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Abstract:
Conventional passive constrained layer damping treatments with visco-elastic cores are

provided with built-in sensing and actuation capabilities to actively control and enhance their

vibration damping characteristics.  Two configurations of the resulting hybrid treatment are

considered in this paper.  In the first configuration the active control and passive operate

separately; whereas in the second configuration, the two operate in unison in order to maximize

the energy dissipation characteristics.  In this study, three objectives are accomplished.  The first

objective aims at the design and implementation of robust H∞ controllers for the separated and

unified control strategies.  In the second, the performance of the H∞ controllers at different

operating frequencies and temperatures is compared with that of a conventional

proportional/derivative controller in order to demonstrate robustness.  Finally, a control effort

study involving the H∞ controllers for the separated and unified control strategies is shown in

order to assess the efficiency of the active control scheme in controlling structural vibration.  The

results obtained emphasize the potential of the optimally design unified control strategy as an

effective means for providing broad-band attenuation capabilities over a wide range of operating

temperatures.
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INTRODUCTION
Active Constrained Layer Damping (ACLD) treatments have been successfully utilized as

effective means for damping out the vibration of various flexible structures (Agnes and

Napolitano, 1993; Azvine et. al., 1994; Baz, 1996-1998; Baz and Ro, 1993-1995; Edberg and

Bicos, 1992; Plump and Hubbard, 1986; Shen, 1993; and Van Nostrand et. al., 1994).  Such

effectiveness is attributed to the high energy dissipation characteristics of the ACLD treatments

as compared to conventional constrained damping layers (Baz, 1997-1998 and Chen and Baz,

1996).  Furthermore, the ACLD treatments combine the simplicity and reliability of passive

damping with the low weight and high efficiency of active controls to attain high damping

characteristics over broad frequency bands.  These characteristics are particularly suitable for

suppressing the vibration of critical systems where damping-to-weight ratio is very important.

The effectiveness of the ACLD treatments is validated experimentally and theoretically using

simple proportional and/or derivative (PD) feedback of the transverse deflection or the slope of

the deflection line of the base structure.  The control gains have generally been selected

arbitrarily to be small enough to avoid instability problems, computed based on the stability

bounds developed by Shen (1994) for full ACLD treatments or determined  using the optimal

control strategies devised by Baz and Ro (1995) and Liao and Wang (1995) for partial and full

ACLD treatments.  In all these attempts, no effort has been exerted to accommodate the

uncertainties of the ACLD parameters, particularly those of the visco-elastic cores which arise

from the variation of the operating temperature and frequency.  Also, in all these studies the

controllers are designed without any provisions for rejecting the effects that the external

disturbances have on the ACLD/beam system.  Only recently, Baz (1998) has theoretically

developed a robust H2 controller to control the ACLD treatments in the presence of parameter

uncertainty and external disturbances.  The small gain theory is used to guide the selection of the

controller gain in order to ensure system stability.  The robust H2 controller is shown to perform

successfully over a wide operating temperature and frequency ranges.  It has also outperformed

the conventional PD controller, which was found to have limited stability margins in the presence
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of parameter uncertainty and external disturbances.

In the present study, the work of Baz (1998) is extended to include the theoretical design and

experimental evaluation of robust H∞ controllers which are used to control the operation of

surface treatments.  The controllers are selected to guarantee stability of the treatments in the

presence of parametric uncertainties which may result from variation of the properties of the

visco-elastic core of the treatments due to its operation over wide temperature and frequency

ranges.  At the same time, the selected controllers ensure that the disturbance rejection

capabilities of the treatments are maximized over a desired frequency band.

It is important here to note that in the present study, the emphasis is placed on comparing the

damping characteristics of beams controlled with the ACLD treatments with those of beams

controlled with Active Control (AC) and conventional Passive Constrained Layer Damping

(PCLD) treatments.  Such an attempt is essential to quantifying the individual contribution of the

active and passive damping components, to the overall damping characteristics, when each

operates separately as in the case of the AC/PCLD treatments and when both are combined to

interact in unison as in the ACLD treatments.  In this manner, the selection between AC/PCLD

versus ACLD treatments can be based on rational basis.  In this study, these rational procedures

are based on experimentally validated models which describe the dynamics of beams controlled

with AC and PCLD as well as beams treated with ACLD treatments.

To achieve such objectives finite element models and transfer functions are developed to

describe the dynamics of beams which are fully-treated with the ACLD and AC/PCLD

treatments.  The theoretically developed transfer functions of the treatments are validated

experimentally using the Eigensystem Realization Algorithm (ERA) (Juang, 1994).  The transfer

functions are then used to find a robust H∞ controller (Dorato et. al., 1995; Crassidis et. al., 1994;

Dahleh and Diaz-Bobillo, 1995; and Boyd and Barratt, 1991).  The controller is selected to

minimize the H∞-norm of the transfer functions between the external disturbances and the

deflections at critical locations along the structure to guarantee optimal disturbance rejection

capabilities.

The paper is organized as follows.  First, the concepts of the ACLD and the AC/PCLD are

presented.  Then, the finite element models and the transfer functions of the ACLD and
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AC/PCLD are developed.  Next, the robust H∞ controller is devised.  The performance

characteristics of the ACLD with the robust H∞ controller are then presented in comparison with

that of the AC/PCLD.  Comparisons are also presented when simple PD controllers are used.

Finally, a brief summary of the conclusions is given.

ACLD AND AC/PCLD TREATMENTS
The ACLD treatment consists of a conventional passive constrained layer damping which is

augmented with efficient active control means to control the strain of the constrained layer in

response to the structural vibrations, as shown in Figure 1a.  The visco-elastic damping layer is

sandwiched between two piezo-electric layers.  The three-layer composite ACLD when bonded

to the beam acts as a smart constraining layer damping treatment with built-in sensing and

actuation capabilities.  The sensing, as indicated by the sensor voltage Vs, is provided by the

piezo-electric layer which is directly bonded to the beam surface.  The actuation is generated by

the other  piezo-electric layer which acts as an active constraining layer that is activated by the

control voltage Vc.  With appropriate strain control, through proper manipulation of Vs, the shear

deformation of the visco-elastic damping layer can be increased, the energy dissipation

mechanism can be enhanced and the structural vibration can be damped out (Baz, 1996).

As for the AC/PCLD treatment, a typical arrangement is shown in Figure 1b.  In this

arrangement, a conventional PCLD treatment is formed by sandwiching a visco-elastic layer

between two piezo-electric layers.  The first piezo-layer, which is bonded to the vibrating beam,

acts as a sensor whereas the second piezo-layer is inactive and acts as a passive constraining

layer.  An additional piezo-layer is bonded to the other side of the beam to actively control its

vibration.  This layer is activated by a control voltage Vc which is generated by feeding back the

sensor control voltage Vs .  In this manner, the PCLD and the AC components operate separately.

It is important to note here that the ACLD provides a practical means for controlling the

vibration of massive structures with the currently available piezo-electric actuators without the

need for excessively large actuation voltages.  This is due to the fact that the ACLD properly

utilizes the piezo-electric actuator to control the shear in the soft visco-elastic core which is a

task compatible with the low-control authority capabilities of the currently available piezo-

electric materials.  Such desirable characteristics are generally not possible to achieve with the
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AC/PCLD treatments as its low-control authority AC component has to operate directly on the

vibrating structure.  This limits its applicability to relatively soft structures.

THEORETICAL MODELING
In this section, finite element models are outlined, which describe the behavior of Bernoulli-

Euler beams with ACLD and AC/PCLD treatments. The models extend the studies of Trompette

et. al, (1978) and Rao, (1976) which have been used to analyze the dynamics of passive

constrained layer damping.  Details of the models are presented in the work of Baz and Ro

(1995). The models account for the behavior of the distributed piezo-electric sensor (Miller and

Hubbard, 1987) and the distributed piezo-electric actuator (Crawley and de Luis, 1987).

Figure 2 shows a schematic drawing of the ACLD and AC/PCLD treatments of a sandwiched

beam which is divided into N finite elements.  It is assumed that the shear strains in the piezo-

sensor/actuator layers and in the base beam are negligible.  The transverse displacements of all

points on any cross section of the sandwiched beam are considered to be equal.  Furthermore, the

piezo-sensor/actuator layers and the base beam are assumed to be elastic and dissipate no energy

whereas the core is assumed to be linearly visco-elastic.  In addition, the piezo-sensor, the piezo-

actuator of the AC/PCLD treatment and the base beam are considered to be perfectly bonded

together such that they can be reduced to a single equivalent layer.  Accordingly, the original

five-layer sandwiched beam reduces to an equivalent three-layer beam.

Degrees of Freedom and Shape Functions

The treated beam elements considered are one-dimensional elements bounded by two nodal

points.  Each node has four degrees of freedom to describe the longitudinal displacement u1 of

the constraining layer, the longitudinal displacement u3 of the base beam, the transverse

deflection w, and the slope ′w  of the deflection line.  Primes are used to denote spatial

derivatives.

The spatial distributions of the longitudinal displacements u1 and u3 as well as the transverse

deflection w, over any element i  of the treated beam, are assumed to be given by

u a x a u a x a w a x a x a x a1 1 2 2 3 4 5
3

6
2

7 8= + = + + + +, , and = (1)
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where the constants a a a a
T

1 2 8, , ,�� � � �=  are determined in terms of the eight components of

the nodal deflection vector ∆ i� �of the ith element which is bounded between nodes j and k.  The

nodal deflection vector ∆ i� � is given by

∆ i j j j j k k k k
T

u u w w u u w w� � � �= ′ ′1 3 1 3, , , , , , , (2)

Therefore, the deflection ∆� � � �= ′u u w w
T

1 3, , ,  at any location X  along the ith element can be

determined from

u u w w N N N N
T T

i1 3 1 2 3 4, , , , , ,′ =� � � � � �∆ (3)

where N1 , N2 , N3 , and N4  are the spatial interpolating vectors corresponding to u1, u3,

w, and ′w , respectively.

Potential and Kinetic Energies

The potential energy U  of the beam/treatment system is given by

U E A u E I w G A dxj j j

j

j j j

jLi

= ′ + ′′ +
	



�
�

�


�
�

= =
∑ ∑�12 2

1

3
2

2 2
2

1

3

γ (4)

where E Aj j  and E Ij j  are the longitudinal and flexural rigidity of the jth layer.  Also G2 and γ

are the shear modulus and strain of the visco-elastic core, respectively.

The kinetic energy T  of the beam/treatment system is given by

T A u E I w dxj j j

j

j j j

jLi

= +
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= =
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3
2

1

3

ρ (5)

where ρ j  is the density of the jth layer.

Equations of Motion

The dynamics of the ACLD-treated and the AC/PCLD-treated beam element is obtained by

applying Hamilton’s principle (Meirovitch, 1967)
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δ T U W dt
t

t
− + =� � �

1

2
0 (6)

where δ ⋅� � denotes the first variation, and t1and t2 denote initial and final time.  Also W  denotes

the work done by the piezo-electric actuators.  This yields the following equation of motion

M K Fi i i i c
��∆ ∆� � � � � �+ = (7)

where Mi  and Ki  denote the mass and stiffness matrices of the treated beam element.  The

vector Fc� � is the vector of control forces and moments generated by the piezo-constraining

layer on the treated beam element.  It is expressed by

F F F M F F Mc p j p j pj p k p k pk
T� � � �= 1 3 1 30 0, , , , , , , (8)

where Fp j1 , Fp j3 , Fp k1 , Fp k3 , Mpj , and Mpk denote the control forces and moments generated

at nodes j and k, which are given by

For ACLD Treatments:

F F K w F F M M K D wp j p k c e p j p k pj pk c e1 1 3 3 10= − = − = − = = − = −, , and (9)

For AC/PCLD Treatments:

F F F F K w M M K D wp j p k p j p k c e pj pk c e1 1 3 3 20= − = = − = − = − = −, , and (10)

where D1 and D2 denote the distances between the piezo-constraining layer, the bottom piezo-

actuator and the neutral axis of the beam as shown in Figure 2.  Also, Kc denotes the transfer

function of the control gains.

Equation (7) describes the dynamics/control of a single treated beam element.  Assembly of

the corresponding equations for the different elements and applying the proper boundary

conditions yields the overall equation for the entire treated beam system, as given by the

following equation

M K Fo o co
��∆ ∆� � � � � �+ = (11)
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where Mo  and Ko  denote the overall mass and stiffness matrices, respectively.  Also ∆� �  and

Fco� � denote the overall nodal deflection and control vectors, respectively.  The resulting

equation is then utilized as a basis for comparing the damping characteristics of beams treated

with the ACLD and AC/PCLD treatments.

Transfer Function

The transfer function approach has been utilized recently to study the stability of ACLD

treatments with certain parameters (Shen, 1994).  The approach has also been adopted in 1986 by

Alberts et. al. to define the stability limits for rotating beams treated with PCLD of fixed

parameters.  In the present study, the transfer function approach is employed to design the

controller of the ACLD and AC/PCLD treatment, in order to ensure stability in the presence of

parameter uncertainty and guarantee optimal disturbance rejection capabilities.  Equation (11) is

used to extract the transfer functions of the ACLD and AC/PCLD as follows

X F G s C s I A Bco� � � � � � � �= = − −1 (12)

where A, B, and C are the state-space matrices representing equation (11).  Also, X� �  is the

state variables vector ∆ ∆T T T
, �� � , and G s� � is the system transfer function in the Laplace s

domain.

DEVELOPMENT OF THE ROBUST CONTROLLER
Overview

Figure 3 shows a block diagram of a robust controller with transfer function F  that stabilizes

the ACLD/beam system with transfer function G  in the presence of parameter uncertainty when

the system is subjected to external disturbance.  The H∞ control strategy, as compared to classical

control techniques, provides advanced methods and perspectives for designing control systems.

This is accomplished by shaping the frequency response characteristics of a plant according to

pre-specified performance specifications in the form of frequency dependent weighting functions.

The principal advantages of the H∞ control strategy include: (i) it supplies robust stability to

structural uncertainties, (ii) it achieves performance requirements efficiently, (iii) it handles both

disturbance and excessive control authority problems easily, and (iv) it not only works on single-

input-single-output (SISO) systems, but also on multi-input-multi-output (MIMO) systems.
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Therefore, frequency response criteria can easily be shaped to desired specifications.  Some of

the disadvantages the H∞ control strategy include: (i) large controller dimensions, (ii) the limited

applicability to time-invariant systems, and (iii) choosing weighting functions properly.

However, for vibration suppression of time-invariant systems, the advantages of using an H∞

controller make it a desirable strategy (in particular, due to the inherent robustness feature).

Vibration Suppression

The loop-shaping approach (Maciejowski, 1989) shows a clear tradeoff between performance

and robustness of a multivariable system.  However, this methodology does not enable a practical

design approach for active damping, since plant dynamics are usually canceled by compensator

dynamics.  This section expands upon the fundamental H∞ control formulation in order to

provide a means of incorporating active damping into a structure with inherently low structural

damping (Crassidis et. al., 1994).

In order to achieve damping, the block diagram in Figure 4 is used.  Let the MIMO plant

G s� � be partitioned into “disturbance” G s1� �  and “plant/actuator” G s2� � transfer functions, so

that

Y s G s U s G s U sa2 1 1 2 2� � � � � � � � � �= + (13)

The inputs in Figure 4 are: U sa1 � �, any disturbance into the structure, and U sb1 � �, a fictitious

input used to simulate sensor uncertainty.  The controller is represented by F s� �, and U s2� � and

Y s2� � represent the system input and output, respectively.  The “augmented” plant with control

compensator is now represented by Figure 5, where W1, W2, and W3 are appropriately selected

weighting functions.

The open-loop transfer function matrix of the augmented plant now becomes

Y

Y

Y

Y

W G W W G

W

W G

G I G

U

U

U

a

b

c

a

b

1

1

1

2

1 1 1 1 2

2

3 2

1 2

1

1

2

0 0

0 0

− −

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

=

−

− − − − − −
−

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

− −

�

�

�
�
�
�

�

�

�
�
�
�

|

|

|

|

|

(14)
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where U2 and Y2 are the controller output and input, respectively.  The sensitivity function

between the disturbance input and plant output now becomes

S s
G

I F G
� � =

+
1

2
(15)

Therefore, active damping is now accomplished since pole locations of the closed-loop transfer

function in equation (15) are shifted by the controller F  and plant/actuator transfer functions.

From Figure 5, the characteristics of the weighting function W s1� � determine the amount of

damping and frequency response dynamics of the closed-loop system.  The complementary

sensitivity (sensor uncertainty) function is weighted by W s3� �, and controller/limiter function is

weighted by W s2� � .  Once the augmented plant in equation (14) is formed, the two-Riccati

algorithm for the computation of the H∞ controller can be used (Doyle et. al., 1989).  The MIMO

state-space representation of the augmented plant in Equation (14) now becomes

�

�

�

�

x
x
x
x
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B C A

A
B C A

x
x
x
x

B B
B D B B D

B
B D

u
u
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w

w

w

g

w g w

w

w g w

g

w

w

w

g g

w g w w g

w

w g

a

b
1

2

3

1

2

3

1

1

2

0 0 0
0 0

0 0 0
0 0

0

0 0
0 0

1 1

2

3 3

1 2

1 1 1 1 2

2

3 2

�

�

�
�
�
�

�

�

�
�
�
�
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�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
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�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�

�
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� (16)

with output given by

y

y

y

y

D C C

C

D C C

C

x
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D D D D D

D

D D

D I D
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(17)

PERFORMANCE WITH ACLD AND AC/PCLD TREATMENTS
In this section, the experimental performance characteristics of beams treated with ACLD

treatments are determined and compared with those treated with the AC/PCLD treatments at

different operating temperature and frequency.  The comparisons presented include the vibration,

damping characteristics, and control voltages, as well as comparisons between the theoretical

predictions and experimental measurements.
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Properties of Base Beam, Visco-Elastic and Constraining Layers

Table 1 lists the main physical, geometrical, and dynamical properties of the base beam. The

beam is made of aluminum and is mounted in a cantilevered configuration.  The first natural

frequency of the untreated test beam is 7.02 Hz and the corresponding modal damping ratio is

0.0173, as determined experimentally using classical modal analysis techniques.

Table 1 - Main Properties of the Base Beam

Length
(L – m)

Width
(b – m)

Thickness
(h3 – cm)

Density
(kg/m3)

Young’s Modulus
(GN/m2)

First Mode
Freq.   Damp.

0.263 0.0492 0.0813 2700 70.2 7 Hz    1.73%

The beam treatment of the ACLD and AC/PCLD consists of a visco-elastic sheet of DYAD-

606 from SOUNDCOAT sandwiched between two piezo-electric layers from AMP, Inc. (Valley

Forge, PA).  The piezo-electric layers are made from PVDF polymeric films number S028NAO.

Table 2 lists the physical and geometrical parameters of the visco-elastic and piezo-electric

layers.   Under open-loop conditions, the experimental first natural frequency of the fully-treated

test beam becomes 6.76 Hz, and the corresponding modal damping ratio is 0.022.

Table 2 - Physical and Geometrical Properties of the ACLD and PCLD Treatments

Layer Length
(m)

Width
(m)

Thickness
(m)

Density
(kg/m3)

Modulus
(Mpa)

Viscoelastic 0.263 0.0492 0.0005 1104 20*
Piezoelectric 0.263 0.0492 28x10-6 1800 2250**

** Young's modulus             * shear modulus

The shear modulus and loss factor of the visco-elastic material used in this study are shown

in Figures 6a and 6b, respectively, at different operating temperatures and frequencies. The

figures demonstrate clearly that the complex modulus of the visco-elastic core varies

dramatically, when the operating temperature is varied from 20° C to 50° C, and the frequency is

scanned over a 100Hz-bandwidth.   Such pronounced changes in the properties of the visco-

elastic layer introduce significant uncertainties in the parameters of the ACLD and AC/PCLD

treatments.  Figure 7 shows the theoretical transfer functions of beams treated with the ACLD

and AC/PCLD.  The displayed transfer functions relate the transverse displacement we of the free

end of the beam to the inputs to the piezo-electric actuators at 20° C to 50° C.  Five beam

elements are used to compute the transfer functions with a total of 16 degrees of freedom.
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EXPERIMENTAL SET-UP
Figure 8 shows a schematic drawing of the experimental set-up used to compare the

performance of the effectiveness of the ACLD and the AC/PCLD in attenuating the vibration of

the test beam.  The test beam is excited by an electro-mechanical speaker driven by a sinusoidal

or white noise source through a power amplifier.  The amplitude of vibration of the free end of

the beam is monitored by a laser sensor (Model MQ - Aeromat Corp., Providence, NJ).  The

output signal of the sensor is sent to a spectrum analyzer to determine the vibration attenuation

both in the time and frequency domains.  The laser sensor has accuracy of 20 µm over a

frequency band between 0-1000 Hz.

The sensor signal is sampled at a rate of 0.005 s using a dSPACE input-output system, which

includes a DS1002 33Mhz processor board, DS2002 32 channel A/D board, and DS2101 5

channel D/A board.  The signal is manipulated using either the robust H∞ control law or the

conventional PD control law.  The resulting control action is sent via an analog power amplifier

(Model PA7C from Wilcoxon Research, Rockville, MD) to either the piezo-electric constraining

layer in the case of the ACLD treatment or the bottom piezo-electric actuator in the case of the

AC treatment.

EXPERIMENTAL RESULTS
In this section, the experimental results using a PD and an H∞ control law for the ACLD and

AC/PCLD systems are shown.  First, the identification method and open-loop characteristics of

each system are summarized.  Then, the design approach for each control law and system is

shown.  Finally, the performance and robustness of each controller are tested in order to access

the validity of the design approaches with analytical comparisons.

Open-Loop Characteristics of the ACLD/Beam System

A state model is required to perform an optimal control design.  The Eigensystem Realization

Algorithm (ERA) provides a viable approach for determining MIMO models from experimental

data.  The test beam is excited using random inputs at the speaker and control input locations.

The random response and input data is then converted to impulse response data, which is used in

ERA to identify a state-space-model.  Figure 9 shows the open-loop (i.e., from the speaker

excitation to the laser sensor output) transfer-function magnitude plots for the AC/PCLD and

ACLD systems.  It is clearly seen that the first mode is at about 7 Hz, which agrees with the
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theoretical analysis.  Also, the magnitude difference between the AC/PCLD and ACLD at the

first mode is about 20 dB, which also agrees with theoretical prediction.  The second mode of the

test beam is at about 47 Hz, which is significantly more damped than the first mode.

Robust Control Design

In this section, the concepts and limitations for the selection of the proper weighting

functions used in the H∞ design are presented.  The appropriate selection of the weighting

functions over the desired frequency range is not explicitly related to the performance objectives

in a straightforward manner.  Numerous trial weighting functions are usually required in order to

obtain desired performance objectives.

The goal of the H∞ design is to reshape the open-loop dynamics in order to provide vibration

suppression in the frequency region considered.  The W1 (sensitivity) weighting function is used

to reshape the desired frequency characteristics to provide adequate damping in the test beam.

The W3 weighting function is used as an uncertainty weight for the sensor output.  Since the laser

sensor is extremely accurate, this weighting function was not deemed to be critical; therefore, it

was omitted in the initial control design.  The W2 weighting function is used to shape the control

response characteristics.  The overall controller is derived by incorporating all weighting

functions and open-loop models into the augmented system shown by equations (16) and (17).

The H∞ design is used to target the first model of the test beam.  A plot of the inverse W1 and

W2 weighting functions is shown in Figure 10.  The W1
1−  function weights the sensitivity

function along the zero dB region over the desired target frequency.  The W2
1−  function is used to

obtain an attenuated controller response at both lower and higher frequencies.  This results in a

third-order weighting functions that simulates a band-pass filter.  The choice of this weighting

function insures that the controller does not destabilize higher frequency modes, and also

attenuates control signals at lower frequencies.

The selection of these weighting functions provides adequate damping in the closed-loop

system.  An optimal H∞ controller solution, using the γ iteration technique (Doyle et. al., 1989)

can be determined.  The order of the subsequent controller is 13, which is effectively reduced to a

2nd-order controller using the Schur balanced model reduction method (Safanov and Chiang,

1988).  The PD control gains chosen to provide adequate damping performance in the first mode
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of the test beam.  A plot of the H∞ and PD control magnitudes for the ACLD system is shown in

Figure 11.  A plot of the simulated damping responses using the two controllers is shown in

Figure 12.  Clearly, both controllers are able to attenuate the first mode of the test beam.  Also,

the second mode becomes less damped using the PD controller, as compared to the open-loop

response.  This may be due to spillover effects from the high frequency amplification of the PD

controller.

Control Results

In this section, results using the H∞ and PD controllers are shown for the actual test beam.

Two sets of test cases are presented.  The first set involves using the controllers on the AC/PCLD

and ACLD systems at room temperature (20° C).  The second case involves the controllers on

both systems at a temperature of 50° C.  As shown previously, such pronounced temperature

changes introduce significant uncertainties in the parameters of the ACLD and AC/PCLD

treatments.

The H∞ and PD controllers are designed to damp the first mode of the test beam using the

room temperature model only.  Sensitivity to uncertainties can be investigated by applying small

gain theory to the closed-loop system.  This is accomplished by using a sufficiency test for

stability robustness with a multiplicative uncertainty (Crassidis et. al., 1994), given by

σ
σ

∆m s
F s I G s F s

� �
� � � � � �� �

<
+ −

1
1 (18)

where ∆m s� � denotes multiplicative uncertainties and σ  denotes the maximum singular value

over the desired frequency region.  A plot of the theoretical uncertainty bound, using the right

hand side of equation (18), for the ACLD system at room temperature using the H∞ and PD

controllers is shown in Figure 13.  Although the PD controller is well-known for providing

damping in a system due to phase margin enhancement, Figure 13 indicates that the PD

controller is susceptible to uncertainties in the first mode.

A plot of the actual controlled responses for the ACLD system at room temperature is shown

in Figure 14.  Damping has been increased by more than of factor of two for both controllers.

This shows excellent agreement with design results in Figure 12 for both modes.  A plot of the

controlled responses for the AC/PCLD system at room temperature is shown in Figure 15.  These



15

results have been achieved after numerous trial parameter tuning of the PD gains.  For this case

the H∞ controller outperforms the PD controller.  This may be due to the fact that the AC/PCLD

system requires a higher DC gain than the ACLD case, which the simple PD controller cannot

provide without amplifying higher modes.  The next test case involves both systems and

controllers at the higher temperature (50° C).  Plots of the ACLD and AC/PCLD systems for this

case are shown in Figures 16 and 17.  Clearly, the H∞ controller provides robustness over a wide

variation in visco-elastic property changes.  The PD controller provides robustness in the second

mode, but lacks robustness in the first mode, which agrees with theoretical predictions in Figure

13.  In fact the PD controlled response is even worse than the open-loop response for the

AC/PCLD case, while the H∞ controller remains at the original damping performance.

Therefore, the study clearly indicates that the H∞ control scheme provides an effective means for

damping out structural vibrations for both systems over a wide temperature variation.  Finally,

the ACLD requires less control effort (about 1/2) than the AC/PCLD system.  This is shown by

applying an impulse input of 1 mVolt into the H∞ controller for both the ACLD and AC/PCLD.

The control output for both cases is shown in Figure 18.  Therefore, since active control effort is

less, the ACLD system provides a more effective means for broad-band attenuation as compared

to the AC/PCLD system.

CONCLUSIONS
This paper has presented a theoretical and experimental comparisons between the damping

characteristics of beams treated with ACLD and AC/PCLD treatments.  In these comparisons the

individual contribution of the active and passive damping components, to the overall damping

characteristics, is quantified when these two components operate separately as in the AC/PCLD

treatments, and when both are combined to interact in unison as in the ACLD treatments.  The

comparisons are based on experimentally validated finite element models which are developed to

describe the dynamics of beams controlled with AC/PCLD as well as beams treated with ACLD

treatments.

These models are used to derive expressions for the transfer functions of the beam/treatment

systems and devise a robust H∞ control strategy which is stable in the presence of parameter

uncertainty.  Furthermore, the developed control strategy also insures optimal disturbance

rejection capabilities.  Experimental results are presented to demonstrate the effectiveness of the
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robust controller in damping out structural vibrations when the ACLD and AC/PCLD treatments

operate over wide temperature and frequency ranges.  Under similar operating circumstances, it

is found that a simple PD controller fails to produce any significant vibration control when the

stability constraints are imposed over the entire range of operation.

Finally, it is important to note that the ACLD treatment is found to be more effective in

damping the structural vibration than the AC/PCLD treatment.  It requires less control effort in

the presence of external disturbances and parameter uncertainty.

Acknowledgments: This work is funded by the U.S. Army Research Office (Grant number

DAAH-04-96-0317).  Special thanks are due to Dr. Gary Anderson, the technical monitor, for his

invaluable technical inputs.

REFERENCES
1. Alberts, T., Dickerson, S., and Book, W., 1986, “On the Transfer Function Modeling of

Flexible Structures With Distributed  Damping,” in Robotics: Theory and Applications,

ASME, New York, 23-30.

2. Agnes, G. S. and Napolitano, K., 1993, “Active Constrained Layer Viscoelastic Damping,” in

Proceedings of 34th SDM Conference, April, 3499-3506.

3. Azvine, B., Tomlinson G. and Wynne, R., 1994, “Initial Studies into the Use of Active

Constrained-Layer Damping for Controlling Resonant Vibrations,” in Proceedings of Smart

Structures and Materials Conference on Passive Damping, ed. C. Johnson, Vol. 2193,

Orlando, Florida, 138-149.

4. Bailey, T. and Hubbard, J.,  1985, “Distributed Piezo-electric Polymer Active Vibration

Control of a Cantilever Beam,” Journal of Guidance and Control, Vol. 8, 606-611.

5. Baz, A., 1996, “Active Constrained Layer Damping,” U.S. Patent #5,485,053.

6. Baz, A., 1997, “Boundary Control of Beams Using Active Constrained Layer Damping,”

ASME Journal of Vibration and Acoustics, Vol. 199, 166-172.

7. Baz, A., 1998, “Robust Control of Active Constrained Layer Damping,” Journal of Sound

and Vibration, Vol. 221, No. 3, pp.467-480.

8. Baz, A. and Ro, J., 1993, “Partial Treatment of Flexible Beams with Active Constrained



17

Layer Damping,” Conference of Engineering Sciences Society, ASME-AMD-Vol. 167, pp.

61-80, Charlottesville, VA, June, 61-80.

9. Baz, A. and Ro, J., 1994, “Actively-Controlled Constrained Layer Damping,” Sound &

Vibration Magazine, Vol. 28, No. 3, 18-21.

10. Baz, A. and Ro, J., 1995, “Optimum Design and Control of Active Constrained Layer

Damping,” ASME Journal of Vibration and Acoustics, Vol. 117 B, 135-144.

11. Boyd, S. and Barratt, C., 1991, Linear Controller Design: Limits of Performance, Prentice

Hall, Englewood Cliffs, NJ.

12. Butkovskiy, A.G., Distributed Control Systems, 1969, American Elsevier Publishing Co.,

Inc., New York.

13. Chen, T. and Baz, A., 1996, “Performance Characteristics of Active Control with Passive

Constrained Layer Damping versus Active Constrained Layer Damping,” Conference on

Smart Materials and Structures, San Diego, CA.

14. Crawley, E. and DeLuis, J., 1987, “Use of Piezoelectric Actuators as Elements in Intelligent

Structures,” J. of AIAA, Vol. 25, No. 10, 1373-1385.

15. Crassidis, J.L., Leo, D.J., Inman, D.J., and Mook, D.J., 1994, “Robust Identification and

Vibration Suppression of a Flexible Structure,” Journal of Guidance, Control, and Dynamics,

Vol. 17, No. 5, 921-928.

16. Dahleh, M. and Diaz-Bobillo, I., 1995, Control of Uncertain Systems: A Linear

Programming Approach, Prentice Hall, Englewood Cliffs, NJ.

17. Dorato, P., Abdallah C., and Cerone, V., 1995, Linear Quadratic Control: An Introduction,

Prentice Hall, Englewood Cliffs, NJ.

18. Dosch, J.J., Inman, D.J., and Garcia, E., 1992, “A Self-Sensing Piezoelectric Actuator for

Collocated Control,” J. of Intelligent Material Systems and Structures, Vol. 3, 166-184.

19. Douglas, B.E. and Yang, J., 1978,“Transverse Compressional Damping in the Vibratory

Response of Elastic-Viscoelastic-Elastic Beams,” AIAA Journal, Vol. 16, No. 9, 925-930.

20. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., 1989,“State-Space Solutions



18

of Standard H2 and H∞ Control Problems,” IEEE Transactions on Automatic Control, Vol.

AC-29, 831-847.

21. Edberg, D. and Bicos, A., 1992, “Design and Development of Passive and Active Damping

Concepts for Adaptive Structures,” Conference on Active Materials and Adaptive Structures,

ed. by G. Knowles, IOP Publishing Ltd., Bristol, UK, 377-382.

22. Juang, R. N., Applied System Identification, 1994, Prentice Hall, Englewood Cliffs, NJ.

23. Lam, M.J., Saunders, W.R., and Inman, D.J., 1995, “Modeling Active Constrained Layer

Damping using Finite Element Analysis and GHM Damping Approach,” Smart Structures

and Materials Conference, Paper number 2445-09, San Diego, CA, March.

24. Liao, W. and Wang, K., 1995, “On the Active-Passive Hybrid Vibration Control Actions of

Structures with Active Constrained Layer Damping,” ASME Design Engineering Technical

Conference, Boston, MA, DE-Vol. 84-3, 125-141.

25. Maciejowski, J.M., Multivariable Feedback Design, 1989, Addison-Wesley Pub. Co.,

Wokingham, England.

26. Mead, D.J. and Markus, S., 1969, “The Forced Vibration of a Three-Layer, Damped

Sandwich Beam with Arbitrary Boundary Conditions,” Journal of Sound and Vibration, Vol.

10, No. 1, 163-175.

27. Meirovitch, L., Analytical Methods in Vibrations, 1967, MacMillan Pub. Co., Inc., New

York.

28. Miller, S. and Hubbard, Jr., J., 1987, “Observability of a Bernoulli-Euler Beam using PVF2

as a Distributed Sensor,” 7th Conference on Dynamics & Control of Large Structures, VPI &

SU, Blacksburg, VA, May, 375-930.

29. Nashif, A., Jones, D.I., and Henderson, J.P., 1985, Vibration Damping, J. Wiley & Sons,

New York.

30. Plump, J. and Hubbard, J.E., 1986, “Modeling of An Active Constrained  Layer Damper,”

Twelve International Congress on Acoustics, Paper # D41, Toronto, Canada, 24-31.

31. Rao, D.K., 1976, “Static Response of Stiffed-Cored Unsymmetric Sandwich Beams,” ASME



19

Journal of Engineering for Industry, Vol. 98, 391-396.

32. Safonov, M.G., and Chiang, R.Y., 1988, “A Schur Method for Balanced Model Reduction,”

in Proceedings of the American Control Conference, Atlanta, GA.

33. Shen, I.Y., 1994, “Hybrid Damping Through Intelligent Constrained Layer Treatments,”

ASME Journal of Vibration and Acoustics, Vol. 116, No. 3, 341-349.

34. Trompette, P., Boillot, D., and Ravanel, M.A., 1978, “The Effect of Boundary Conditions on

the Vibration of a Viscoelastically Damped Cantilever Beam,” Journal of Sound and

Vibration, Vol. 60, No. 3, 345-350.

35. Van Nostrand, W., Knowles, G., and Inman, D.J., 1994, “Finite Element Modeling for Active

Constrained-Layer Damping,” in Proceedings of Smart Structures and Materials Conference

on Passive Damping, ed. C. Johnson, Vol. 2193, Orlando, Florida, 126- 137.



Figure 1 - Schematic Drawing of the ACLD and AC/PCLD Treatments

Figure 2 - Finite Element Model of Beam Treated with ACLD and AC/PCLD
a - main geometry, b - deflections

Figure 3 - Block Diagram of the Robust Controller

Figure 4 - Block Diagram for Active Damping

Figure 5 - Augmented Closed-Loop System for Active Damping

Figure 6 - Complex Modulus of the Visco-Elastic Core

Figure 7 - Theoretical Transfer Functions of the Beam/Treatment Systems

Figure 8 - Schematic Drawing of Experimental Set-Up

Figure 9 - Open-Loop Transfer Functions

Figure 10 - Weighting Functions for Robust Control Design

Figure 11 - H∞∞ and PD Controllers for ACLD System

Figure 12 - H∞∞ and PD Controller Damping Simulation Results for ACLD System

Figure 13 - Theoretical Multiplicative Uncertainty Bound

Figure 14 - ACLD Closed-Loop Response Using H∞∞ and PD Controllers (20° C)

Figure 15 - AC/PCLD Closed-Loop Response Using H∞∞ and PD Controllers (20° C)

Figure 16 - ACLD Closed-Loop Response Using H∞∞ and PD Controllers (50° C)

Figure 17 - AC/PCLD Closed-Loop Response Using H∞∞ and PD Controllers (50° C)

Figure 18 - H∞∞ Control Comparison for ACLD and AC/PCLD Systems



F
wr ε p

Controller

Uncertainty

G

∆
Disturbance

w
Piezo-strain

Beam

D



F

G1

G2

U a1

U b1 U2 Y2E



U b1

G2

W2

F

G1

U a1

U2

U2 Y W3

W1 Ya1

Yb1

Yc1

Y2

E



0 10 20 30 40 50 60 70 80 90 100
−100

−80

−60

−40

−20

W (Hz)

A
C

/P
C

LD
 M

ag
ni

tu
de

 (
dB

)

0 10 20 30 40 50 60 70 80 90 100
−100

−80

−60

−40

−20

A
C

LD
 M

ag
ni

tu
de

 (
dB

)

Open−Loop Transfer Functions



10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35
Inverse Weighting Functions

M
ag

ni
tu

de
 (

dB
)

W (Hz)

Inv W1
Inv W2



0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

H
in

f M
ag

ni
tu

de
ACLD Controllers

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

P
D

 M
ag

ni
tu

de

W (Hz)



40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W (Hz)

T
ra

ns
fe

r 
F

un
ct

io
n 

M
ag

ni
tu

de

ACLD 2nd Mode (design)

Open Loop   
PD Control  
Hinf Control

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W (Hz)

T
ra

ns
fe

r 
F

un
ct

io
n 

M
ag

ni
tu

de
ACLD 1st Mode (design)



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−3

W (Hz)

R
es

po
ns

e 
(V

)
ACLD Uncontrolled Response (20 Deg.)



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

−3

W (Hz)

R
es

po
ns

e 
(V

)
AC Uncontrolled Response (20 Deg.)



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−3

W (Hz)

R
es

po
ns

e 
(V

)
ACLD Uncontrolled Response (50 Deg.)



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−3

W (Hz)

R
es

po
ns

e 
(V

)
AC Uncontrolled Response (50 Deg.)



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W (Hz)

M
ag

ni
tu

de
ACLD Theoretical Uncertainty Bound

Hinf Control
PD Control  



0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−3 ACLD 1st Mode (20)

W (Hz)

R
es

po
ns

e 
(V

)

Open Loop   
PD Control  
Hinf Control

40 45 50 55
0

0.5

1

1.5

2

2.5

3
x 10

−3 ACLD 2nd Mode (20)

W (Hz)

R
es

po
ns

e 
(V

)



0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−3 AC 1st Mode (20)

W (Hz)

R
es

po
ns

e 
(V

)

Open Loop   
PD Control  
Hinf Control

40 45 50 55
0

0.5

1

1.5

2

2.5

3
x 10

−3 AC 2nd Mode (20)

W (Hz)

R
es

po
ns

e 
(V

)



0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−3 ACLD 1st Mode (50)

W (Hz)

R
es

po
ns

e 
(V

)

Open Loop   
PD Control  
Hinf Control

40 45 50 55
0

0.5

1

1.5

2

2.5

3
x 10

−3 ACLD 2nd Mode (50)

W (Hz)

R
es

po
ns

e 
(V

)



0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−3 AC 1st Mode (50)

W (Hz)

R
es

po
ns

e 
(V

)

Open Loop   
PD Control  
Hinf Control

40 45 50 55
0

0.5

1

1.5

2

2.5

3
x 10

−3 AC 2nd Mode (50)

W (Hz)

R
es

po
ns

e 
(V

)



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5

10

A
C

LD
 O

ut
pu

t (
V

)
Control Output Comparison

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5

10

Time (sec)

A
C

/P
C

LD
 O

ut
pu

t (
V

)


