Mathematic Bohemia

Gary Chartrand; Ping Zhang
 H-convex graphs

Mathematica Bohemica, Vol. 126 (2001), No. 1, 209-220
Persistent URL: http://dml.cz/dmlcz/133908

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

H-CONVEX GRAPHS
Gary Chartrand, Ping Zhang, Kalamazoo

(Received May 13, 1999)

Abstract

For two vertices u and v in a connected graph G, the set $I(u, v)$ consists of all those vertices lying on a $u-v$ geodesic in G. For a set S of vertices of G, the union of all sets $I(u, v)$ for $u, v \in S$ is denoted by $I(S)$. A set S is convex if $I(S)=S$. The convexity number con (G) is the maximum cardinality of a proper convex set in G. A convex set S is maximum if $|S|=\operatorname{con}(G)$. The cardinality of a maximum convex set in a graph G is the convexity number of G. For a nontrivial connected graph H, a connected graph G is an H-convex graph if G contains a maximum convex set S whose induced subgraph is $\langle S\rangle=H$. It is shown that for every positive integer k, there exist k pairwise nonisomorphic graphs $H_{1}, H_{2}, \ldots, H_{k}$ of the same order and a graph G that is H_{i}-convex for all $i(1 \leqslant i \leqslant k)$. Also, for every connected graph H of order $k \geqslant 3$ with convexity number 2, it is shown that there exists an H-convex graph of order n for all $n \geqslant k+1$. More generally, it is shown that for every nontrivial connected graph H, there exists a positive integer N and an H-convex graph of order n for every integer $n \geqslant N$.

Keywords: convex set, convexity number, H-convex
MSC 2000: 05C12

1. Introduction

For two vertices u and v in a connected graph G, the distance $d(u, v)$ between u and v is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is also referred to as a $u-v$ geodesic. The interval $I(u, v)$ consists of all those vertices lying on a $u-v$ geodesic in G. For a set S of vertices of G, the union of all sets $I(u, v)$ for $u, v \in S$ is denoted by $I(S)$. Hence $x \in I(S)$ if and only if x lies on some $u-v$ geodesic, where $u, v \in S$. The intervals $I(u, v)$ were studied and characterized by Nebeský [13, 14] and were also investigated extensively in the book by Mulder [12],

[^0]where it was shown that these sets provide an important tool for studying metric properties of connected graphs. A set S of vertices of G with $I(S)=V(G)$ is called a geodetic set of G, and the cardinality of a minimum geodetic set is the geodetic number of G. The geodetic number of a graph was studied in [2]; while the geodetic number of an oriented graph was studied in [5].

A set S of vertices in a graph G is convex if $I(S)=S$. Certainly, $V(G)$ is convex. The convex hull $[S]$ of a set S of vertices of G is the smallest convex set containing S. So S is a convex set in G if and only if $[S]=S$. The smallest cardinality of a set S whose convex hull is $V(G)$ is called the hull number of G. The hull number of a graph was introduced by Everett and Seidman [9] and investigated further in [3], [7], and [11].

Convexity in graphs is discussed in the book by Buckley and Harary [1] and studied by Harary and Niemenen [10] and in [8]. For a nontrivial connected graph G, the convexity number $\operatorname{con}(G)$ was defined in [4] as the maximum cardinality of a proper convex set of G, that is,

$$
\operatorname{con}(G)=\max \{|S|: \quad S \text { is a convex set of } G \text { and } S \neq V(G)\}
$$

A convex set S in G with $|S|=\operatorname{con}(G)$ is called a maximum convex set. A nontrivial connected graph G of order n with $\operatorname{con}(G)=k$ is called a (k, n) graph. The convexity number was also studied in [6] and [8].

As an illustration of these concepts, we consider the graph G of Figure 1. Let $S_{1}=\{u, v, z\}, S_{2}=\{u, v, z, s\}$, and $S_{3}=\{u, v, z, s, y, t\}$. Since $\left[S_{1}\right]=S_{2} \neq S_{1}$, $\left[S_{2}\right]=S_{2}$, and $\left[S_{3}\right]=S_{3}$, it follows that S_{1} is not a convex set, while S_{2} and S_{3} are convex sets. However, S_{2} is not a maximum convex set as $4=\left|S_{2}\right|<\left|S_{3}\right|=6$. Moreover, it is routine to verify that there is no proper convex set in G containing more than six vertices of G and so $\operatorname{con}(G)=6$. Therefore, G is a $(6,8)$ graph.

Figure 1. Maximum convex sets

If S is a convex set in a connected graph G, then the subgraph $\langle S\rangle$ induced by S is connected. A goal of this paper is to study the structure of $\langle S\rangle$ for a maximum convex set S in G. For a nontrivial connected graph H, a connected graph G is called an H-convex graph if G contains a maximum convex set S such that $\langle S\rangle=H$. (We
write $G_{1}=G_{2}$ to indicate that the graphs G_{1} and G_{2} are isomorphic.) For example, the graph G of Figure 1 is an H-convex graph for the graph H of Figure 1 since S_{3} is a maximum convex set in G and $\left\langle S_{3}\right\rangle=H$. A single graph G can be an H-convex graph for many graphs H, as we now see.

Theorem 1.1. For each positive integer k, there exist k pairwise nonisomorphic graphs $H_{1}, H_{2}, \ldots, H_{k}$ of the same order and a graph G that is H_{i}-convex for all i $(1 \leqslant i \leqslant k)$.

Proof. For k pairwise nonisomorphic graphs $F_{i}(1 \leqslant i \leqslant k)$ of the same order, say p, let $H_{i}=\bar{K}_{2}+F_{i}$, where $V\left(\bar{K}_{2}\right)=\left\{u_{i}, v_{i}\right\}$. We claim that the graphs H_{i} $(1 \leqslant i \leqslant k)$ are pairwise nonisomorphic graphs. To show this, assume, to the contrary, that H_{1} and H_{2}, say, are isomorphic, and let f be an isomorphism from $V\left(H_{1}\right)$ to $V\left(H_{2}\right)$.

If $\left\{f\left(u_{1}\right), f\left(v_{1}\right)\right\}=\left\{u_{2}, v_{2}\right\}$, then the restriction of f to $V\left(F_{1}\right)$ induces an isomorphism from $V\left(F_{1}\right)$ to $V\left(F_{2}\right)$, a contradiction. If $\left\{f\left(u_{1}\right), f\left(v_{1}\right)\right\}$ contains exactly one vertex of $V\left(F_{2}\right)$, say $f\left(u_{1}\right)=u_{2}$ and $f\left(v_{1}\right) \in V\left(F_{2}\right)$, then the fact that $u_{1} v_{1} \notin E\left(H_{1}\right)$ and $u_{2} f\left(v_{1}\right) \in E\left(H_{2}\right)$ implies that f is not an isomorphism, again a contradiction. Hence $\left\{f\left(u_{1}\right), f\left(v_{1}\right)\right\} \subseteq V\left(F_{2}\right)$. Then $f(u)=u_{2}$ and $f(v)=v_{2}$, where $u, v \in V\left(F_{1}\right)$, and $f\left(u_{1}\right)=w$ and $f\left(v_{1}\right)=z$, where $w, z \in V\left(F_{2}\right)$. So $u v \notin E\left(H_{1}\right)$ and $w z \notin E\left(H_{2}\right)$. Since $\operatorname{deg}_{H_{1}} u=\operatorname{deg}_{H_{2}} u_{2}=p$ and $\operatorname{deg}_{H_{1}} v=\operatorname{deg}_{H_{2}} v_{2}=p$, it follows that u and v are adjacent to every vertex in $V\left(H_{1}\right)-\{u, v\}$. Similarly, w and z are adjacent to every vertex in $V\left(H_{2}\right)-\{w, z\}$.

Define a mapping g from $V\left(H_{1}\right)$ to $V\left(H_{2}\right)$ by $g\left(u_{1}\right)=u_{2}, g\left(v_{1}\right)=v_{2}, g(u)=w$, $g(v)=z$, and $g(t)=f(t)$ for all $t \in V\left(H_{1}\right)-\left\{u_{1}, v_{1}, u, v\right\}$. It is routine to verify that g is an isomorphism from $V\left(H_{1}\right)$ to $V\left(H_{2}\right)$. Then the restriction of g to $V\left(F_{1}\right)$ induces an isomorphism from $V\left(F_{1}\right)$ to $V\left(F_{2}\right)$, which is impossible. Therefore, the graphs $H_{i}(1 \leqslant i \leqslant k)$ are pairwise nonisomorphic, as claimed.

Let G be the graph obtained from the complete bipartite graph $K_{k, k}$, whose partite sets are $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$, by replacing the edge $x_{i} y_{i}$ by H_{i} for each i with $1 \leqslant i \leqslant k$, where u_{i} is identified with x_{i} and v_{i} is identified with y_{i}. (The graph G is shown in Figure 2 for $k=3$.) The graph G has the desired properties.

A vertex v in a graph G is called an extreme vertex if the subgraph induced by its neighborhood $N(v)$ is complete. Connected graphs of order $n \geqslant 3$ containing an extreme vertex are precisely those having convexity number $n-1$. The following theorem appeared in [4].

Theorem A. Let G be a noncomplete connected graph of order n. Then $\operatorname{con}(G)=n-1$ if and only if G contains an extreme vertex.

Figure 2. An H_{i}-convex graph $(i=1,2,3)$

Theorem A implies that if H is a connected graph of order k, then the graph G of order $k+1$ obtained by adding a pendant edge to H is an H-convex graph.

2. The cartesian product of graphs

We now consider the relationship between $\operatorname{con}(H)$ and $\operatorname{con}\left(H \times K_{2}\right)$ for a connected graph H. Let $H \times K_{2}$ be formed from two copies H_{1} and H_{2} of H, where corresponding vertices of H_{1} and H_{2} are adjacent. Let $S_{i} \subseteq V\left(H_{i}\right)$ for $i=1,2$. Then S_{2} is called the projection of S_{1} onto H_{2} if S_{2} is the set of vertices in H_{2} corresponding to the vertices of H_{1} that are in S_{1}. We begin with a lemma concerning convex sets in $H \times K_{2}$.

Lemma 2.1. For a nontrivial connected graph H, let $H \times K_{2}$ be formed from two copies H_{1} and H_{2} of H, where corresponding vertices of H_{1} and H_{2} are adjacent. Then every convex set of $H \times K_{2}$ is either
(1) a convex set in H_{1},
(2) a convex set in H_{2}, or
(3) $S_{1} \cup S_{2}$, where S_{1} is convex in H_{1} and S_{2} is the projection of S_{1} onto H_{2}.

Proof. Let S be a convex set in $H \times K_{2}$. If $S \subseteq V\left(H_{i}\right), i=1,2$, then S is a convex set of H_{i}, implying that (1) or (2) holds. Otherwise, $S_{i}=S \cap V\left(H_{i}\right) \neq \emptyset$, $i=1,2$, and $S=S_{1} \cup S_{2}$. Assume, to the contrary, that S_{2} is not the projection of S_{1} onto H_{2}. Then there exist corresponding vertices $x \in V_{1}$ and $x^{\prime} \in V_{2}$ such that exactly one of these belongs to $S_{1} \cup S_{2}$, say $x \notin S_{1}$ and $x^{\prime} \in S_{2}$. Let $y \in S_{1}$ and let P be an $x-y$ geodesic in H_{1}. Then the $x^{\prime}-y$ path Q beginning at x^{\prime} and followed by P is a geodesic, implying that $V(Q) \subseteq S_{1} \cup S_{2}$. So $x \in S_{1}$, a contradiction. Therefore, (3) holds.

Theorem 2.2. If H is a connected graph of order at least 2, then

$$
\operatorname{con}\left(H \times K_{2}\right)=\max \{|V(H)|, 2 \operatorname{con}(H)\}
$$

Proof. Let S be a maximum convex set in $H \times K_{2}$, where $H \times K_{2}$ is formed from two copies H_{1} and H_{2} of H. If $S \cap V\left(H_{i}\right)=\emptyset$ for some $i(i=1,2)$, say $S \cap V\left(H_{2}\right)=\emptyset$, then $S=V\left(H_{1}\right)$ since S is a maximum convex set. Hence $|S|=$ $\operatorname{con}\left(H \times K_{2}\right)=\left|V\left(H_{1}\right)\right|=|V(H)|$. Otherwise, $S_{i}=S \cap V\left(H_{i}\right) \neq \emptyset$ for $i=1,2$, and $S=S_{1} \cup S_{2}$, where by Lemma 2.1, S_{2} is the projection of S_{1} onto H_{2}. Again, since S is a maximum convex set in $H \times K_{2}$, it follows that S_{i} is a maximum convex set in H_{i} for $i=1,2$. Thus $|S|=\operatorname{con}\left(H \times K_{2}\right)=\left|S_{1} \cup S_{2}\right|=2 \operatorname{con}(G)$. Therefore, $\operatorname{con}\left(H \times K_{2}\right)=\max \{|V(H)|, 2 \operatorname{con}(H)\}$.

As an illustration of Theorem 2.2, for $H=P_{4}, C_{4}, K_{2,3}$, the graphs $H \times K_{2}$ are shown of Figure 3. Now $\left|V\left(P_{4}\right)\right|=4$ and $\operatorname{con}\left(P_{4}\right)=3$, so $\operatorname{con}\left(P_{4} \times K_{2}\right)=2 \operatorname{con}\left(P_{4}\right)=$ 6. Also, $\left|V\left(C_{4}\right)\right|=4$ and $\operatorname{con}\left(C_{4}\right)=2$, so $\operatorname{con}\left(C_{4} \times K_{2}\right)=\left|V\left(C_{4}\right)\right|=2 \operatorname{con}\left(C_{4}\right)=4$. Moreover, $\left|V\left(K_{2,3}\right)\right|=5$ and $\operatorname{con}\left(K_{2,3}\right)=2$, so $\operatorname{con}\left(K_{2,3} \times K_{2}\right)=\left|V\left(K_{2,3}\right)\right|=5$. A maximum convex set is indicated in each graph in Figure 3.

Figure 3. The graphs $P_{4} \times K_{2}, C_{4} \times K_{2}$, and $K_{2,3} \times K_{2}$
The following corollaries are immediate consequences of Theorem 2.2.
Corollary 2.3. If H is a nontrivial connected graph of order k with $\operatorname{con}(H) \leqslant k / 2$, then there exists an H-convex graph of order $2 k$.

Corollary 2.4. If H is a nontrivial connected graph, then for $n \geqslant 2$,

$$
\operatorname{con}\left(H \times Q_{n-1}\right)=2^{n-2} \max \{|V(H)|, 2 \operatorname{con}(H)\}
$$

In particular, for $n \geqslant 2$, $\operatorname{con}\left(Q_{n}\right)=2^{n-1}$.
Proof. We proceed by induction on n. If $n=2$, then $H \times Q_{1}=H \times K_{2}$ and the result is trivial. Assume that $\operatorname{con}\left(H \times Q_{k-1}\right)=2^{k-2} \max \{|V(H)|, 2 \operatorname{con}(H)\}$ for some $k \geqslant 2$. Since $H \times Q_{k}=\left(H \times Q_{k-1}\right) \times K_{2}$, it follows by Theorem 2.2 and the induction hypothesis that

$$
\begin{aligned}
\operatorname{con}\left(H \times Q_{k}\right) & =\max \left\{\left|V\left(H \times Q_{k-1}\right)\right|, 2 \operatorname{con}\left(H \times Q_{k-1}\right)\right\} \\
& =\max \left\{2^{k-1}|V(H)|, 2\left[2^{k-2} \max \{|V(H)|, 2 \operatorname{con}(H)\}\right]\right\} \\
& =2^{k-1} \max \{|V(H)|, \max \{|V(H)|, 2 \operatorname{con}(H)\}\} \\
& =2^{k-1} \max \{|V(H)|, 2 \operatorname{con}(H)\}
\end{aligned}
$$

Therefore, $\operatorname{con}\left(H \times Q_{n-1}\right)=2^{n-2} \max \{|V(H)|, 2 \operatorname{con}(H)\}$. For $H=K_{2}, H \times Q_{n-1}=$ Q_{n} and $H \times K_{2}=C_{4}$. Thus $\operatorname{con}\left(Q_{n}\right)=2^{n-2} \operatorname{con}\left(C_{4}\right)=2^{n-2} \cdot 2=2^{n-1}$.

Corollary 2.5. For $n \geqslant 2, Q_{n+1}$ is a Q_{n}-convex graph. Indeed, Q_{n} is the unique graph H such that Q_{n+1} is H-convex.

By an argument similar to that employed in the proof of Theorem 2.2, we have the following result.

Theorem 2.6. If H is a connected graph of order at least 2, then

$$
\operatorname{con}\left(H \times K_{n}\right)=\max \{(n-1)|V(H)|, n \operatorname{con}(H)\}
$$

3. H-CONVEX GRAPHS OF LARGE ORDER

We have seen that if H is a connected graph of order k, then there exists an H convex graph of order $k+1$. If H is complete, however, then there exists an H-convex graph of order n for all $n \geqslant k+1$.

Theorem 3.1. For $k \geqslant 2$, there exists a K_{k}-convex graph of order n for all $n \geqslant k+1$.

Proof. For vertices x and y in the complete graph K_{k+1}, let $F=K_{k+1}-x y$. Clearly, F is a K_{k}-convex graph of order $k+1$. Thus we may assume that $n \geqslant$ $k+2$. Let G be the graph obtained from F by adding $n-k-1(\geqslant 1)$ new vertices $v_{1}, v_{2}, \ldots, v_{n-k-1}$ and the $2(n-k-1)$ edges $x v_{i}$ and $y v_{i}, 1 \leqslant i \leqslant n-k-1$. The graph G is shown in Figure 4. Let $S=V(F)-\{x\}$. Since $\langle S\rangle=K_{k}$, it follows that S is convex. It remains to show that S is a maximum convex set in G.

Figure 4. A K_{k}-convex graph of order n

Let S^{\prime} be a convex set of G with $\left|S^{\prime}\right|=\operatorname{con}(G) \geqslant k$. Since $I(x, y)=V(G)$, it follows that S^{\prime} contains at most one of x and y. Let $X=\left\{v_{1}, v_{2}, \ldots, v_{n-k-1}\right\}$. We claim that $S^{\prime} \cap X=\emptyset$. Assume, to the contrary, that this is not the case. First
assume that S^{\prime} contains two vertices of X, say $v_{1}, v_{2} \in S^{\prime}$. Then $x, y \in I\left(v_{1}, v_{2}\right)$ and so $I\left(S^{\prime}\right)=V(G)$, a contradiction. Hence S^{\prime} contains exactly one vertex of X, say v_{1}. Since $k \geqslant 3$, it follows that S^{\prime} contains at least two distinct vertices $u, v \in V(F)$. We may assume, without loss of generality, that $u \neq x, y$ as S^{\prime} contains at most one of x and y. Since x and y lie on a $u-v_{1}$ geodesic, it follows that $x, y \in I\left(u, v_{1}\right)$ and so $I(u, v)=V(G)$, again a contradiction. Hence $S^{\prime} \cap X=\emptyset$, as claimed. Because S^{\prime} contains at most one of x and $y, \operatorname{con}(G)=\left|S^{\prime}\right| \leqslant k$ and so $\operatorname{con}(G)=k$.

We next show that for every connected graph H of order k with convexity number 2, there exists an H-convex graph of order n for all $n \geqslant k+1$. First note that if u, v, w is a path of length 2 in a connected graph G of order at least 4, then $\{u, v, w\}$ is convex if either $u w \in E(G)$ or v is the unique vertex mutually adjacent to u and w. We summarize this observation below.

Lemma 3.2. If G is a connected graph of order $n \geqslant 4$ with $\operatorname{con}(G)=2$, then every path of length 2 lies on a 4 -cycle in G but on no 3 -cycle.

The converse of Lemma 3.2 is not true since, for example, every path of length 2 in the n-cube $Q_{n}, n \geqslant 3$, lies on a 4 -cycle but on no 3 -cycle, while $\operatorname{con}\left(Q_{n}\right)=2^{n-1}$.

Theorem 3.3. For every connected graph H of order $k \geqslant 3$ with convexity number 2, there exists an H-convex graph of order n for all $n \geqslant k+1$.

Proof. If $k=3$, then $H=K_{3}$ or $H=P_{3}$. If $H=K_{3}$, then there exists an H-convex graph of order n for all $n \geqslant k+1$ by Theorem 3.1. For $H=P_{3}$, the cycles C_{5} and C_{6} are P_{3}-convex graphs of orders 5 and 6 , respectively, so we may assume that $n \geqslant 7$. Let G be an elementary subdivision of $K_{3, n-4}$ (shown in Figure 5). Since $S=\left\{u_{1}, v_{1}, w\right\}$ is a maximum convex set of G and $\langle S\rangle=P_{3}$, it follows that G is a P_{3}-convex graph of order n.
G :

Figure 5. A P_{3}-convex graph of order n

Assume next that $k=4$. Since $\operatorname{con}(H)=2$, it follows that H contains neither triangles nor extreme vertices. This implies that $H=C_{4}$. For each $n \geqslant 5$, a C_{4}-convex graph of order n is shown in Figure 6.

We now assume that $k \geqslant 5$. Since there always exists an H-convex graph of order $k+1$, we assume that $n \geqslant k+2$. Again, H contains no triangles. If $n=k+2$,

Figure 6. C_{4}-convex graphs
then the graph G obtained from H by adding two new vertices x, y and the edges $u x, x y, y v$, where $u v \in E(H)$, has the desired properties. So we may assume that $n=k+l$, where $l \geqslant 3$. Let x, z, y be a path of length 2 in H. Thus $x y \notin E(H)$. Let $F=K_{2, l-1}$ whose partite sets are $V_{1}=\left\{u_{1}, u_{2}\right\}$ and $V_{2}=\left\{v_{1}=z, v_{2}, \ldots, v_{l-1}\right\}$ such that $V(H) \cap V(F)=\{z\}$. The graph G is constructed from H and F by adding the edges (1) $y v_{i}(2 \leqslant i \leqslant l-1)$ and (2) $x u_{j}$ for $j=1,2$. Thus $y v_{i} \in E(G)$ for $1 \leqslant i \leqslant l-1$ and $x v_{i} \in E(G)$ if and only if $i=1$. The graphs H and G are shown in Figure 7. The order of G is $k+l=n$. Since $S=V(H)$ is convex and $\langle S\rangle=H$, it remains to show that S is a maximum convex set in G.

Figure 7. Graphs H and G
First we make an observation. For any two nonadjacent vertices $z^{\prime}, z^{\prime \prime}$ of F, it follows that $u_{1}, u_{2} \in\left[\left\{z^{\prime}, z^{\prime \prime}\right\}\right]$, implying that $\left\{x, y, z=v_{1}\right\} \subseteq\left[\left\{z^{\prime}, z^{\prime \prime}\right\}\right]$. Since $\operatorname{con}(H)=2$, it follows that $V(H) \subseteq[\{x, y, z\}]$ and so $\left[\left\{z^{\prime}, z^{\prime \prime}\right\}\right]=V(G)$. Hence if S_{0} is a set of vertices containing two nonadjacent vertices of F, then $\left[S_{0}\right]=V(G)$. Thus there is no maximum convex set in G containing two nonadjacent vertices of F.

Assume, to the contrary, that there exists a convex set S^{\prime} in G, where $k+1 \leqslant$ $\left|S^{\prime}\right|<n$. Then $S^{\prime} \cap(V(G)-S)=S^{\prime} \cap(V(F)-\{z\}) \neq \emptyset$. Assume first that $z \in S^{\prime}$. Then S^{\prime} contains exactly one of u_{1} and u_{2}, say u_{1}, and, in fact, $S^{\prime}=S \cup\left\{u_{1}\right\}$. Since $d\left(y, u_{1}\right)=2$, it follows that $\left\{v_{2}, v_{3}, \ldots, v_{l-1}\right\} \subseteq\left[\left\{u_{1}, y\right\}\right] \subseteq S^{\prime}$, and so $S^{\prime}=V(G)$, a contradiction. Hence $z \notin S^{\prime}$. Since S^{\prime} does not contain two nonadjacent vertices of F, it follows that S^{\prime} contains exactly two (necessarily adjacent) vertices of $V(F)-\{z\}$ and that $V(H)-\{z\} \subseteq S^{\prime}$. Hence $y \in S^{\prime}$ and S^{\prime} contains either u_{1} or u_{2}, say
u_{1}. Again, $\left\{v_{2}, v_{3}, \ldots, v_{l-1}\right\} \subseteq\left[\left\{u_{1}, y\right\}\right] \subseteq S^{\prime}$ and once again $S^{\prime}=V(G)$, which is impossible.

Since the complete bipartite graphs $K_{r, s}$, where $2 \leqslant r \leqslant s$, have convexity number 2 , we have the following corollary.

Corollary 3.4. For $2 \leqslant r \leqslant s$, there exists a $K_{r, s}$-convex graph of order n for all $n \geqslant r+s+1$.

We have seen that for some graphs H of order $k \geqslant 2$, there exist H-convex graphs of order n for all $n \geqslant k+1$. However, there are graphs H such that H-convex graphs of order n exist for some integers $n \geqslant k+1$ but not for all such integers n. For example, for each tree T of order $k \geqslant 4$, there is no T-convex graph of order $k+2$. To see this, first let $T=P_{k}$, where $k \geqslant 4$, and assume, to the contrary, that there exists a connected graph G of order $k+2$ with $\operatorname{con}(G)=k$ and having a maximum convex set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ such that $E(\langle S\rangle)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\}$. Necessarily, G contains no complete vertices. Let $V(G)-S=\{x, y\}$. Since G contains no endvertices, v_{1} and v_{k} are adjacent to at least one of x and y. If v_{1} and v_{k} are both adjacent to one of x and y, say x, then x lies on a $v_{1}-v_{k}$ geodesic in G and so S is not convex. So we may assume that $v_{1} x, v_{k} y \in E(G)$ and $v_{1} y, v_{k} x \notin E(G)$. If $x y \in E(G)$, then x and y lie on the $v_{1}-v_{k}$ geodesic v_{1}, x, y, v_{k}, which is impossible. Hence $x y \notin E(G)$. Since x is not an extreme vertex, $v_{i} x \notin E(G)$ for some i with $3 \leqslant i \leqslant k-1$. But then x lies on a $v_{1}-v_{i}$ geodesic, a contradiction. Therefore, there is no P_{k}-convex graph of order $k+2$.

Assume now that $T \neq P_{k}$. Thus T has at least three end-vertices. Assume, to the contrary, that there exists a connected graph G of order $k+2$ with $\operatorname{con}(G)=k$ and G contains a maximum convex set S such that $\langle S\rangle=T$, where $V(G)-S=\{x, y\}$. Necessarily, at least one of x and y is adjacent to at least two end-vertices of T, which is impossible. In fact, this argument implies that if T is a tree of order k with p end-vertices, then there exists no T-convex graph of order n with $k+2 \leqslant n \leqslant k+p-1$.

From what we have seen, there exist connected graphs H of order $k \geqslant 2$ such that for many integers $n \geqslant k+1$, no H-convex graph of order n exist. However, any such integers n with this property must be finite in number, as we now show.

Theorem 3.5. For every nontrivial connected graph H, there exists a positive integer N and an H-convex graph of order n for every integer $n \geqslant N$.

Proof. If H is a complete graph, then the result follows by Theorem 3.1. So we may assume that H is not complete and that $W=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ is a minimum geodetic set in H. Since H is not complete, W contains some pairs of nonadjacent vertices. We first construct a graph F_{q} for each integer $q \geqslant 3$. Let P and Q be two
copies of the path P_{q} of order q, where $P: x_{1}, x_{2}, \ldots, x_{q}$ and $Q: y_{1}, y_{2}, \ldots, y_{q}$. Then the graph F_{q} is obtained from P and Q by adding the edges $x_{i} y_{i+1}$ and $y_{i} x_{i+1}$ for $1 \leqslant i \leqslant q-1$. The graph F_{4} is shown in Figure 8.

F_{4} :

Figure 8. The graph F_{4}

We next construct a graph F by adding a copy of F_{q}, for some $q \geqslant 3$, for each pair $w_{i}, w_{j}, 1 \leqslant i<j \leqslant p$, of nonadjacent vertices of W as well as certain edges between this pair of vertices and F_{q}. If $d\left(w_{i}, w_{j}\right)=2$, then we add a copy $F_{i j}$ of F_{3} to H, where $V\left(F_{i j}\right)=\left\{x_{i j}(1), x_{i j}(2), x_{i j}(3)\right\} \cup\left\{y_{i j}(1), y_{i j}(2), y_{i j}(3)\right\}$, and the edges $\left.w_{i} x_{i j}(1), w_{i} y_{i j}(1), w_{j} x_{i j}(3)\right\}, w_{j} y_{i j}(3)$ (see Figure 9 (a)). If $d\left(w_{i}, w_{j}\right)=l_{i j} \geqslant 3$, then we add a copy $F_{i j}$ of $F_{l_{i j}}$ to H, where $V\left(F_{i j}\right)=\left\{x_{i j}(1), x_{i j}(2), \ldots, x_{i j}\left(l_{i j}\right)\right\}$ $\cup\left\{y_{i j}(1), y_{i j}(2), \ldots, y_{i j}\left(l_{i j}\right)\right\}$, and the edges $w_{i} x_{i j}(1), w_{i} y_{i j}(1), w_{j} x_{i j}\left(l_{i j}\right), w_{j} y_{i j}\left(l_{i j}\right)$ (see Figure $9(\mathrm{~b})$ for the case $l_{i j}=4$). The resulting graph is F. Let

$$
Y=\bigcup\left\{y_{i j}\left(\left\lceil l_{i j} / 2\right\rceil-1\right), y_{i j}\left(\left\lceil l_{i j} / 2\right\rceil\right), y_{i j}\left(\left\lceil l_{i j} / 2\right\rceil+1\right)\right\}
$$

where the union is taken over all pairs i, j with $1 \leqslant i<j \leqslant p$ for which $w_{i} w_{j} \notin E(G)$. Then Y is a subset of $V(F)$. Define $N=2+|V(F)|$ and let n be an integer such that $n \geqslant N$. Then $n=k+|V(F)|$ for some integer $k \geqslant 2$. We next construct a graph G from F by adding k new vertices $u_{1}, u_{2}, \ldots, u_{k}$ and the edges $u_{i} y$ for all $y \in Y$ and $1 \leqslant i \leqslant k$. Thus G has order n. Observe that if G contains four mutually adjacent vertices, then these four vertices must belong to H.

Figure 9. Constructing the graph G

Next we show that G is an H-convex graph. Let $S=V(H)$ and $\bar{S}=V(G)-V(H)$. Let $u, v \in S$. Observe that every $u-v$ geodesic in G contains only vertices of H. Hence S is convex in G and $\langle S\rangle=H$. It remains to show that S is a maximum convex set in G.

First we make some observations. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. If $u_{i}, u_{j} \in U$ and $u_{i} \neq u_{j}$, then $\left[\left\{u_{i}, u_{j}\right\}\right]=V(G)$. For any two nonadjacent vertices $z^{\prime}, z^{\prime \prime}$ of \bar{S},
$U \subseteq\left[\left\{z^{\prime}, z^{\prime \prime}\right\}\right]$, implying that $\left[\left\{z^{\prime}, z^{\prime \prime}\right\}\right]=V(G)$. Also, if $z \in \bar{S}$, then $[S \cup\{z\}]=V(G)$. Hence if S_{0} is a set of vertices containing either (1) two nonadjacent vertices of \bar{S} or (2) $S \cup\{z\}$ for some $z \in \bar{S}$, then $\left[S_{0}\right]=V(G)$.

Assume, to the contrary, that there exists a proper convex set S^{\prime} of G with $\left|S^{\prime}\right| \geqslant$ $|S|+1$. Then S^{\prime} contains at least one and at most three vertices of \bar{S} since no vertices of \bar{S} belong to a subgraph isomorphic to K_{4}. By the observations above, we have two cases.

Case 1. $(S-\{x\}) \cup\left\{z_{1}, z_{2}\right\} \subseteq S^{\prime}$, where $x \in S, z_{1}, z_{2} \in \bar{S}$, and $z_{1} z_{2} \in E(G)$. Since W is a geodetic set of H, it follows that x lies on a $w_{a}-w_{b}$ geodesic P^{\prime} in H, where $w_{a}, w_{b} \in W$ and $1 \leqslant a<b \leqslant p$. If $z_{1}, z_{2} \in V\left(F_{a b}\right)$, then $\left[\left(V\left(P^{\prime}\right)-\{x\}\right) \cup\right.$ $\left.\left\{z_{1}, z_{2}\right\}\right]=V(G)$. Since $\left(V\left(P^{\prime}\right)-\{x\}\right) \cup\left\{z_{1}, z_{2}\right\} \subseteq S^{\prime}$, it follows that $S^{\prime}=V(G)$, a contradiction. Thus at least one of z_{1} and z_{2} does not belong to $V\left(F_{a b}\right)$, say $z_{1} \notin V\left(F_{a b}\right)$. Assume first that $z_{1} \in V\left(F_{s t}\right)$, where $\{s, t\} \neq\{a, b\}$. Then $w_{s}, w_{t} \in S^{\prime}$ and $\left[\left\{w_{s}, w_{t}, z_{1}\right\}\right]=V(G)$. Otherwise, $z_{1} \in U$. Then $\left[\left\{w_{i}, w_{j}, z_{1}\right\}\right]=V(G)$ for every two nonadjacent vertices $w_{i}, w_{j} \in W$. This implies that $S^{\prime}=V(G)$, again a contradiction.

Case 2. $\left(S-\left\{x, x^{\prime}\right\}\right) \cup\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq S^{\prime}$, where $x, x^{\prime} \in S, z_{1}, z_{2}, z_{3} \in \bar{S}$, and $\left\langle\left\{z_{1}, z_{2}, z_{3}\right\}\right\rangle=K_{3}$. This implies that at least one of z_{1}, z_{2}, z_{3} belongs to U, say $z_{1}=u_{1}$. Since $\left[\left(V(H)-\left\{x, x^{\prime}\right\}\right) \cup\left\{u_{1}\right\}\right]=V(G)$ and $\left(V(H)-\left\{x, x^{\prime}\right\}\right) \cup\left\{u_{1}\right\} \subseteq S^{\prime}$, it follows that $S^{\prime}=V(G)$, which is impossible.

Therefore, G is H-convex.

References

[1] F. Buckley, F. Harary: Distance in Graphs. Addison-Wesley, Redwood City, 1990.
[2] G. Chartrand, F. Harary, P. Zhang: On the geodetic number of a graph. To appear in Networks.
[3] G. Chartrand, F. Harary, P. Zhang: On the hull number of a graph. To appear in Ars Combin.
[4] G. Chartrand, C.E. Wall, P. Zhang: The convexity number of a graph. Preprint.
[5] G. Chartrand, P. Zhang: The geodetic number of an oriented graph. Eur. J. Comb. 21 (2000), 181-189.
[6] G. Chartrand, P. Zhang: The forcing convexity number of a graph. To appear in Czech. Math. J.
[7] G. Chartrand, P. Zhang: The forcing hull number of a graph. To appear in J. Combin. Math. Combin. Comput.
[8] G. Chartrand, P. Zhang: Convex sets in graphs. To appear in Congress. Numer.
[9] M. G. Everett, S. B. Seidman: The hull number of a graph. Discrete Math. 57 (1985), 217-223.
[10] F. Harary, J. Nieminen: Convexity in graphs. J. Differential Geom. 16 (1981), 185-190.
[11] H. M. Mulder: The expansion procedure for graphs. Contemporary Methods in Graph Theory (R. Bodendiek, ed.). Wissenschaftsverlag, Mannheim, 1990, pp. 459-477.
[12] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum, Amsterdam, 1980.
[13] L. Nebeský: A characterization of the interval function of a connected graph. Czech. Math. J. 44 (1994), 173-178.
[14] L. Nebeský: Characterizing of the interval function of a connected graph. Math. Bohem. 123 (1998), 137-144.

Author's address: Gary Chartrand, Ping Zhang, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: zhang@math-stat.wmich.edu.

[^0]: Research supported in part by the Western Michigan University Faculty Research and Creative Activities Grant

