energy
whereas the core is assumed to be linearly visco-elastic. In addition, the piezo-sensor, the piezo-
actuator of the AC/PCLD treatment and the base beam are considered to be perfectly bonded
together such that they can be reduced to a single equivalent layer. Accordingly, the original

five-layer sandwiched beam reduces to an equivalent three-layer beam.

Degrees of Freedom and Shape Functions
The treated beam elements considered are one-dimensional elements bounded by two nodal

points. Each node has four degrees of freedom to describe the longitudinal displageaient
the constraining layer, the longitudinal displacemegtof the base beam, the transverse

deflection w, and the slopew' of the deflection line. Primes are used to denote spatial

derivatives.

The spatial distributions of the longitudinal displacemeptanduz as well as the transverse

deflectionw, over any elemerit of the treated beam, are assumed to be given by

U = ax+ &, = axt gand w=g X+ @ %+ A% @ 1)



where the constant&y, ay...., 38}T ={a are determined in terms of the eight components of
the nodal deflection vectduy,; }of theith element which is bounded between ngdasdk. The

nodal deflection vectofa; } is given by

{éi}:{ulpu?:j’V\ﬁ’V\f’lik’l’Bk!W@VV(}T (2)

Therefore, the deflectiofA} ={uy, us, w, W}T at any locationX along theith element can be

determined from

(o v v} ={[NL L] (0] [} () ®
where[N;], [N2], [N3]. and[N,] are the spatial interpolating vectors corresponding tas,
w, andw', respectively.

Potential and Kinetic Energies
The potential energy of the beam/treatment system is given by

3 3
1 ,
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whereEj A and Ejlj are the longitudinal and flexural rigidity of tith layer. AlsoG, andy

are the shear modulus and strain of the visco-elastic core, respectively.

The kinetic energyl’ of the beam/treatment system is given by

3 3
1
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Wherepj is the density of thgh layer.

Equations of Motion
The dynamics of the ACLD-treated and the AC/PCLD-treated beam element is obtained by
applying Hamilton’s principle (Meirovitch, 1967)



jtz S(T-U+W) dt=0 (6)
t

whered(l) denotes the first variation, amghndt, denote initial and final time. Als@/ denotes

the work done by the piezo-electric actuators. This yields the following equation of motion

[mil{ai}+[ki o} ={Ec} ™)
where[M;] and[K;] denote the mass and stiffness matrices of the treated beam element. The

vector {EC} is the vector of control forces and moments generated by the piezo-constraining

layer on the treated beam element. It is expressed by

{Fc} = {Fonj+Foaj O Mpj Fonk Fra.OM (8)
whereFgj, Fosj, Foik: Fpak: Mpj, andMpy denote the control forces and moments generated
at nodeg andk, which are given by

For ACLD Treatments:
Foij = —Fpik = ~KcWe Fgj= —FBKk= 0, andM pi= "M pi= —K D1w ¢ (9)
For AC/PCLD Treatments:
Fo1j = ~Fpik = 0, Fpgj = ~Fpak = —KcWe, andM = =Mp = =K; Dy we  (10)
where D; and D, denote the distances between the piezo-constraining layer, the bottom piezo-

actuator and the neutral axis of the beam as shown in Figure 2. Kjlstenotes the transfer

function of the control gains.

Equation (7) describes the dynamics/control of a single treated beam element. Assembly of
the corresponding equations for the different elements and applying the proper boundary
conditions yields the overall equation for the entire treated beam system, as given by the

following equation

[Mo]{A}+[Ko){a} = {Eeo} (11)



where[M,] and[K,] denote the overall mass and stiffness matrices, respectively.{&ysand
{ECO} denote the overall nodal deflection and control vectors, respectively. The resulting

equation is then utilized as a basis for comparing the damping characteristics of beams treated
with the ACLD and AC/PCLD treatments.

Transfer Function

The transfer function approach has been utilized recently to study the stability of ACLD
treatments with certain parameters (Shen, 1994). The approach has also been adopted in 1986 by
Alberts et. al. to define the stability limits for rotating beams treated with PCLD of fixed
parameters. In the present study, the transfer function approach is employed to design the
controller of the ACLD and AC/PCLD treatment, in order to ensure stability in the presence of
parameter uncertainty and guarantee optimal disturbance rejection capabilities. Equation (11) is

used to extract the transfer functions of the ACLD and AC/PCLD as follows

IX}{Feol=G(9= Qs A" B (12)

where A, B, andC are the state-space matrices representing equation (11). {Xlsas the

T
state variables vect réT,éT} , and G(s) is the system transfer function in the Laplace

domain.

DEVELOPMENT OF THE ROBUST CONTROLLER
Overview

Figure 3 shows a block diagram of a robust controller with transfer funtivat stabilizes
the ACLD/beam system with transfer functi@nin the presence of parameter uncertainty when
the system is subjected to external disturbance. Htheontrol strategy, as compared to classical
control techniques, provides advanced methods and perspectives for designing control systems.
This is accomplished by shaping the frequency response characteristics of a plant according to
pre-specified performance specifications in the form of frequency dependent weighting functions.
The principal advantages of th, control strategy include: (i) it supplies robust stability to
structural uncertainties, (ii) it achieves performance requirements efficiently, (iii) it handles both
disturbance and excessive control authority problems easily, and (iv) it not only works on single-

input-single-output (SISO) systems, but also on multi-input-multi-output (MIMO) systems.



Therefore, frequency response criteria can easily be shaped to desired specifications. Some of
the disadvantages tli&, control strategy include: (i) large controller dimensions, (ii) the limited
applicability to time-invariant systems, and (iii) choosing weighting functions properly.
However, for vibration suppression of time-invariant systems, the advantages of udihg an
controller make it a desirable strategy (in particular, due to the inherent robustness feature).
Vibration Suppression

The loop-shaping approach (Maciejowski, 1989) shows a clear tradeoff between performance
and robustness of a multivariable system. However, this methodology does not enable a practical
design approach for active damping, since plant dynamics are usually canceled by compensator
dynamics. This section expands upon the fundameétaktontrol formulation in order to
provide a means of incorporating active damping into a structure with inherently low structural

damping (Crassidis et. al., 1994).

In order to achieve damping, the block diagram in Figure 4 is used. Let the MIMO plant
G(s) be partitioned into “disturbance®(s) and “plant/actuator'G,(s) transfer functions, so
that

Y2(9= G($ Ua( 3+ G B W )s (13)

The inputs in Figure 4 aré;,(s), any disturbance into the structure, aug(s), a fictitious

input used to simulate sensor uncertainty. The controller is represenkd)byandU,(s) and

Yo(9 represent the system input and output, respectively. The “augmented” plant with control
compensator is now represented by Figure 5, widreA,, and\W; are appropriately selected

weighting functions.

The open-loop transfer function matrix of the augmented plant now becomes

Ya] WG W | -W G

Yip o 0 | W Ula

Ye|=| 0 0 | WG| P (14)
—_— —_— —_— I —_—
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where U, and Y, are the controller output and input, respectively. The sensitivity function

between the disturbance input and plant output now becomes
G
= 15

S(é I +FG2 ( )
Therefore, active damping is now accomplished since pole locations of the closed-loop transfer
function in equation (15) are shifted by the controferand plant/actuator transfer functions.
From Figure 5, the characteristics of the weighting funciig(s) determine the amount of
damping and frequency response dynamics of the closed-loop system. The complementary
sensitivity (sensor uncertainty) function is weightedWy(s), and controller/limiter function is
weighted byWs(9. Once the augmented plant in equation (14) is formed, the two-Riccati
algorithm for the computation of th, controller can be used (Doyle et. al., 1989). The MIMO

state-space representation of the augmented plant in Equation (14) now becomes

X Ay 00 01 Xg By 01 -Bg

Xup | 2| BwCo Aw O 0 Xy | 1B Dy By =BuDg ) M1 6
Zw2 0 0 Ay 0fixy 0 01 Bw |0

Xw3 By,Cg O 0 Ay Xw3 0 0 | Buw;Dg,

with output given by

Yia DW1C9 CW1 0 0 Xg DW1D91 DW1 i _DW_LDgz R
yw(_| O 0 Gy Ofixy | 0 01 Duw up | (A7)
Vi | |PwCq O O CwlXwp) | O O DDy |7

Y2 Cg 0 0 0 fixu Dg, 1 Dg,

PERFORMANCE WITH ACLD AND AC/PCLD TREATMENTS
In this section, the experimental performance characteristics of beams treated with ACLD

treatments are determined and compared with those treated with the AC/PCLD treatments at
different operating temperature and frequency. The comparisons presented include the vibration,
damping characteristics, and control voltages, as well as comparisons between the theoretical

predictions and experimental measurements.
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Properties of Base Beam, Visco-Elastic and Constraining Layers

Table 1 lists the main physical, geometrical, and dynamical properties of the base beam. The
beam is made of aluminum and is mounted in a cantilevered configuration. The first natural
frequency of the untreated test beam is 7.02 Hz and the corresponding modal damping ratio is

0.0173, as determined experimentally using classical modal analysis techniques.

Table 1 - Main Properties of the Base Beam

Length Width Thickness Density |Young's Modulus First Mode
L-m (b—n) (hs —cm) (kg/n?) (GN/nf) Freq. Damp.
0.263 0.0492 0.0813 2700 70.2 7Hz 1.73%

The beam treatment of the ACLD and AC/PCLD consists of a visco-elastic sheet of DYAD-
606 from SOUNDCOAT sandwiched between two piezo-electric layers from AMP, Inc. (Valley
Forge, PA). The piezo-electric layers are made from PVDF polymeric films number S028NAO.
Table 2 lists the physical and geometrical parameters of the visco-elastic and piezo-electric
layers. Under open-loop conditions, the experimental first natural frequency of the fully-treated

test beam becomes 6.76 Hz, and the corresponding modal damping ratio is 0.022.

Table 2 - Physical and Geometrical Properties of the ACLD and PCLD Treatments

Layer Length | Width | Thickness| Density | Modulus
(m) (m) (m) (kg/m) | (Mpa)
Viscoelastic 0.263 0.0492 0.0005 1104 20*
Piezoelectric 0.263 0.0492 28x10 1800 2250**
** Young's modulus * shear modulus

The shear modulus and loss factor of the visco-elastic material used in this study are shown
in Figures 6a and 6b, respectively, at different operating temperatures and frequencies. The
figures demonstrate clearly that the complex modulus of the visco-elastic core varies
dramatically, when the operating temperature is varied frohC20 50 C, and the frequency is
scanned over a 100Hz-bandwidth. Such pronounced changes in the properties of the visco-
elastic layer introduce significant uncertainties in the parameters of the ACLD and AC/PCLD
treatments. Figure 7 shows the theoretical transfer functions of beams treated with the ACLD

and AC/PCLD. The displayed transfer functions relate the transverse displaegnottite free

end of the beam to the inputs to the piezo-electric actuators°af 20 50 C. Five beam

elements are used to compute the transfer functions with a total of 16 degrees of freedom.
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EXPERIMENTAL SET-UP
Figure 8 shows a schematic drawing of the experimental set-up used to compare the

performance of the effectiveness of the ACLD and the AC/PCLD in attenuating the vibration of
the test beam. The test beam is excited by an electro-mechanical speaker driven by a sinusoidal
or white noise source through a power amplifier. The amplitude of vibration of the free end of
the beam is monitored by a laser sensor (Model MQ - Aeromat Corp., Providence, NJ). The
output signal of the sensor is sent to a spectrum analyzer to determine the vibration attenuation
both in the time and frequency domains. The laser sensor has accuracyuof @@er a

frequency band between 0-1000 Hz.

The sensor signal is sampled at a rate of 0.005 s using a dSPACE input-output system, which
includes a DS1002 33Mhz processor board, DS2002 32 channel A/D board, and DS2101 5
channel D/A board. The signal is manipulated using either the rélhusbntrol law or the
conventional PD control law. The resulting control action is sent via an analog power amplifier
(Model PA7C from Wilcoxon Research, Rockville, MD) to either the piezo-electric constraining
layer in the case of the ACLD treatment or the bottom piezo-electric actuator in the case of the

AC treatment.

EXPERIMENTAL RESULTS
In this section, the experimental results using a PD arid.azontrol law for the ACLD and

AC/PCLD systems are shown. First, the identification method and open-loop characteristics of
each system are summarized. Then, the design approach for each control law and system is
shown. Finally, the performance and robustness of each controller are tested in order to access

the validity of the design approaches with analytical comparisons.

Open-Loop Characteristics of the ACLD/Beam System
A state model is required to perform an optimal control design. The Eigensystem Realization

Algorithm (ERA) provides a viable approach for determining MIMO models from experimental
data. The test beam is excited using random inputs at the speaker and control input locations.
The random response and input data is then converted to impulse response data, which is used in
ERA to identify a state-space-model. Figure 9 shows the open-loop (i.e., from the speaker
excitation to the laser sensor output) transfer-function magnitude plots for the AC/PCLD and

ACLD systems. It is clearly seen that the first mode is at about 7 Hz, which agrees with the

12



theoretical analysis. Also, the magnitude difference between the AC/PCLD and ACLD at the
first mode is about 20 dB, which also agrees with theoretical prediction. The second mode of the
test beam is at about 47 Hz, which is significantly more damped than the first mode.
Robust Control Design

In this section, the concepts and limitations for the selection of the proper weighting
functions used in théd., design are presented. The appropriate selection of the weighting
functions over the desired frequency range is not explicitly related to the performance objectives
in a straightforward manner. Numerous trial weighting functions are usually required in order to

obtain desired performance objectives.

The goal of theH., design is to reshape the open-loop dynamics in order to provide vibration
suppression in the frequency region considered. \Whésensitivity) weighting function is used
to reshape the desired frequency characteristics to provide adequate damping in the test beam.
The W4 weighting function is used as an uncertainty weight for the sensor output. Since the laser
sensor is extremely accurate, this weighting function was not deemed to be critical; therefore, it
was omitted in the initial control design. TWé weighting function is used to shape the control
response characteristics. The overall controller is derived by incorporating all weighting

functions and open-loop models into the augmented system shown by equations (16) and (17).

TheH. design is used to target the first model of the test beam. A plot of the iWeasel
W, weighting functions is shown in Figure 10. TIVIQ"1 function weights the sensitivity

function along the zero dB region over the desired target frequencszT%mnction is used to

obtain an attenuated controller response at both lower and higher frequencies. This results in a
third-order weighting functions that simulates a band-pass filter. The choice of this weighting
function insures that the controller does not destabilize higher frequency modes, and also

attenuates control signals at lower frequencies.

The selection of these weighting functions provides adequate damping in the closed-loop
system. An optimaH,, controller solution, using theiteration technique (Doyle et. al., 1989)
can be determined. The order of the subsequent controller is 13, which is effectively reduced to a
2nd-order controller using the Schur balanced model reduction method (Safanov and Chiang,

1988). The PD control gains chosen to provide adequate damping performance in the first mode

13



of the test beam. A plot of thé., and PD control magnitudes for the ACLD system is shown in
Figure 11. A plot of the simulated damping responses using the two controllers is shown in
Figure 12. Clearly, both controllers are able to attenuate the first mode of the test beam. Also,
the second mode becomes less damped using the PD controller, as compared to the open-loop
response. This may be due to spillover effects from the high frequency amplification of the PD

controller.

Control Results
In this section, results using tie, and PD controllers are shown for the actual test beam.

Two sets of test cases are presented. The first set involves using the controllers on the AC/PCLD
and ACLD systems at room temperature®(8). The second case involves the controllers on
both systems at a temperature of As shown previously, such pronounced temperature
changes introduce significant uncertainties in the parameters of the ACLD and AC/PCLD

treatments.

The H,, and PD controllers are designed to damp the first mode of the test beam using the
room temperature model only. Sensitivity to uncertainties can be investigated by applying small
gain theory to the closed-loop system. This is accomplished by using a sufficiency test for

stability robustness with a multiplicative uncertainty (Crassidis et. al., 1994), given by

1
a{F(9[1+G(s A9

a[Am(9)] < (18)

where A (s) denotes multiplicative uncertainties agddenotes the maximum singular value

over the desired frequency region. A plot of the theoretical uncertainty bound, using the right
hand side of equation (18), for the ACLD system at room temperature usitd,thed PD
controllers is shown in Figure 13. Although the PD controller is well-known for providing
damping in a system due to phase margin enhancement, Figure 13 indicates that the PD

controller is susceptible to uncertainties in the first mode.

A plot of the actual controlled responses for the ACLD system at room temperature is shown
in Figure 14. Damping has been increased by more than of factor of two for both controllers.
This shows excellent agreement with design results in Figure 12 for both modes. A plot of the

controlled responses for the AC/PCLD system at room temperature is shown in Figure 15. These

14



results have been achieved after numerous trial parameter tuning of the PD gains. For this case
theH,, controller outperforms the PD controller. This may be due to the fact that the AC/PCLD
system requires a higher DC gain than the ACLD case, which the simple PD controller cannot
provide without amplifying higher modes. The next test case involves both systems and
controllers at the higher temperature®(®). Plots of the ACLD and AC/PCLD systems for this
case are shown in Figures 16 and 17. ClearlyHtheontroller provides robustness over a wide
variation in visco-elastic property changes. The PD controller provides robustness in the second
mode, but lacks robustness in the first mode, which agrees with theoretical predictions in Figure
13. In fact the PD controlled response is ewarse than the open-loop response for the
AC/PCLD case, while theH, controller remains at the original damping performance.
Therefore, the study clearly indicates thatkhgcontrol scheme provides an effective means for
damping out structural vibrations for both systems over a wide temperature variation. Finally,
the ACLD requires less control effort (about 1/2) than the AC/PCLD system. This is shown by
applying an impulse input of 1 mVolt into tliw, controller for both the ACLD and AC/PCLD.
The control output for both cases is shown in Figure 18. Therefore, since active control effort is
less, the ACLD system provides a more effective means for broad-band attenuation as compared
to the AC/PCLD system.
CONCLUSIONS

This paper has presented a theoretical and experimental comparisons between the damping
characteristics of beams treated with ACLD and AC/PCLD treatments. In these comparisons the
individual contribution of the active and passive damping components, to the overall damping
characteristics, is quantified when these two components operate separately as in the AC/PCLD
treatments, and when both are combined to interact in unison as in the ACLD treatments. The
comparisons are based on experimentally validated finite element models which are developed to
describe the dynamics of beams controlled with AC/PCLD as well as beams treated with ACLD

treatments.

These models are used to derive expressions for the transfer functions of the beam/treatment
systems and devise a robitt control strategy which is stable in the presence of parameter
uncertainty. Furthermore, the developed control strategy also insures optimal disturbance

rejection capabilities. Experimental results are presented to demonstrate the effectiveness of the
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robust controller in damping out structural vibrations when the ACLD and AC/PCLD treatments
operate over wide temperature and frequency ranges. Under similar operating circumstances, it
is found that a simple PD controller fails to produce any significant vibration control when the

stability constraints are imposed over the entire range of operation.

Finally, it is important to note that the ACLD treatment is found to be more effective in
damping the structural vibration than the AC/PCLD treatment. It requires less control effort in

the presence of external disturbances and parameter uncertainty.
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Figure 1 - Schematic Drawing of the ACLD and AC/PCLD Treatments

Figure 2 - Finite Element Model of Beam Treated with ACLD and AC/PCLD
a - main geometry, b - deflections

Figure 3 - Block Diagram of the Robust Controller
Figure 4 - Block Diagram for Active Damping
Figure 5 - Augmented Closed-Loop System for Active Damping
Figure 6 - Complex Modulus of the Visco-Elastic Core
Figure 7 - Theoretical Transfer Functions of the Beam/Treatment Systems
Figure 8 - Schematic Drawing of Experimental Set-Up
Figure 9 - Open-Loop Transfer Functions
Figure 10 - Weighting Functions for Robust Control Design
Figure 11 -H, and PD Controllers for ACLD System
Figure 12 -H, and PD Controller Damping Simulation Results for ACLD System
Figure 13 - Theoretical Multiplicative Uncertainty Bound
Figure 14 - ACLD Closed-Loop Response Usind,, and PD Controllers (20 C)
Figure 15 - AC/PCLD Closed-Loop Response Usinlg, and PD Controllers (2C C)
Figure 16 - ACLD Closed-Loop Response Usind,, and PD Controllers (5C C)
Figure 17 - AC/PCLD Closed-Loop Response Using, and PD Controllers (5C¢ C)
Figure 18 -H,, Control Comparison for ACLD and AC/PCLD Systems
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