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Heads in 
the Cloud

One way to think about crowd com-

puting is as the human analogue to 

cloud computing. Where the cloud pro-

vides access to elastic, highly available 

computation, and storage resources in 

the network, the crowd represents ac-

cess to elastic, highly-available human 

resources, such as human perception 

and intelligence. Crowd computing of-

fers the strength of software with the 

intelligence and common sense of hu-

man beings. 

HUMAN COMPUTATION

One variant of crowd computing is hu-

man computation, which we define as 

using software to orchestrate a process 

of small contributions from a crowd to 

solve a problem that can’t be solved by 

software alone. 

Human computation was first pop-

ularized by Games With a Purpose 

(http://gwap.com), in which the com-

putation is a side effect of a fun game 

[8]. For example, the ESP Game asks 

two players to guess words associated 

with an image, scoring points when 

their words agree, which makes the 

game fun, but also generating useful 

labels to index the image for search-

ing, which makes it an act of human 

computation.

Another human computation site 

is Amazon Mechanical Turk (http://

mturk.com), a marketplace where 

people get paid to perform human 

computation. Users, or “workers,” 

find short tasks that are posted by 

“requesters” (the people who need the 

tasks completed) and get paid small 

amounts of money for completing 

them. CrowdFlower (http://crowdflow-

er.com) is another site that pays users 

for computation—in not only real cur-

rency, but also virtual currencies for 

games like Farmville and Mafia Wars. 

Social networks like Facebook are 

also becoming platforms for human 

computation, motivated by social 

relationships rather than entertain-

ment or monetary reward. 

These platforms make it increasing-

ly feasible to build and deploy systems 

that use human intelligence as an inte-

gral component. But there are at least 

three challenges to exploring the space 

of human computation systems: 1) ap-

plications—understanding what’s ap-

propriate for human computation and 

what isn’t; 2) programming—learning 

how to write software that uses human 

computation; and 3) systems—learn-

ing how to get good performance out 

of a system with humans in the loop.

APPLICATIONS

What application areas will benefit 

the most from human computation? 

What properties do certain problems 

possess that make them amenable to a 

successful solution by a hybrid human-

software system? Since the end user of 

such a system is also, typically, human, 

we can refine this question further: 

Why does a human end user need to 

request the help of a human crowd to 

accomplish a goal, rather than just do-

ing it herself? 

One reason is differences in ca-

pability. A group of many people has 

abilities and knowledge that one sin-

gle end user does not, either innately 

or because of situational constraints. 

For example, VizWiz [1] helps blind us-
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ers answer questions they have about 

things around them that they cannot 

see. The blind person takes a photo-

graph with a smartphone’s camera, 

records a spoken question (also using 

the phone), and then uploads the query 

and picture to a crowd of sighted users 

on the net who are better able to answer 

it (see Figure 1). For example, if a blind 

person grabs a can out of her cupboard 

but has forgotten what’s inside it, she 

can snap a photo of the can and its la-

bel, upload it, and ask the sighted users 

what’s in the can.

A related system, Sinch [7], draws on 

the crowd to provide assistance to web-

enabled mobile device users who have 

situational disabilities, such as the 

limited ability to read a small screen, 

arthritis or hand tremors that make it 

difficult to click on small web page tar-

gets, and slow networks. With Sinch, 

the mobile users speak a question into 

their phone and the crowd searches 

the web for answers, using their more 

capable desktop web access, and re-

turning web pages with the requested 

information highlighted. 

Another reason to use a crowd is 

the “many eyes” principle, which has 

been claimed as an advantage of open-

source software development (the 

complete phrase is “many eyes make 

bugs shallow”). We have exploited this 

principle in Soylent [2], a Microsoft 

Word extension that uses a crowd for 

proofreading, shortening, and repeti-

tive editing. A typical run of Soylent 

may have dozens of people looking at 

each paragraph of a document, finding 

errors that a single writer might miss. 

In fact, a conference paper submitted 

about Soylent contained a grammati-

cal error that was overlooked by not 

only Word’s built-in grammar checker, 

but also eight authors and six review-

ers. However, when we passed the pa-

per through Soylent, the crowd caught 

the error.

A corollary of the many eyes prin-

ciple is diversity. The fact is, a crowd 

comprises a wide range of ideas, opin-

ions, and skills. For example in Soylent, 

the system not only indentifies writing 

errors, but also suggests multiple ways 

to fix them. It can suggest text to cut 

to save space—a tough task even for 

skilled authors, who are often reluc-

tant to make cuts. Soylent can typi-

cally trim text down to 85 percent of its 

original length, without changing the 

meaning of the text or introducing er-

rors (see Figure 2).

PROGRAMMING

Prototyping a human computation sys-

tem is hard if you have to entice a crowd 

to visit your website. Games With a Pur-

pose handles this by making the expe-

rience fun—but not all human com-

putation systems are fun enough to 

be self-motivating, particularly at the 

prototyping stage. Mechanical Turk is 

a good prototyping platform for many 

forms of human computation, because 

it offers a ready service for recruiting a 

crowd on demand. And the first proto-

types for VizWiz and Soylent were built 

on Mechanical Turk. 

Yet thinking about programming 

with human beings inside the system 

poses special problems. For example 

with Mechanical Turk, a request for 

a human to do a small task can take 

a few minutes and cost a few cents to 

get a result, which is astounding in one 

sense (that you can obtain human as-

sistance so quickly and so cheaply), but 

is abysmally slow and expensive com-

pared to a conventional function call. 

Programmers need new tools that 

can help them experiment with human 

computation in their systems. For ex-

ample, our TurKit toolkit [3] integrates 

Mechanical Turk calls in a traditional 

imperative/object-oriented program-

ming paradigm, so that programmers 

can write algorithms that incorporate 

human computation in a familiar way. 

TurKit does this using a novel pro-

gramming model called “crash and 

rerun,” which is suited to long-running 

distributed processes where local com-

putation (done by software) is cheap, 

and remote work (done by humans) is 

costly. 

The insight of crash-and-rerun pro-

gramming is that if our program crash-

es, it is cheap to rerun the entire pro-

gram up to the place where it crashed. 

This is true as long as rerunning does 

not re-perform all the costly external 

operations from the previous run. The 

latter problem is solved by recording 

information in a database every time a 

costly operation is executed. 

Costly operations are marked by a 

“A group of many 
people has abilities 
and knowledge that 
one single end-user 
does not... The fact 
is, a crowd comprises 
a wide range of 
ideas, opinions, and 
skills.”
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Figure 1: With VizWiz, blind people take photos using their mobile phones and 

submit them alongside a question, spoken orally into the phone, shown here above 

each image. A crowd of anonymous users reply, shown below, with response time 

given in seconds in parentheses.
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new primitive called “once,” meaning 

they should only be executed once over 

all reruns of a program. Subsequent 

runs of the program check the database 

before performing operations marked 

with “once” to see if they have already 

been executed. This model makes it 

much easier to code algorithms involv-

ing human computation. For example, 

a TurKit program can sort a list of im-

ages using human preference judg-

ments by calling the human computa-

tion in the sort algorithm’s comparison 

function, and wrapping those calls in 

“once” to make them persistent. 

Another programming challenge 

is the development of algorithms and 

design patterns that handle the idio-

syncrasies of human beings. Humans 

are not programmable machines, and 

they don’t always follow instructions, 

unintentionally or otherwise. Some-

times this should be embraced and 

supported, to harness the creativity 

and diversity of the crowd. Other times, 

it simply produces noisy, erroneous, or 

useless results. 

For example, we have studied alter-

native algorithms for content creation 

[4]. Iterative processes are similar to 

Wikipedia or open-source software 

development. People build on existing 

content created by others, with vot-

ing or independent review ensuring 

that the process stays on track. Paral-

lel processes are often seen in design 

contests, like Threadless.com, where 

people generate content independent-

ly, and then the best is chosen through 

a vote. See Figure 3.

In experiments involving various 

kinds of work, such as handwriting 

transcription, image description, and 

brainstorming, our results show that 

iterative processes generally produce 

higher than average quality than par-

allel processes. However, in the case 

of brainstorming, workers riff on good 

ideas that they see to create more good 

ones, but the very best ideas seem to 

come from people working alone. And 

Figure 2: In Soylent, after the crowd has suggested words or phrases that can be edited, the end-user can shorten his or her 

text interactively with a slider. Red text indicates locations where cuts or rewrites have occurred.

Figure 3: Some human computation processes are iterative (left), involving a succession of interleaved improvement steps 

(by one person) and voting steps (by several people). Other processes are parallel (right), in which individuals generate  

original content, and voters simply choose among the alternatives.
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with transcription tasks, it turns out 

that showing workers the guesses of 

other workers often leads them astray, 

especially if the guesses are self-con-

sistent but wrong.

Crowd workers exhibit high vari-

ance in the amount of effort they invest 

in a task. Some are lazy turkers, who do 

as little work as necessary to get paid, 

while others are eager beavers, who go 

above and beyond the requirements, 

either to be helpful or to signal that 

they aren’t lazy turkers, but in counter-

productive ways. We need new design 

patterns for algorithms involving hu-

man computation that recognize and 

control this behavior. 

For example, Soylent uses a find-fix-

verify pattern to improve the quality 

of proofreading and document short-

ening (Figure 4). In this pattern, some 

workers find problems, other workers 

fix them, and still other workers verify 

the fixes. But questions remain. What 

other algorithms and design patterns 

are useful? How should algorithms in-

volving human computation be evalu-

ated and compared from a theoretical 

point of view?

SYSTEMS PROBLEMS

Moving from prototyping to actual 

deployment requires facing questions 

about how to obtain a reliable and well-

performing source of human computa-

tion for the system. How can we recruit 

a crowd to help, and motivate it to con-

tinue to help over time, while optimiz-

ing for cost, latency, bandwidth, qual-

ity, churn, and other parameters? 

For paid crowds, these questions in-

tersect with labor economics. Some of 

our recent work has found that workers 

in human computation markets like 

Mechanical Turk behave in unusual 

ways. For example, instead of seeking 

work that provides a target wage, they 

often seek a target earning amount, 

and simply work until they reach their 

target, consistent with game-playing 

behavior [5]. 

Another difference in these mar-

kets is the overwhelming importance 

of searchability. Workers’ ability to 

find tasks they want to do is strongly 

affected by the kind of interface the 

market offers. Mechanical Turk, for 

example, typically displays a list of 

thousands of available tasks, divided 

into hundreds of result pages, with 

few effective tools for searching or 

filtering this list. We have found that 

most workers simply choose a par-

ticular sort order and work their way 

through the list. They most often sort 

by newest task, or most tasks avail-

able, and surprisingly not by price. 

The speed of completion of a task is 

strongly affected by its ability to be 

found, which may not be strongly 

related to the monetary reward it of-

fers [6]. 

We can also think about human 

computation in computer systems 

terms, such as cost, latency, and 

parallelism. Services like VizWiz 

and Sinch need to return answers 

quickly, and to support that, we have 

developed an approach (and accom-

panying implementation) called 

quikTurkit that provides a layer of 

abstraction on top of Mechanical 

Turk to intelligently recruit multiple 

workers before they’re needed. 

In a field deployment of VizWiz, 

users had to wait a little longer than 

two minutes on average to get their first 

answer. Wait times decreased sharply 

when questions and photos were easy 

for workers to understand. Answers 

were returned at an average cost per 

question of only $0.07 for 3.3 answers. 

Given that other visual-assistance tools 

for the blind can cost upwards of $1,000 

(the equivalent of nearly 15,000 uses of 

VizWiz), we believe that human com-

putation embedded in an inexpensive 

software system can be not only more 

effective but also competitive with, or 

even cheaper than, existing pure soft-

ware solutions. When set to maintain a 

steady pool of workers (at a cost of less 

than $5 per hour), quikTurkit can ob-

tain answers in less than 30 seconds.

Beyond monetary compensation, 

many other reasons entice people to 

participate in human computation, in-

Figure 4: The find-fix-verify algorithm in Soylent identifies patches in need of  

editing, suggests fixes to the patches, and votes on those fixes.

Heads in the Cloud
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cluding altruism, entertainment, and 

friendship. How do those motivations 

influence system performance? And 

how should the systems be designed to 

encourage some motivations, and per-

haps discourage others? 

After demonstrating that VizWiz 

was feasible using paid strangers on 

Mechanical Turk, we also ported it 

to Facebook, so that a blind user’s 

sighted friends can help. We are cur-

rently studying how people (at least in 

this context) choose to trade off the 

strengths and weaknesses of each ser-

vice. Mechanical Turk is fast but costs 

money. Facebook is free, and the user’s 

friends might be more motivated to 

answer, or even more capable since 

they know more about the person. On 

the other hand, the user might be less 

willing to ask certain personal ques-

tions to his or her friends, rather than 

asking an anonymous Mechanical 

Turk crowd.

PEOPLE VS SYSTEMS

The gap between what software can do 

and what people can do is shrinking, 

but a gap of some sort will exist for a 

long time. Automatic techniques need 

to be able to fallback to people when 

necessary to fill in the gaps, enabling 

interactions that automatic techniques 

alone can’t yet support and helping us 

design for the future.

So-called Wizard of Oz prototyping 

(wherein a human is hiding behind 

the curtain, so to speak) is a venerable 

technique in human-computer inter-

action and artificial intelligence that 

makes an intelligent system (or even a 

not-so-intelligent one) appear to work 

even though a software backend isn’t 

ready yet. With platforms like Mechan-

ical Turk and Facebook that make hu-

man computation practical, we are 

now at the point where Wizard of Oz is 

not just for prototyping anymore. We 

can build useful systems with human 

power inside, and actually deploy them 

to real users. These systems will stretch 

the limits of what software can do, and 

allow us to find out whether the ideas 

even work and how people would use 

them. 

In addition, we can collect data from 

actual system use, like VizWiz queries 

and photos, that might eventually help 

to replace some or all of the human 

power with artificial intelligence. From 

this perspective, AI would speed up 

performance and reduce labor costs. 

But human computation made the sys-

tem possible in the first place.
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ACRONYMS

AMT   Amazon Mechanical 

Turk: a web service owned 

by Amazon that facilitates 

crowdsourcing

CAPTCHA   complete 

automated public Turing 

test to tell computers and 

humans apart; it’s a contrived 

acronym intentionally redolent 

of the word “capture,” used 

to describe a test issued on 

web forms to protect against 

automated responses

GWAP   Game with a Purpose: 

a computer game that layers a 

recreational challenge on top 

of a problem that demands 

human intelligence for 

efficient solution, e.g., protein 

folding

HCIR   human–computer 

information retrieval

HIT   human intelligence 

task: a task that an AMT 

requester is willing to pay to 

have accomplished by AMT 

providers. More generally, 

a task that may be best 

completed via crowdsourcing

HuGS   human-guided 

search: A research project 

investigating a strategy for 

search and optimization 

problems that incorporates 

human intuition and insight

reCAPTCHA   a kind of 

“CAPTCHA” (see above) 

service that helps to digitize 

books, newspapers and old 

radio shows. Used to detect 

whether a user is a human or a 

computer (bot)

TF-IDF   term frequency-

inverse document frequency: 

A weight formula used in 

data mining to determine the 

importance of a particular 

term to a document in a 

corpus of text
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