
XRDS • W i n t e r 2 0 1 0 • V o l . 17 • n o . 2 27

Heads in
the Cloud

One way to think about crowd com-

puting is as the human analogue to

cloud computing. Where the cloud pro-

vides access to elastic, highly available

computation, and storage resources in

the network, the crowd represents ac-

cess to elastic, highly-available human

resources, such as human perception

and intelligence. Crowd computing of-

fers the strength of software with the

intelligence and common sense of hu-

man beings.

HUMAN COMPUTATION

One variant of crowd computing is hu-

man computation, which we define as

using software to orchestrate a process

of small contributions from a crowd to

solve a problem that can’t be solved by

software alone.

Human computation was first pop-

ularized by Games With a Purpose

(http://gwap.com), in which the com-

putation is a side effect of a fun game

[8]. For example, the ESP Game asks

two players to guess words associated

with an image, scoring points when

their words agree, which makes the

game fun, but also generating useful

labels to index the image for search-

ing, which makes it an act of human

computation.

Another human computation site

is Amazon Mechanical Turk (http://

mturk.com), a marketplace where

people get paid to perform human

computation. Users, or “workers,”

find short tasks that are posted by

“requesters” (the people who need the

tasks completed) and get paid small

amounts of money for completing

them. CrowdFlower (http://crowdflow-

er.com) is another site that pays users

for computation—in not only real cur-

rency, but also virtual currencies for

games like Farmville and Mafia Wars.

Social networks like Facebook are

also becoming platforms for human

computation, motivated by social

relationships rather than entertain-

ment or monetary reward.

These platforms make it increasing-

ly feasible to build and deploy systems

that use human intelligence as an inte-

gral component. But there are at least

three challenges to exploring the space

of human computation systems: 1) ap-

plications—understanding what’s ap-

propriate for human computation and

what isn’t; 2) programming—learning

how to write software that uses human

computation; and 3) systems—learn-

ing how to get good performance out

of a system with humans in the loop.

APPLICATIONS

What application areas will benefit

the most from human computation?

What properties do certain problems

possess that make them amenable to a

successful solution by a hybrid human-

software system? Since the end user of

such a system is also, typically, human,

we can refine this question further:

Why does a human end user need to

request the help of a human crowd to

accomplish a goal, rather than just do-

ing it herself?

One reason is differences in ca-

pability. A group of many people has

abilities and knowledge that one sin-

gle end user does not, either innately

or because of situational constraints.

For example, VizWiz [1] helps blind us-

C
rowd computing is quickly becoming an essential part of the technology landscape.
Crowd computing encompasses the interaction among large numbers of people
facilitated by software systems and networking technology. Crowds—and by “crowds,”
we literally mean a mass of people—are themselves the power that fuels sites like

Wikipedia, Twitter, Intrade, and even online labor markets like Amazon Mechanical Turk.

A professor and several PhD students at MIT examine the challenges
and opportunities in human computation.
By Robert C. Miller, Greg Little, Michael Bernstein, Jeffrey P. Bigham,
Lydia B. Chilton, Max Goldman, John J. Horton, and Rajeev Nayak
DOI: 10.1145/1869086.1869095

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • n o . 228

Heads in the Cloud

ers answer questions they have about

things around them that they cannot

see. The blind person takes a photo-

graph with a smartphone’s camera,

records a spoken question (also using

the phone), and then uploads the query

and picture to a crowd of sighted users

on the net who are better able to answer

it (see Figure 1). For example, if a blind

person grabs a can out of her cupboard

but has forgotten what’s inside it, she

can snap a photo of the can and its la-

bel, upload it, and ask the sighted users

what’s in the can.

A related system, Sinch [7], draws on

the crowd to provide assistance to web-

enabled mobile device users who have

situational disabilities, such as the

limited ability to read a small screen,

arthritis or hand tremors that make it

difficult to click on small web page tar-

gets, and slow networks. With Sinch,

the mobile users speak a question into

their phone and the crowd searches

the web for answers, using their more

capable desktop web access, and re-

turning web pages with the requested

information highlighted.

Another reason to use a crowd is

the “many eyes” principle, which has

been claimed as an advantage of open-

source software development (the

complete phrase is “many eyes make

bugs shallow”). We have exploited this

principle in Soylent [2], a Microsoft

Word extension that uses a crowd for

proofreading, shortening, and repeti-

tive editing. A typical run of Soylent

may have dozens of people looking at

each paragraph of a document, finding

errors that a single writer might miss.

In fact, a conference paper submitted

about Soylent contained a grammati-

cal error that was overlooked by not

only Word’s built-in grammar checker,

but also eight authors and six review-

ers. However, when we passed the pa-

per through Soylent, the crowd caught

the error.

A corollary of the many eyes prin-

ciple is diversity. The fact is, a crowd

comprises a wide range of ideas, opin-

ions, and skills. For example in Soylent,

the system not only indentifies writing

errors, but also suggests multiple ways

to fix them. It can suggest text to cut

to save space—a tough task even for

skilled authors, who are often reluc-

tant to make cuts. Soylent can typi-

cally trim text down to 85 percent of its

original length, without changing the

meaning of the text or introducing er-

rors (see Figure 2).

PROGRAMMING

Prototyping a human computation sys-

tem is hard if you have to entice a crowd

to visit your website. Games With a Pur-

pose handles this by making the expe-

rience fun—but not all human com-

putation systems are fun enough to

be self-motivating, particularly at the

prototyping stage. Mechanical Turk is

a good prototyping platform for many

forms of human computation, because

it offers a ready service for recruiting a

crowd on demand. And the first proto-

types for VizWiz and Soylent were built

on Mechanical Turk.

Yet thinking about programming

with human beings inside the system

poses special problems. For example

with Mechanical Turk, a request for

a human to do a small task can take

a few minutes and cost a few cents to

get a result, which is astounding in one

sense (that you can obtain human as-

sistance so quickly and so cheaply), but

is abysmally slow and expensive com-

pared to a conventional function call.

Programmers need new tools that

can help them experiment with human

computation in their systems. For ex-

ample, our TurKit toolkit [3] integrates

Mechanical Turk calls in a traditional

imperative/object-oriented program-

ming paradigm, so that programmers

can write algorithms that incorporate

human computation in a familiar way.

TurKit does this using a novel pro-

gramming model called “crash and

rerun,” which is suited to long-running

distributed processes where local com-

putation (done by software) is cheap,

and remote work (done by humans) is

costly.

The insight of crash-and-rerun pro-

gramming is that if our program crash-

es, it is cheap to rerun the entire pro-

gram up to the place where it crashed.

This is true as long as rerunning does

not re-perform all the costly external

operations from the previous run. The

latter problem is solved by recording

information in a database every time a

costly operation is executed.

Costly operations are marked by a

“A group of many
people has abilities
and knowledge that
one single end-user
does not... The fact
is, a crowd comprises
a wide range of
ideas, opinions, and
skills.”

w? What denomination is

this bill?

Do you see picnic tables

across the parking lot?

What temperature is my

oven set to?

Can you please tell me

what this can is?

I can’t tell
es

d

(24s) 20

(29s) 20

(13s) no

(46s) no
(69s) it looks like 425

degrees but the image

is difficult to see.

(84s) 400

(122s) 450

(183s) chickpeas.

(514s) beans

(552s) Goya Beans

(

(

p

(

Figure 1: With VizWiz, blind people take photos using their mobile phones and

submit them alongside a question, spoken orally into the phone, shown here above

each image. A crowd of anonymous users reply, shown below, with response time

given in seconds in parentheses.

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • n o . 2 29

new primitive called “once,” meaning

they should only be executed once over

all reruns of a program. Subsequent

runs of the program check the database

before performing operations marked

with “once” to see if they have already

been executed. This model makes it

much easier to code algorithms involv-

ing human computation. For example,

a TurKit program can sort a list of im-

ages using human preference judg-

ments by calling the human computa-

tion in the sort algorithm’s comparison

function, and wrapping those calls in

“once” to make them persistent.

Another programming challenge

is the development of algorithms and

design patterns that handle the idio-

syncrasies of human beings. Humans

are not programmable machines, and

they don’t always follow instructions,

unintentionally or otherwise. Some-

times this should be embraced and

supported, to harness the creativity

and diversity of the crowd. Other times,

it simply produces noisy, erroneous, or

useless results.

For example, we have studied alter-

native algorithms for content creation

[4]. Iterative processes are similar to

Wikipedia or open-source software

development. People build on existing

content created by others, with vot-

ing or independent review ensuring

that the process stays on track. Paral-

lel processes are often seen in design

contests, like Threadless.com, where

people generate content independent-

ly, and then the best is chosen through

a vote. See Figure 3.

In experiments involving various

kinds of work, such as handwriting

transcription, image description, and

brainstorming, our results show that

iterative processes generally produce

higher than average quality than par-

allel processes. However, in the case

of brainstorming, workers riff on good

ideas that they see to create more good

ones, but the very best ideas seem to

come from people working alone. And

Figure 2: In Soylent, after the crowd has suggested words or phrases that can be edited, the end-user can shorten his or her

text interactively with a slider. Red text indicates locations where cuts or rewrites have occurred.

Figure 3: Some human computation processes are iterative (left), involving a succession of interleaved improvement steps

(by one person) and voting steps (by several people). Other processes are parallel (right), in which individuals generate

original content, and voters simply choose among the alternatives.

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • n o . 230

with transcription tasks, it turns out

that showing workers the guesses of

other workers often leads them astray,

especially if the guesses are self-con-

sistent but wrong.

Crowd workers exhibit high vari-

ance in the amount of effort they invest

in a task. Some are lazy turkers, who do

as little work as necessary to get paid,

while others are eager beavers, who go

above and beyond the requirements,

either to be helpful or to signal that

they aren’t lazy turkers, but in counter-

productive ways. We need new design

patterns for algorithms involving hu-

man computation that recognize and

control this behavior.

For example, Soylent uses a find-fix-

verify pattern to improve the quality

of proofreading and document short-

ening (Figure 4). In this pattern, some

workers find problems, other workers

fix them, and still other workers verify

the fixes. But questions remain. What

other algorithms and design patterns

are useful? How should algorithms in-

volving human computation be evalu-

ated and compared from a theoretical

point of view?

SYSTEMS PROBLEMS

Moving from prototyping to actual

deployment requires facing questions

about how to obtain a reliable and well-

performing source of human computa-

tion for the system. How can we recruit

a crowd to help, and motivate it to con-

tinue to help over time, while optimiz-

ing for cost, latency, bandwidth, qual-

ity, churn, and other parameters?

For paid crowds, these questions in-

tersect with labor economics. Some of

our recent work has found that workers

in human computation markets like

Mechanical Turk behave in unusual

ways. For example, instead of seeking

work that provides a target wage, they

often seek a target earning amount,

and simply work until they reach their

target, consistent with game-playing

behavior [5].

Another difference in these mar-

kets is the overwhelming importance

of searchability. Workers’ ability to

find tasks they want to do is strongly

affected by the kind of interface the

market offers. Mechanical Turk, for

example, typically displays a list of

thousands of available tasks, divided

into hundreds of result pages, with

few effective tools for searching or

filtering this list. We have found that

most workers simply choose a par-

ticular sort order and work their way

through the list. They most often sort

by newest task, or most tasks avail-

able, and surprisingly not by price.

The speed of completion of a task is

strongly affected by its ability to be

found, which may not be strongly

related to the monetary reward it of-

fers [6].

We can also think about human

computation in computer systems

terms, such as cost, latency, and

parallelism. Services like VizWiz

and Sinch need to return answers

quickly, and to support that, we have

developed an approach (and accom-

panying implementation) called

quikTurkit that provides a layer of

abstraction on top of Mechanical

Turk to intelligently recruit multiple

workers before they’re needed.

In a field deployment of VizWiz,

users had to wait a little longer than

two minutes on average to get their first

answer. Wait times decreased sharply

when questions and photos were easy

for workers to understand. Answers

were returned at an average cost per

question of only $0.07 for 3.3 answers.

Given that other visual-assistance tools

for the blind can cost upwards of $1,000

(the equivalent of nearly 15,000 uses of

VizWiz), we believe that human com-

putation embedded in an inexpensive

software system can be not only more

effective but also competitive with, or

even cheaper than, existing pure soft-

ware solutions. When set to maintain a

steady pool of workers (at a cost of less

than $5 per hour), quikTurkit can ob-

tain answers in less than 30 seconds.

Beyond monetary compensation,

many other reasons entice people to

participate in human computation, in-

Figure 4: The find-fix-verify algorithm in Soylent identifies patches in need of

editing, suggests fixes to the patches, and votes on those fixes.

Heads in the Cloud

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • n o . 2

cluding altruism, entertainment, and

friendship. How do those motivations

influence system performance? And

how should the systems be designed to

encourage some motivations, and per-

haps discourage others?

After demonstrating that VizWiz

was feasible using paid strangers on

Mechanical Turk, we also ported it

to Facebook, so that a blind user’s

sighted friends can help. We are cur-

rently studying how people (at least in

this context) choose to trade off the

strengths and weaknesses of each ser-

vice. Mechanical Turk is fast but costs

money. Facebook is free, and the user’s

friends might be more motivated to

answer, or even more capable since

they know more about the person. On

the other hand, the user might be less

willing to ask certain personal ques-

tions to his or her friends, rather than

asking an anonymous Mechanical

Turk crowd.

PEOPLE VS SYSTEMS

The gap between what software can do

and what people can do is shrinking,

but a gap of some sort will exist for a

long time. Automatic techniques need

to be able to fallback to people when

necessary to fill in the gaps, enabling

interactions that automatic techniques

alone can’t yet support and helping us

design for the future.

So-called Wizard of Oz prototyping

(wherein a human is hiding behind

the curtain, so to speak) is a venerable

technique in human-computer inter-

action and artificial intelligence that

makes an intelligent system (or even a

not-so-intelligent one) appear to work

even though a software backend isn’t

ready yet. With platforms like Mechan-

ical Turk and Facebook that make hu-

man computation practical, we are

now at the point where Wizard of Oz is

not just for prototyping anymore. We

can build useful systems with human

power inside, and actually deploy them

to real users. These systems will stretch

the limits of what software can do, and

allow us to find out whether the ideas

even work and how people would use

them.

In addition, we can collect data from

actual system use, like VizWiz queries

and photos, that might eventually help

to replace some or all of the human

power with artificial intelligence. From

this perspective, AI would speed up

performance and reduce labor costs.

But human computation made the sys-

tem possible in the first place.

Acknowledgements

Ideas and work in this article come from many students

and collaborators, including Mark Ackerman, David Crowell,

Bjoern Hartmann, David Karger, Marc Grimson, and Katrina

Panovich. This work was supported in part by Quanta

Computer, NSF, and Xerox.

Biographies

Robert C. Miller is an associate professor of computer

science at Massachusetts Institute of Technology. He grew

up in rural Louisiana and plays the accordion, although

extremely poorly.

Danny “Greg” Little is a PhD student in computer science at

MIT. He is probably asleep right now.

Michael Bernstein is a PhD student in computer science at

MIT and a features editor for this magazine.

Jeffrey P. Bigham is an assistant professor of computer

science at University of Rochester, and he wants to be

mayor of your living room. Don’t let him in.

Lydia B. Chilton is a PhD student in computer science

at University of Washington. When not studying human

computation, she is a consultant to the United Federation

of Planets and makes the occasional journey on the USS

Enterprise with her old pals Kirk, Spock, and McCoy.

Max Goldman is a PhD student in computer science at

MIT. When he gives a talk, his performance is so lively and

engaging that it distracts the audience from the actual

research results, but everybody goes away happy.

John J. Horton is a PhD student in public policy at Harvard

University. He is having trouble thinking of a public policy

angle for his human computation research and needs to

defend his dissertation soon. This is a growing problem

that, to date, Turkers have been unable to solve.

Rajeev Nayak is a graduate student in computer science

at MIT. He bats .400, shoots .575 from the field, sings a
cappella, and watches Glee religiously.

References

1. Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A.,

Miller, R.C., Miller, R., Whyte, B., White, S., Yeh, T.

VizWiz: Nearly Real-time Answers to Visual Questions.

UIST 2010.

2. Bernstein, M., Little, G., Miller, R.C., Hartmann, B.,

Ackerman, M.S., Karger, D.R., Crowell, D., Panovich, K.

Soylent: A Word Processor with a Crowd Inside. UIST

2010.

3. Little, G., Chilton, L., Goldman, M., Miller, R.C. TurKit:

Human Computation Algorithms on Mechanical Turk.

UIST 2010.

4. Little, G., Chilton, L., Goldman, M., Miller, R.C. Exploring

Iterative and Parallel Human Computation Processes.

HCOMP 2010, to appear.

5. Horton, J.J. and Chilton, L. The Labor Economics of

Paid Crowdsourcing. EC 2010.

6. Chilton, L., Horton, J.J., Miller, R.C., Azenkot, S. Task

Search in a Human Computation Market. HCOMP

2010, to appear.

7. Nayak, R., et al. Sinch: Searching Intelligently on a

Mobile Device. CHI 2011, in submission.

8. von Ahn, L., and Dabbish, L. Designing Games with a

Purpose. CACM, 51, 8, August 2008.

ACRONYMS

AMT Amazon Mechanical

Turk: a web service owned

by Amazon that facilitates

crowdsourcing

CAPTCHA complete

automated public Turing

test to tell computers and

humans apart; it’s a contrived

acronym intentionally redolent

of the word “capture,” used

to describe a test issued on

web forms to protect against

automated responses

GWAP Game with a Purpose:

a computer game that layers a

recreational challenge on top

of a problem that demands

human intelligence for

efficient solution, e.g., protein

folding

HCIR human–computer

information retrieval

HIT human intelligence

task: a task that an AMT

requester is willing to pay to

have accomplished by AMT

providers. More generally,

a task that may be best

completed via crowdsourcing

HuGS human-guided

search: A research project

investigating a strategy for

search and optimization

problems that incorporates

human intuition and insight

reCAPTCHA a kind of

“CAPTCHA” (see above)

service that helps to digitize

books, newspapers and old

radio shows. Used to detect

whether a user is a human or a

computer (bot)

TF-IDF term frequency-

inverse document frequency:

A weight formula used in

data mining to determine the

importance of a particular

term to a document in a

corpus of text

31

© 2010 ACM 1528-4972/10/1200 $10.00

