Electronic Journal of Graph Theory and Applications

H - E-Super magic decomposition of graphs

S. P. Subbiah ${ }^{\text {a }}$, J. Pandimadevi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics
Mannar Thirumalai Naicker College
Madurai Kamaraj University 625 004, Tamil Nadu, India.
${ }^{b}$ Department of Mathematics
EMG Yadava Women's College
Madurai Kamaraj University 625 014, Tamil Nadu, India.

jasminemtnc@gmail.com, pandimadevi87@yahoo.com

Abstract

An H-magic labeling in an H-decomposable graph G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots$, $p+q\}$ such that for every copy H in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is constant. The function f is said to be H - E-super magic if $f(E(G))=\{1,2, \ldots, q\}$. In this paper, we study some basic properties of m-factor- E-super magic labeling and we provide a necessary and sufficient condition for an even regular graph to be 2 -factor- E-super magic decomposable. For this purpose, we use Petersen's theorem and magic squares.

Keywords: H-decomposable graph; H - E-super magic labeling; 2-factor- E-super magic decomposable graph Mathematics Subject Classification : 05C78

1. Introduction

In this paper, we consider only finite and simple undirected graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$ respectively and we let $|V(G)|=p$ and $|E(G)|=q$. For graph theoretic notations, we follow [3, 4]. A labeling of a graph G is mapping that carries a set of graph elements, usually vertices and/or edges into a set of numbers, usually integers. Many kinds of labelings have been studied and an excellent survey of graph labeling can be found in [5].

Received: 19 October 2013, Revised: 01 April 2014, Accepted: 15 July 2014.

The notion of an E-super vertex magic labeling was introduced by Swaminathan and Jeyanthi [15] as in the name of super vertex magic labeilng and it was renamed as E-super vertex magic labeling by Marimuthu and Balakrishnan in [10]. A vertex magic total labeling is a bijection f from $V(G) \cup E(G)$ to the integers $1,2,3, \ldots, p+q$ with the property that for every $u \in V(G), f(u)+\sum_{v \in N(u)} f(u v)=k$ for some constant k. Such a labeling is E-super if $f(E(G))=\{1,2,3, \ldots, q\}$. A graph G is called E-super vertex magic if it admits an E-super vertex magic labeling. There are many graphs that have been proved to be an E-super vertex magic graph; see for instance [10, 15, 16]. In [10], Marimuthu and Balakrishnan proved that if a graph G of odd order can be decomposed into two Hamilton cycles, then G is an E-super vertex magic graph. The results of the article [10] can be found in [11]. In [17], Tao-Ming Wang and Guang-Hui Zhang gave the generalization of some results stated in [10] using 2-factors.

A covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq h$. Then, it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{h}\right)$ covering. If every H_{i} is isomorphic to a given graph H, then G admits an H-covering. A family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ of G is an H-decomposition of G if all the subgraphs are isomorphic to a graph $H, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for $i \neq j$ and $\bigcup_{i=1}^{h} E\left(H_{i}\right)=E(G)$. In this case, we write $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{h}$ and G is said to be H-decomposable. Suppose G is H-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called an H-magic labeling of G if there exists a positive integer k (called magic constant) such that for every copy H in the decomposition, $\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=k$. A graph G that admits such a labeling is called an H-magic decomposable graph. An H-magic labeling f is called and an H - E-super magic labeling if $f(E(G))=\{1,2, \ldots, q\}$. A graph that admits an H - E-super magic labeling is called an H-E-super magic decomposable graph. The sum of all vertex and edge labels on H is denoted by $\sum f(H)$.

The notion of H-super magic labeling was first studied by Gutiérrez and Lladó [6] in 2005. They proved that some classes of connected graphs are H-super magic. In 2007, Lladó and Moragas [8] studied the cycle-magic and cyclic-super magic behavior of several classes of connected graphs. They gave several families of C_{r}-magic graphs for each $r \geq 3$. In 2010, Ngurah, Salman and Susilowati [13] studied the cycle-super magic labeling of chain graphs, fans, triangle ladders, graphs obtained by joining a star $K_{1, n}$ with one isolated vertex, grids and books. Maryati et al. [12] studied the H-super magic labeling of some graphs obtained from k isomorphic copies of a connected graph H. In 2012, Roswitha and Baskoro [9] studied the H-super magic labeling for some classes of trees such as a double star, a caterpillar, a firecracker and a banana tree. In 2013, Kojima [18] studied the C_{4}-super magic labeling of the Cartesian product of paths and graphs. In 2012, Inayah et al. [7] studied magic and antimagic H-decompositions and Liang [19] studied cycle-super magic decompositions of complete multipartite graphs. In these above results, they call an H-magic labeling as an H-super magic if the smallest labels are assigned to the vertices. Here, we call an H-magic labeling as an $H-E$-super magic if the smallest labels are assigned to the edges. In many of the results about H-magic graphs, the host graph G is required to be H decomposable. If $H \cong K_{2}$, then an H-magic graph is an edge magic graph. The definition of
an H-magic decomposition is suggested by this observation. Also it is notable that the notions of super edge magic and E-super edge magic are the same [11].

Any spanning subgraph of a graph G is referred to as a factor of G. An m-regular factor is called an m-factor. A graph G is said to be factorable into the factors $G_{1}, G_{2}, \ldots, G_{h}$ if these factors are pairwise edge-disjoint and $\bigcup_{i=1}^{h} E\left(G_{i}\right)=E(G)$. If G is factored into $G_{1}, G_{2}, \ldots, G_{h}$, then we represent this by $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{h}$, which is called a factorization of G. It is nothing but the factor-decomposition. If there exists a factor-decomposition of a graph G such that each factor is a m-factor, then G is m-factor-decomposable. If G is a m-factor-decomposable graph, then necessarily G is r-regular for some integer r that is a multiple of m. Of course, for a graph to be 2 -factor-decomposable, it is necessary that it be $2 r$-regular for some integer $r \geq 1$. Petersen [14] showed that this obvious necessary condition is sufficient as well.

Theorem 1.1. [14] Every $2 r$-regular graph has a $2 k$-factor for every integer $k, 0<k<r$.
Magic squares are among the more popular mathematical recreations. A classical reference on magic squares is [1], while one of the better recent book is [2]. A magic square of side n is an $n \times n$ array whose entries are an arrangement of integers $\left\{1,2, \ldots, n^{2}\right\}$ in which all elements in any row, any column or either main diagonal or back-diagonal, add to the same sum. Furthermore, we denote this sum as magic number (MN) and also we observe that the value of the magic number is $M N=\frac{1}{2} n\left(n^{2}+1\right)$.

In this paper, first we study the elementary properties of m-factor- E-super magic graphs and then we present a necessary and sufficient condition for an even regular graph to be 2 -factor- E super magic decomposable. To prove these results, we use Petersen's theorem and magic squares.

2. \boldsymbol{m}-factor- \boldsymbol{E}-Super magic graphs

This section will explore the basic properties of m-factor- E-super magic graphs.
Lemma 2.1. If a non-trivial m-factor-decomposable graph G is m-factor- E-super magic decomposable, then the magic constant k is $\frac{q(q+1)}{2 h}+p q+\frac{p(p+1)}{2}$, where h is the number of m-factors of G.

Proof. Let f be an m-factor- E-super magic labeling of a graph G with the magic constant k. Then $f(E(G))=\{1,2, \ldots, q\}, f(V(G))=\{q+1, q+2, \ldots, q+p\}$, and $k=\sum_{v \in V\left(G^{\prime}\right)} f(v)+\sum_{e \in E\left(G^{\prime}\right)} f(e)$ for every factor G^{\prime} in the decomposition of G. Then,

$$
\begin{aligned}
h k & =\sum_{e \in E(G)} f(e)+h \sum_{v \in V(G)} f(v) \\
& =[1+2+\cdots+q]+h[q+1+q+2+\cdots+q+p] \\
& =\frac{q(q+1)}{2}+h\left[p q+\frac{p(p+1)}{2}\right]
\end{aligned}
$$

Thus, $k=\frac{q(q+1)}{2 h}+p q+\frac{p(p+1)}{2}$.

If G is an m-factor-decomposable graph and G possesses an m-factor- E-super magic labeling, then we can easily find the sum of the vertex labels (denoted by k_{v}) in each factor and are the same. This gives the following result.

Lemma 2.2. If a non-trivial m-factor-decomposable graph G is m-factor- E-super magic decomposable, then the sum of the edge labels, denoted by k_{e}, is a constant and it is given by $k_{e}=\frac{q(q+1)}{2 h}$, where h is the number of m-factors of G.

Proof. Suppose that G is m-factor-decomposable and G has an m-factor- E-super magic labeling f. Then, by Lemma 2.1, the magic constant k is given by $k=\frac{q(q+1)}{2 h}+p q+\frac{p(p+1)}{2}$ for every m factor G^{\prime} in the decomposition of G. Since G is m-factor-decomposable, every m-factor G^{\prime} in the decomposition of G is a spanning subgraph of G. It follows that k_{v} is constant for every m-factor G^{\prime} of G. Since $k=k_{e}+k_{v}$, then k_{e} must be a constant. Also, $h k_{e}=\sum_{e \in E(G)} f(e)=1+2+\cdots+q=$ $\frac{q(q+1)}{2}$ and hence $k_{e}=\frac{q(q+1)}{2 h}$.

In addition, the following lemma gives a necessary and sufficient condition for an m-factordecomposable graph to be m-factor- E-super magic decomposable. This lemma is helpful in deciding whether a particular graph has an m-factor- E-super magic labeling.

Lemma 2.3. Let G be a m-factor-decomposable graph and let g be a bijection from $E(G)$ onto $\{1,2, \ldots, q\}$. Then g can be extended to an m-factor- E-super magic labeling of G if and only if $k_{e}=\sum_{e \in E(G)} g(e)$ is constant for every m-factor G^{\prime} in the decomposition of G.

Proof. Suppose that G can be decomposed into some m-factors. Assume that $k_{e}=\sum_{e \in E(G)} f(e)$ is constant for every m-factor G^{\prime} in the decomposition of G. Define $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, p+q\}$ as $f(u v)=g(u v)$ for $u v \in E(G)$ and $f\left(v_{i}\right)=q+i$ for all $i=1,2, \ldots, p$. Then $f(E(G))=\{1,2, \ldots, q\}$ and $f(V(G))=\{q+1, q+2, \ldots, q+p\}$. Since every m-factor G^{\prime} of G is a spanning subgraph of $G, k_{v}=\sum_{v \in V\left(G^{\prime}\right)} f(v)$ is constant for every m-factor G^{\prime} in the decomposition of G. Therefore $k_{v}+k_{e}=\sum_{v \in V\left(G^{\prime}\right)} f(v)+\sum_{e \in E\left(G^{\prime}\right)} f(e)$ is a constant for every m-factor G^{\prime} in the decomposition of G. Thus, we have that f is an m-factor- E-super magic labeling of G. Suppose g can be extended to a m-factor- E-super magic labeling f of G with a magic constant k. Then, $k=\sum_{v \in V\left(G^{\prime}\right)} f(v)+\sum_{e \in E\left(G^{\prime}\right)} f(e)$ for every m-factor G^{\prime} in the decomposition of G. Since G is m-factor-decomposable, $k_{v}=\sum_{v \in V\left(G^{\prime}\right)} f(v)$ is constant and it follows that $k_{e}=\sum_{e \in E\left(G^{\prime}\right)} f(e)$ is also a constant for every m-factor G^{\prime} in the decomposition of G.

3. Necessary and sufficient condition

Based on the lemmas stated in the previous section, the problem of finding an m-factor- E super magic labeling of m-factor-decomposable graphs is difficult. So, we restrict our attention to 2 -factor-decomposable graphs. In this section, we discuss the 2 -factor- E-super magic labeling of

2-factor-decomposable graphs. The following theorem is useful in finding classes of graphs that are not 2 -factor- E-super magic.

Theorem 3.1. An even regular graph G of odd order is not 2-factor-E-super magic decomposable, when the number of factors h is even.

Proof. Let G be an even regular graph of odd order. Then by Petersen's theorem, G is 2-factordecomposable. Suppose G is a 2 -factor- E-super magic decomposable graph. Then G has a 2-factor- E-super magic labeling. By Lemma 2.2, we have $k_{e}=\frac{q(q+1)}{2 h}$.

Since G is 2-factor-decomposable with h 2-factors, $q=p h$. Therefore, $k_{e}=\frac{p h(p h+1)}{2 h}=$ $\frac{p(p h+1)}{2}$. It is given that G is of odd order. We take $p=2 t+1$. Therefore,

$$
\begin{aligned}
k_{e} & =\frac{(2 t+1)[(2 t+1) h+1]}{2} \\
& =2 t^{2} h+2 t h+t+\frac{h+1}{2}
\end{aligned}
$$

which is an integer only if h is odd and hence G is not a 2 -factor- E-super magic decomposable if h is even.

The following theorem provides a necessary and sufficient condition for an even regular graph G of odd order to be 2-factor- E-super magic decomposable.

Theorem 3.2. An even regular graph G of odd order is 2 -factor- E-super magic decomposable if and only if h is odd, where h is the number of 2 -factors of G.

Proof. Let G be an even regular graph of odd order p. If h is even, by Theorem 3.1, G is not 2-factor- E-super magic. Suppose that h is odd. Then, by Petersen's theorem, G can be decomposed into 2-factors which is the sum say $G=F_{1} \oplus F_{2} \oplus \cdots \oplus F_{h}$ where F_{i} is a 2-factor for each $i, 1 \leq i \leq h$. Now, the edges of G can be labeled as shown in Table 1.

F_{1}	F_{2}	F_{3}	\ldots	F_{h-1}	F_{h}
			$h \times h$ magic square		
$h^{2}+1$	$h^{2}+2$	$h^{2}+3$	\ldots	$h^{2}+h-1$	$h^{2}+h$
$h^{2}+2 h$	$h^{2}+2 h-1$	$h^{2}+2 h-2$	\ldots	$h^{2}+h+2$	$h^{2}+h+1$
$h^{2}+2 h+1$	$h^{2}+2 h+2$	$h^{2}+2 h+3$	\ldots	$h^{2}+3 h-1$	$h^{2}+3 h$
$h^{2}+4 h$	$h^{2}+4 h-1$	$h^{2}+4 h-2$	\ldots	$h^{2}+3 h+2$	$h^{2}+3 h+1$
\ldots	\ldots	\ldots	\ldots	\cdots	\ldots
$(p-2) h+1$	$(p-2) h+2$	$(p-2) h+3$	\ldots	$(p-1) h-1$	$(p-1) h$
$p h$	$p h-1$	$p h-2$	\ldots	$(p-1) h+2$	$(p-1) h+1$

Table 1. The edge label of an odd order 2-factor-decomposable graph G if h is odd.
From Table 1, the sum of the edge labels at the 2 -factor F_{1} in the decomposition is calculated as follows:

$$
\begin{aligned}
\sum_{e \in E\left(F_{1}\right)} f(e)= & M N+h^{2}+1+h^{2}+2 h+h^{2}+2 h+1+h^{2}+4 h+h^{2}+4 h+1 \\
& +\cdots+h^{2}+(p-h-2) h+1+h^{2}+(p-h) h \\
& \text { where } M N=\text { magic number of } h \times h \text { magic square } \\
= & M N+(p-h) h^{2}+2(2 h+4 h+\cdots+(p-h-2) h) \\
& +\underbrace{[1+1+\cdots+1]}_{\frac{p-h}{2}}+(p-h) h \\
= & M N+(p-h) h^{2}+4 h\left[\frac{\left(\frac{p-h-2}{2}\right)\left(\frac{p-h-2}{2}+1\right)}{2}\right]+\frac{p-h}{2}+(p-h) h \\
= & M N+(p-h) h^{2}+\left(p h-h^{2}-2 h\right)\left(\frac{p-h}{2}\right)+\frac{p-h}{2}+(p-h) h \\
= & \frac{h^{3}}{2}+\frac{h}{2}+p h^{2}-h^{3}+\frac{p^{2} h}{2}-\frac{p h^{2}}{2}-\frac{p h^{2}}{2}+\frac{h^{3}}{2}-\frac{2 p h}{2} \\
& +\frac{2 h^{2}}{2}+\frac{p}{2}-\frac{h}{2}+p h-h^{2} \\
= & \frac{p^{2} h+p}{2} .
\end{aligned}
$$

In a similar way, we can calculate that the sum of the edge labels at each 2 -factor in the decomposition is the constant $k_{e}=\frac{p^{2} h+p}{2}$. Then, by Lemma 2.3, this labeling can be extended to a 2 -factor- E-super magic labeling.

Examples 1 and 2 illustrate Theorem 3.2.

Figure 1. The complete graph K_{7} is 2-factor- E-super magic.

Figure 2. The 2-factor-decomposition of K_{7}.

F_{1}	F_{2}	F_{3}
4	3	8
9	5	1
2	7	6
10	11	12
15	14	13
16	17	18
21	20	19

Table 2. A 2-factor- E-super magic labeling of K_{7}.

Example 1. The complete graph K_{7} is decomposed into three 2-factors, namely $K_{7}=F_{1} \oplus F_{2} \oplus F_{3}$. The edges of each factor-decomposition of Figure 2 are labeled as shown in the Table 2.

In Table 2, the sum of the edge labels at each factor is $k_{e}=77$. Then, by using Lemma 2.3, we extend this edge labeling to a 2-factor-E-super magic labeling.

Example 2. The complete graph K_{11} can be decomposed into five 2-factors say $K_{11}=F_{1} \oplus F_{2} \oplus$ $F_{3} \oplus F_{4} \oplus F_{5}$. The edge labels of each factor of K_{11} are shown above in Table 3. In Table 3, the sum of the edge labels at each factor is $k_{e}=308$. Then, by using Lemma 2.3, we extend this edge labeling to a 2 -factor- E-super magic labeling.

Theorem 3.3. An even regular graph G of even order is 2-factor-E-super magic decomposable.
Proof. Let G be an even regular graph of even order p. By Petersen's theorem G can be decom-

F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
1	7	13	19	25
18	24	5	6	12
10	11	17	23	4
22	3	9	15	16
14	20	21	2	8
26	27	28	29	30
35	34	33	32	31
36	37	38	39	40
45	44	43	42	41
46	47	48	49	50
55	54	53	52	51

Table 3. A 2 -factor- E-super magic labeling of K_{11}.

F_{1}	F_{2}	F_{3}	\ldots	F_{h-1}	F_{h}
1	2	3	\cdots	$h-1$	h
$2 h$	$2 h-1$	$2 h-2$	\cdots	$h+2$	$h+1$
$2 h+1$	$2 h+2$	$2 h+3$	\cdots	$3 h-1$	$3 h$
$4 h$	$4 h-1$	$4 h-2$	\cdots	$3 h+2$	$3 h+1$
\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
$(p-2) h+1$	$(p-2) h+2$	$(p-2) h+3$	\cdots	$(p-1) h-1$	$(p-1) h$
$p h$	$p h-1$	$p h-2$	\cdots	$(p-1) h+2$	$(p-1) h+1$

Table 4. The edge label of an even order 2-factor-decomposable graph G.
posed into 2-factors which is the sum, say $G=F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{h}$, where F_{i} is a 2-factor for each $i, 1 \leq i \leq h$. Now, the edges of G can be labeled as shown in the Table 4.

From Table 4, the sum of the edge labels at the 2 -factor F_{1} in the decomposition is calculated as follows:

$$
\begin{aligned}
\sum_{e \in E\left(F_{1}\right)} f(e) & =1+2 h+2 h+1+4 h+4 h+1+\cdots+p h \\
& =1+2[2 h+4 h+\cdots+(p-2) h]+\underbrace{[1+1+\cdots+1]}_{\frac{p}{2}-1}+p h \\
& =4 h\left[1+2+\cdots+\frac{p-2}{2}\right]+\frac{p}{2}+p h \\
& =\frac{p^{2} h}{2}-p h+\frac{p}{2}+p h=\frac{p^{2} h+p}{2}
\end{aligned}
$$

In similar way, we can calculate that the sum of the edge lables at each factor-decomposition is the constant $k_{e}=\frac{p^{2} h+p}{2}$. Then, by Lemma 2.3, this labeling can be extended to a 2 -factor- E -
super magic labeling and thus every even regular graph of even order is 2-factor- E-super magic decomposable.

Examples 3 and 4 illustrate Theorem 3.3.
Example 3. The following graph G can be decomposed into three 2-factors say $G=F_{1} \oplus F_{2} \oplus F_{3}$. Note that one of the factors is disconnected.

Figure 3. The graph G is 2-factor- E-super magic.

Figure 4. The 2-factor-decomposition of the graph G.

The edges of each factor-decomposition of Figure 4 are labeled as shown in Table 5.
In Table 5, the sum of the edge labels at each factor-decomposition is $k_{e}=100$. Then, by Lemma 2.3, we extend this edge labeling to a 2 -factor- E-super magic labeling.

F_{1}	F_{2}	F_{3}
1	2	3
6	5	4
7	8	9
12	11	10
13	14	15
18	17	16
19	20	21
24	23	22

Table 5. 2-factor- E-super magic labeling of G.

F_{1}	F_{2}	F_{3}	F_{4}
1	2	3	4
8	7	6	5
9	10	11	12
16	15	14	13
17	18	19	20
24	23	22	21
25	26	27	28
32	31	30	29
33	34	35	36
40	39	38	37

Table 6. 2-factor- E-super magic labeling of G.

Figure 5. The graph G is 2-factor- E-super magic decomposable.

Example 4. The graph G shown in Figure 5 can be decomposed into four 2-factors say $G=$ $F_{1} \oplus F_{2} \oplus F_{3} \oplus F_{4}$.

Figure 6. The 2-factor-decomposition of the graph G.

The edges of each factors of Figure 6 are labeled as shown in Table 6. In Table 6, the sum of the edge labels at each factor-decomposition is $k_{e}=205$. Then, by using Lemma 2.3, we extend this edge labeling to a 2-factor- E-super magic labeling.

4. Conclusion

In this paper, we have given a complete characterization of 2-factor- E-super magic decomposable graphs. Furthermore, we can find some examples of 1-factor- E-super magic decomposable graphs (see Figures 7 and 8). The complete graph K_{6} can be decomposed into five 1-factors say $K_{6}=F_{1} \oplus F_{2} \oplus F_{3} \oplus F_{4} \oplus F_{5}$.

In Figure 8, the sum of the edge labels at each factor-decomposition is $k_{e}=24$. Since, every 1-factor-decomposition is a spanning subgraph of K_{6}, then sum of the labels on edges and vertices of each factor is $k_{v}+k_{e}$ is constant and hence K_{6} is 1-factor- E-super magic decomposable.

Figure 7. The graph K_{6} is 1-factor- E-super magic.

Figure 8. A 1-factor-decomposition of K_{6}.

Thus, we conclude this paper with the following open problem.
Open Problem 1. Characterize all m-factor- E-super magic decomposable graphs, $m \neq 2$.

Acknowledgement

The authors are thankful to the anonymous referees for their helpful suggestions.

References

[1] W. S. Andrews, Magic Squares and Cubes, Dover (1960).
[2] S. S. Block and S. A. Tavares, Before Sudoku : The World of Magic Squares, Oxford University Press (2009).
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs, Chapman \& Hall, Boca Raton, London, Newyork, Washington, D.C, 3rd Edition (1996).
[4] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman \& Hall,CRC, Boca Raton, (2009).
[5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013), \# DS6.
[6] A. Gutiérrez and A.Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[7] N. Inayah, A. Lladó and J. Moragas, Magic and antimagic H-decompositions, Discrete Math. 312 (2012), 1367-1371.
[8] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 2925-2933.
[9] M. Roswitha and E.T. Baskoro, H-Magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012), 135-138.
[10] G. Marimuthu and M. Balakrishnan, E-Super vertex magic labelings of graphs, Discrete Appl. Math. 160 (2012), 1766-1774.
[11] A. M. Marr and W. D. Wallis, Magic graphs, Birkhauser, Boston, Basel, Berlin, 2nd edition (2013).
[12] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan and M. Miller, On H-Supermagic labeling for certain shackles and amalgamations of a connected graph, Util. Math. 83 (2010), 333-342.
[13] A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, H-Supermagic labelings of graphs, Discrete Math. 310 (2010), 1293-1300.
[14] J. Petersen, Die Theorie der regularen Graphen, Acta Math. 15 (1891), 193-220.
[15] V. Swaminathan and P. Jeyanthi, Super vertex-magic labeling, Indian J. Pure and Appl. Math. 34(6) (2003), 935-939.
[16] V. Swaminathan and P. Jeyanthi, On super vertex-magic labeling, J. Discrete. Math. Sci. Cryptogr. 8 (2005), 217-224.
[17] T-M. Wang and G-H. Zhang, Note on E-Super Vertex Magic Graphs, Discrete Appl. Math., Preprint.
[18] T. Kojima, On C_{4}-Supermagic labelings of the Cartesian product of paths and graphs, Discrete Math. 313 (2013), 164-173.
[19] Z. Liang, Cycle-super magic decomposition of complete multipartite graphs, Discrete Math. 312 (2012), 3342-3348.

