Department of Electrical and Computer Engineering Syracuce University

Approved for pubile releasc; distribution unlimited.

ROME ATR DEVELGPMENT CENTEF
AIR FORCE SYSTEMS COMMAND GRIFFISS AIR FORCE BASE, NEW YORK 13441

Professor Roger f. :faringron ard Dr. J. R. Mat are the comesponsible investigators for this contract. Peter R. French (ETER) is the fAC Project Engineer.

This report has been reviewed by the MiSc information office (01) and is releasable to the National! Technical information Service (NTIS) At NTIS it will be releasable to tho General public, including foreign nations.

This technical report has been reviewed and approved for publication.

APPROVED:

APPROVED:

FOR THE COMMANDER:

plans office

SECURITY CLASSIFICATION OF THISPAGE (When Data Entorod)

the tangential electric field to be zero on S. The combined field integral equation is a linear conifination of the H-field and F-field integral equations

Computations show that both the $H-f f e l d$ and the $F-f i e l d$ solutions deteriorate near internal resonances of the conducting surface S, but that the combined field solution does not. The computer program subroutines used to perform these computations will appear in a forthcoming report.

[^0]
evaluation

This report is the first Technical Report. it is a theoretical analysis of a method for obtalning solucions for conducting bodies of revolution with an unspecified cross section. The approach involves applying the method of moments to the E-fleld, H-field and the combined field integral equations, respectively. The final solution is a linear combination of the H-field and E-field integral equations. This technique is an improvement over previous single field techniques, because at certain critical frequencies the single field techniques appear to become unstable. This does not happen with the combined field approach.

A second report giving the computer program for this technique is belng prepared. These reports will enable the practical computation of the backscatter cross section of many complex bodies of revolution.

PETER R. FRANCHI
Project Engineer

Atcession ter	
H18	Wate secten $\square^{\text {a }}$
008	SLi section []
Unamnuyse.l	[]
JWSIFICALiot	\ldots
EY	
$!$	
-	1

(:INTTENTS

Pach
I. Intronuetton 1
II. STATEMENT OF THE PKOBLFM 2
EII. H-FIET, SODUTLON 4
IV. F-WEPLD SOLUTION 14
V. COMBINED FIELD SOLUTION 22
VI. FAR FIELI MEASITRFMFNT ANI PIANE WAVF FXCITATION- 25
VII. FXAMPLFS 31
VIIL. DISCUSSION 35
APPENDIX A. DERIVATION OF TIIF H-FIELD INTEGRAL EONATION 39
APPENDIX B. IMERIVATION OF THE E-FIELD MATRIX FOUATION 42
RFFERENCFS 45
I. TNTROITCTION

Formuias for the computation of the electric surface current and far scatterec field of a perfectly conducting body of revolution are derived for arbitrary plane wave excitation. Computer program subroutines which implement these formulas in the resonance region will appear in a forthcoming report. Computations show that both the $H-f i e l d$ solution and the E-field solution deteriorate near internal resonances of tine conducting surface, but that the combined field solution does not.

The field solutions are obtained by applying the method of moments to the H-field integral equation, the E-field integral equation, and the combined fifid integral equation for a perfectly conducting body of revolution. Although the computer program subroutines are written explicitly for a perfectly conducting body of revolution, they are directly applicable to the more difficult problem of plane wave scattering by dielectric bodies considered by Wu [1].

Our H-field solution is similar to that of Uslenghi [2], generalized to nblique incidence and with expansion and testing functions equal to four impulse approximations to triangle functions divided by the cylindrical coordinate radius. We use Gaussian quadrature instead of Simpson's rule for integration. Our treatment of coincident impilses is simpler than ilslenghi's. The impulses are combined in groups of four, not to make the H-field soiution more efficient, but to make it compatible with the E-field solution. Actually, for low order solutions where much more effort is required to obtain the matrix elements than to solve the system of Inear equations, it is wasteful to combine the impulses if all one wants is the H-field solution aione.

Our F-field solution is in some respects a simplification and in other respects a refinement of an earlier f-field solution [3].
[1] T. K. Wis, "Flectromagnetic Scattelng, from Arbitrarily-Shaped Lossy Dielectric Rodies," Hh. 1 . Thesis, Hniversity of Mississippi, May 1976.
[2] P.L.E. Is lenghi, "Computation of Surface Currenis on Rodies of kevolim tion," Alta Frequenza, vol. 39, No. 8, 1970 , pp. 1-12.
13| . K. R. Mantz and R. F. Marrington, "Radiation and Scattering from Bodes of Revolution," Appl.sci. Res., vol. 20, Tune 1969 , pp. 403-435.

The interaction between impulse portions of the expansion and testing functions is calculated in the same way as in the H-field solution. Computationally, this new E-fieid solution is roughly three times faster than that of [3] with comparable accuracy.

Our comhined field formulation is that proposed by Oshiro et al. $[4,5]$. It is oftained by the method of moments applied to a weighted average of the H and E field integral equations for a perfectly conducting body of revolution. The matrix operator for the combined field solution is a ifnear combination of the matrix operators for the H and E field solutions. The excitation vector for the combined field solution is the same linear combination of the excitation vectors for the H and E field solutions.

II. STATEMEN' OF' THE PROBLFM

We seek the electric surface current and the far scattered field of the perfectly conducting body of revolution of Fig. 1 excited by an incident plane wave. In Fig. $1, \rho, \phi, z$ are cylindrical coordinates, and t, ϕ form an orthogonal curvilinear coordinate system on the surface S of the body of revolution. Also, u_{t} and u_{m} are orthogonal mit vectors in the t and $\$$ directions, respectively. The coordinate origin is on the axis of the body of revolution but not necessarily at the lower pole as in Fig. 1. Figure 2 defines the propagation vector k_{m} of the incident plane wave, the transmitter coordinate θ_{t}, the coordinates θ_{r}, ϕ_{r} (receiver coordinates) at which the far scattered field is observed, and the propagation vector ${\underset{\sim}{r}}^{k_{r}}$ of a hypothetical measurement $p l a n e$ wave which travels from the receiver location (θ_{r}, ϕ_{r}) toward the origin. Note that the ϕ courdinate of the transmitter is zero such that k is in the $x z$
 and ${ }_{r}$ directions respectively.

We consfier separataly a polarized incident plane wave defined
[4] F.K. Oshfro, K.M. Mitzere, and S.s. locus et al., "Calculation of Radar :ross Section," Afr Force Avionics Iaboratory Tech. Rept. AFAl,-TR-70-21, Port 11, April 1970.
[5] A.I. Poggio and E.K. M: ller, "Integral Equation Solutions of ThreeHimensional Scattermer Prohlems," Chap. 4 of Computer Techufques for Flectromagnetlas, edfed by R. Mittra, pergamon Press, 1973.

Fig, 1. Body of revolution and coordinate system.

Fig. ? . Plame wave scat erfag hy a conducting body of revolution.
by

$$
\begin{align*}
& {\underset{\sim}{r}}^{i}={\underset{\sim}{u}}_{t}^{t} k \eta e^{-i \underset{\sim}{k} \cdot \underset{\sim}{r}} \tag{1}\\
& \left.H^{i}=(\underset{\sim}{k} \times \underset{\sim \theta}{u})^{t}\right)^{-j k_{v t} \cdot r}
\end{align*}
$$

and a polarized incident plane wave defined by

$$
\begin{align*}
& E^{i}={\underset{u \sim \phi}{t} k \eta e^{-j k t} \cdot r}_{r}^{r} \tag{2}\\
& H^{i}=\left(\underset{\sim}{k} \times \underset{\sim}{u}{ }_{i}^{t}\right) e^{-j k_{u t}} \cdot \underset{\sim}{r}
\end{align*}
$$

where ${\underset{\sim}{~}}^{\mathrm{i}}$ and H^{i} denote incident electric and magnetic fields respectively, r is the radius vector from the origin, k is the propagation constant, and η is the intrinsic impedance. Fither plane wave gives rise to t and ϕ directed electric surface currents on S and θ_{r} and ϕ_{r} directed far scattered fields.

III. H-FIELD SOLUTION

The H-field solution is obtained hy applying the method of moments to the H-field integral equation. The H-field integral equation is derived by setting the component tangential to S of the total magnetir field equal to zero just inside s.

The boundary condition that the total tangential magnetic field is zero just inside S is written as

$$
\begin{equation*}
-\underline{n} \times{\underset{\sim}{4}}^{s}=\underset{\sim}{n} \times{\underset{\sim}{i}}_{i}^{i} \text { just inside } \mathrm{S} \tag{3}
\end{equation*}
$$

where n is the mit outward normal vector to $s, H^{\text {s }}$ is the magnet ic field due to the electric surface current on S and H^{i} is the incident magnetic field given by either (1) or (2).

To obtain an expression for $\underset{\sim}{n} \times{\underset{n}{4}}^{3}$, we note first that from page 98 of $[6]$
[6] R. F. Harrington, Time Hammone Flectromagetic Fiolds, M, iraw-hill Book (io., 1961.
where δ is the distance between the field point $\underset{\sim}{r}$ and the inside face of the surface S, r_{r}^{\prime} is a running source point on S, and $J\left(r_{w}^{\prime}\right)$ is the electric surface current on S. Next, we view $\underset{\sim}{J}\left(r^{\prime}\right)$ in (4) as the current which resides on ΔS plus the current on S minus $A S$ wher" $A S$ is that portion of S inside a sphere of radius ε centered at the point on S nearest $\underset{\sim}{r}$. Let ε be so small that ΔS is essentially flat and that the electric surface current on it is constant. If δ is appreciably less than ε, then, from Ampere's law, the contriburion to $n \times H^{s}$ from the current on ΛS is $-T / 2$ where I is the value of the current on ΔS. Moreover, this contribution to $\underset{\sim}{n} \times{\underset{N}{N}}_{\hat{S}}$ comes exclusively from a small portion of ΔS in the immediate vicinity of r. The current on that portion of ΔS for which the distance to the field point r is appreciably greater than δ does not contribute to $n \times H^{s}$. We now let $\delta \rightarrow 0$ in which case $\underset{\sim}{r}$ becomes a point of s, the contribution $-\mathbb{I} / 2$ comes from the value of J at the single point r, and the current on any portion of $i S$ which does not contain r contributes nothing to $n \times H^{\mathrm{s}}$. Hence,
where r is exactly on S and where the improper integral in (5) is convergent.

In view of (5) and the vector identity

$$
\begin{equation*}
\left\{!\left(r^{\prime}\right) \frac{u^{-j k\left|r-r^{\prime}\right|}}{\left|r-r^{\prime}\right|} \left\lvert\,=-\left(\left.\frac{1+i k\left|r-r^{\prime}\right|}{\left|r-r^{\prime}\right|^{3}}-i k \right\rvert\, r-r^{\prime}\left(r-r^{\prime}\right) \cdot!\left(r^{\prime}\right)\right.\right.\right. \tag{6}
\end{equation*}
$$

(3) berames:
for $\underset{\sim}{r}$ on S. Henceforth, we assume that the outward normal vector n is
 evaluations of the terms proportional to n in (7) will have the wrong, signs throughout the remainder of this report.

If

$$
\begin{equation*}
I_{\sim}\left(r_{\sim}^{\prime}\right)=u_{u t}^{\prime} J^{t}\left(t^{\prime}, \phi^{\prime}\right)+u_{u \phi}^{\prime} J^{j}\left(t^{\prime}, \phi^{\prime}\right) \tag{8}
\end{equation*}
$$

where u_{w}^{\prime} and $u^{\prime}{ }^{\prime}$ are unit vertors in the t^{\prime} and ϕ^{\prime} directions respectively, then, as shown in Appendix A, (7) becomes
${\underset{u}{t}}_{u t}^{u}\left\{\frac{I^{t}(t, t)}{2}+\frac{k^{3}}{4 \pi} \int \rho^{\prime} d t^{\prime} \int_{0}^{2} d \phi^{\prime} G, J^{t}\left(t^{\prime}, t^{\prime}+\phi\right)\left[\left(\rho^{\prime}-\rho\right) \cos v^{\prime}-\left(z^{\prime}-z\right) \sin v^{\prime}\right)\right.$ $\left.\left.\cos A^{\prime}-20 \cos v^{\prime} \sin ^{2}\left(\frac{t^{\prime}}{2}\right)\right]+\frac{k^{3}}{4 \pi} \int \sigma^{\prime} d t^{\prime} \int_{0}^{2 \pi} d t^{\prime}\left(t^{\prime}, t^{\prime}+t^{\prime}\right)\left(z^{\prime}-z\right) \sin t^{\prime}\right\}$
 $\left.-\left(z^{\prime}-z\right) \sin v \sin v^{\prime}\right) \sin !^{\prime}+\frac{k^{3}}{4^{\prime}} \int^{\prime} d t \int_{0}^{2 \prime} d \phi^{\prime}\left(0 T^{\prime}\left(t^{\prime}, y^{\prime}+t\right)\right.$

$$
\begin{equation*}
\left.\left[\left(\left(,^{\prime}-r\right) \cos v-\left(z^{\prime}-z\right) \sin v\right) \cos n^{\prime}+2, \cos \text { v } \sin ^{2}\left(\frac{1^{\prime}}{2}\right)\right]\right\}-n_{r}^{n} n^{i} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\therefore=\frac{1+j k R}{k k^{3}}=-j k R \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
R=\sqrt{\left(\rho-\rho^{\prime}\right)^{2}+\left(z \cdot z^{\prime}\right)^{2}+4 \rho \rho^{\prime}} \sin ^{2}\left(\frac{x^{\prime}}{2}\right) \tag{11}
\end{equation*}
$$

In (9), both n and H^{i} are to be evaluated at (t, h) on S and v the the angle between ${ }^{4} \mathrm{t}$ and the z axis. v is positive if u_{t} points away from the z axis and v is negative if u points toward the z axis. The variablns c^{\prime}, z^{\prime}, and r^{\prime} are respectively $0, z$, and v evaluated at \because '。 If the electric surface current is bounded and if S curves smoothly, then all the iterated integrals in (9) converge because the integrands are at least as well hehaved as R^{-1}.

According to the method of moments, we let

$$
\begin{equation*}
J(r)=\sum_{n, j}\left(I_{n j}^{t} J_{n j}^{t}(t, \phi)+I_{n j}^{\phi} J_{n j}^{\phi}(t, \phi)\right) \tag{12}
\end{equation*}
$$

where $J_{n j}^{t}(t, \phi)$ and $I_{n, j}^{\phi}(t, \phi)$ are expansion functions defined by

$$
\begin{align*}
& J_{n j}^{t}={\underset{\sim}{t}}_{f_{j}}(t) e^{i n \phi} \tag{13}\\
& J_{n j}^{\phi}={\underset{u n}{n}}^{f}(t) e^{j n} \tag{14}
\end{align*}
$$

Fxpansion functions whose t and ϕ components are proportional to $e^{i n \phi}$ are especially suitable bccause they make the t and comporients of the left-hand side of (9) froportional to $e^{\text {jnt }}$. The coefficients $T_{n j}^{t}$ and $I_{n j}^{\phi}$ are determined by solving the matrix equation which results when (12) is substituted via (9) into (9) and the inner product of (9) with testing functions $\underset{\sim m i}{W}(t, \phi)$ and $\underset{\sim}{W} W_{m i}^{\phi}(t, \phi)$ defined by

$$
\begin{align*}
& W_{m i}^{t}=u_{t} f_{i}(t) e^{-f m} \tag{15}\\
& W_{m i}^{h}=u_{f} f_{f}(t) e^{-f m} \tag{i6}
\end{align*}
$$

is taken. For an inner product equal to the dot product integrated over S, the matrix equation decomposes into

$$
\left[\begin{array}{cc}
Y_{n}^{L t} & Y_{n}^{t \phi} \tag{17}\\
Y_{n}^{\phi t} & Y_{n}^{\phi \phi}
\end{array}\right]\left[\begin{array}{c}
\vec{T}_{n}^{t} \\
\\
\vec{I}_{n}^{\phi}
\end{array}\right]=\left[\begin{array}{c}
\vec{T}_{n}^{t} \\
n \\
\vec{I}_{n}^{\phi}
\end{array}\right], n=0, \pm 1, \pm 2 \cdots
$$

where \vec{I}_{n}^{t} and \vec{I}_{n}^{ϕ} are column vectors whose j th elements ame $I_{n j}^{t}$ and $I_{n j}^{\phi}$ respectively. Also, $\stackrel{\lambda}{\mathrm{I}}_{\mathrm{n}}^{\mathrm{t}}$ and ${\underset{\mathrm{T}}{\mathrm{n}}}_{\mathrm{X}}$ are column vectors whose ith elements are given by

$$
\begin{equation*}
\hat{I}_{n i}^{t}=\int d t \rho f_{i}(t) \int_{0}^{2 \pi} d \phi\left(u_{\wedge t} \times n\right) \cdot H^{i} e^{-j n \phi} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{I}_{n i}^{\phi}=\int d t \rho f_{i}(t) \int_{0}^{2 \pi} d \phi\left(u_{\phi} \times n\right) \cdot H^{i} e^{-j n \dot{\phi}} \tag{19}
\end{equation*}
$$

respectively. Finally, $Y_{n}^{t t}, Y_{i}^{\phi t}, Y_{n}^{t \phi}$, and $Y_{n}^{\phi \phi}$ are square matrices whose ijth elements are given by

$$
\begin{align*}
& \left(Y_{n}^{t t}\right)_{i j}=\pi \int d t \rho f_{i}(t) f_{j}(t)+k^{3} \int d t \rho f_{i}(t) \int d t^{\prime} \rho^{\prime} f_{j}\left(t^{\prime}\right)\left[\left(f^{\prime} \rho^{\prime}-\rho\right) \cos v^{\prime}\right. \\
& \left.\left.-\left(z^{\prime}-z\right) \sin v^{\prime}\right) G_{2}-G_{1} \rho \cos v^{\prime}\right] \\
& \left(Y_{n}^{\phi t}\right)_{i j}=. j k^{3} \int d t \rho f_{i}(t) \int d t^{\prime} \rho^{\prime} f_{j}\left(t^{\prime}\right)\left(\rho ' \sin v \cos v^{\prime}-\rho \sin v^{\prime} \cos v\right. \\
& \left.-\left(z^{\prime}-z\right) \text { sin } v \sin v^{\prime}\right) O_{3} \tag{21}\\
& \left(Y_{n}^{t \phi}\right)_{i j}=j k^{3} \int d t a_{i}(t) \int d t^{\prime} p^{\prime} f_{i}\left(t^{\prime}\right)\left(z^{\prime} \cdots z\right) G_{3} \tag{22}
\end{align*}
$$

$$
\begin{gather*}
\left(Y_{n}^{t \phi}\right)_{i j}=\| \int d t \rho f_{i}(t) f_{j}(t)+k^{3} \int d t \rho f_{i}(t) \int d t^{\prime} \rho^{\prime} f_{j}\left(t^{\prime}\right)\left[\left(\rho_{0}-p\right) \cos v\right. \\
\left.\left.-\left(z^{\prime}-z\right) \sin v\right) C_{2}+G_{1} \rho^{\prime} \cos v\right] \tag{23}
\end{gather*}
$$

where

$$
\begin{align*}
& G_{1}=2 \int_{0}^{\pi} d \phi^{\prime} G \sin ^{2}\left(\phi^{\prime} / 2\right) \cos \left(n \phi^{\prime}\right) \tag{24}\\
& G_{2}=\int_{0}^{\pi} d \phi^{\prime} G \cos \phi^{\prime} \cos \left(n \phi^{\prime}\right) \tag{25}\\
& G_{3}=\int_{0}^{\pi} d \phi^{\prime} G \sin \phi^{\prime} \sin \left(n \phi^{\prime}\right) \tag{26}
\end{align*}
$$

We define $\rho f_{i}(t)$ to be a four impulse approximation co a triangle function in the following manner. Letting $t=(\rho, z)$ denote that ρ and z are cylindrical conrdinates of the point t, we define an odd number greater than or equal to 5 of consecutive points $t=(\rho, z)=t_{i}^{-}=$ $\left(\rho_{i}^{-}, z_{i}^{-}\right), i=1,2, \ldots P$ on the generating curve of the body of revolution such that $\left(\rho_{1}^{-}, z_{1}^{-}\right)$and $\left(\rho_{p}^{-}, z_{p}^{-}\right)$are the poles. If the body of revolution has no poles because the generating curve closes upon itself as with a torus, then three points must be overlapped such that

$$
\left(\overline{p_{-3+i}}, z_{p-3+i}^{-}\right)=\left(n_{i}^{-}, z_{i}^{-}\right), \quad i=1,2,3 .
$$

Preferatly, the points t_{i}^{-}shoula be such that ${ }_{\sim}^{n}=u_{\phi} u_{-} u_{t}$ where ${ }_{u}{ }_{u}$ points from ${ }_{i}^{-}$te t_{i+1}^{-}. If the points t_{i}^{-}are chosen such that $n_{n}=-u_{\phi}{ }_{t}$, then all expressions which can be traced back to the terms proportional to n in (7) will have the wrong signs.

We now approximate the generating curve by drawing straight lines between the points $\left.\left(0_{i}^{-}, z_{i}\right), i=1,2, \ldots\right)$ and define points
on this approximate generating curve. lhe length def the interval certered about: t_{i} is given by

$$
\begin{equation*}
d_{i}=\sqrt{\left(\rho_{i+1}^{-}-\rho_{i}^{-}\right)^{2}+\left(z_{i+1}^{-}-z_{i}\right)^{2}} \tag{28}
\end{equation*}
$$

In terms of coefficients T_{p+41-4} defined by

$$
\begin{align*}
& \Gamma_{4 i-3}=\frac{k d_{2 i-1}^{2}}{2\left(d_{2 i-1}+d_{2 i}\right)} \\
& T_{4 i-2}=\frac{k\left(d_{2 i-1}+\frac{1}{2} d_{2 i}\right) d_{2 i}}{d_{2 i-1}+d_{2 i}} \tag{29}\\
& T_{4 i \cdots 1}=\frac{k\left(d_{2 i+2}+\frac{1}{2} d_{2 i+1}\right) d_{2 i+1}}{G_{2 i+1}+d_{2 i+2}} \\
& T_{4 i}=\frac{k d_{2 j+2}^{2}}{2\left(d_{2 i+1}+d_{2 i+2}\right)},
\end{align*}
$$

we construct

$$
\begin{equation*}
\rho f_{i}(t)=\frac{1}{k} \sum_{p=1}^{4} T_{p+4 i-4} \delta\left(t-t_{p+2 i-2}\right) \tag{30}
\end{equation*}
$$

where $\delta(t)$ is the mit impulse function. The right-hand side of (30) is the desired four impulse approximation to a triangle function (see Flg. 3) .

Substitution of (30) into (20) - (23) yields

Fig. 3. Triangle function (solid) and four impulse approximation (arrows).
where s denotes the double subscript $p+2 i-2, q+2 j-2$ and

$$
\left.\left.\begin{array}{l}
(Y 1)_{i j}=\left\{\begin{array}{ll}
k\left(\left(\rho_{j}-\rho_{i}\right) \cos v_{j}-\left(z_{j}-z_{i}\right) \sin v_{j}\right) G_{2}-k_{\rho} G_{1} \cos v_{j}, & i \neq j \\
\frac{\pi}{k^{2} d_{i} \rho_{i}}-k \rho_{i} G_{1} \cos v_{i}
\end{array}, \quad i=j\right.
\end{array}\right\} \begin{array}{l}
(Y 2)_{i j}=j k\left(\rho_{j} \sin v_{i} \cos v_{i}-\rho_{i} \sin v_{j} \cos v_{i}-\left(z_{j}-z_{i}\right) \sin v_{i} \sin v_{j}\right) G_{3}
\end{array}\right\}
$$

Here, v_{i} is the angle between the approximate generating curve at $\left(0_{i}, z_{i}\right)$ and the z axis. The term $\frac{\pi}{k^{2} d_{i} \rho_{i}}$ in (32) and (35) was obtained by replacing one of the coincident impulse functions in the first intearal on the right-hand sides of hoth (20) and (23) by an equivalent pulse over the interval of lensth d_{i}.

In (32)-(35), (in,C_{2}, and G_{3} are given by (24) to (26) in which G is given by (10) with R of (11) evaluated at $\left(\rho, z, \rho^{\prime}, z^{\prime}\right)=\left(\rho_{i}, z_{i}, \gamma_{j}, z_{j}\right)$. When $i=j$ in (32)-(35), none of the integrals G_{1}, G_{2}, and G_{3} converge because

$$
R=2 \rho_{i} \sin \left(\phi^{*} / 2\right)
$$

This lack of convergence is ascribed to use of the impu1se representation (30) rather than to any deficiency in the H-field integral equation (9). To obtain convergence for $i=j$, we replace the above R by an equivalent distance k_{e} given by

$$
\begin{equation*}
R_{e}=\sqrt{\left(d_{i} / 4\right)^{2}+4 p_{i}^{2} \sin ^{2}\left(\phi^{\prime} / 2\right)} \tag{36}
\end{equation*}
$$

Expression (36) may be obtained by displacing the field point a distance $d_{i} / 4$ perpendicular to the plane of the source loop. Now, $d_{i} / 4$ is the equivalent radius [7] of a flat strip whose width is d_{i}. Fxpression (36) can also be obtained by averaging R^{2} for field points displaced a distance $d_{i} / 4$ in either direction along the approximate generating curve from the source loop.

An N_{ϕ} point Gaussian quadrature formula is used to calculate the integrals G_{1}, G_{2}, and G_{3} defined by (24)-(26) in which $(;$ is given by (10) and R by either (11) or (36). According to this quadrature formula,

$$
\begin{equation*}
\int_{0}^{\pi} f\left(\phi^{\prime}\right) d \phi^{\prime}=\frac{\pi}{2} \sum_{k=1}^{N_{\phi}} A_{k} f\left(\frac{\pi}{2}\left(x_{k}+1\right)\right) \tag{37}
\end{equation*}
$$

where $f\left(\phi^{\prime}\right)$ is the function being incegrated and x_{k} and Λ_{k} are constants tabulated by Kryiov [8]. In (37), the multiplier $\frac{\pi}{2}$ and argument $\frac{\pi}{2}\left(x_{k}+1\right)$
[7] F. A. Wolff, Antenna Analysis, John Wiley and Sons, Inc., New York,
1966, p. 61.
[8] V. I. Krylov. Approximate Calculation of Integrals, translated by A. H. St rond, Macmilian Co., New York, 1962 , Appendix A.

Instead of fust x_{k} are due to the transformation of Krylov's interval from -1 to 1 into the interval from 0 to $\%$.

$$
\text { The } k_{k}^{2} d_{i}{ }_{i} \text { terms in (32) and (35) destroy some symmetry proper- }
$$

ties of (31). If the $\frac{\pi}{k^{2} d_{i}{ }_{i}}$ terms were absent, then

$$
\begin{align*}
& (Y 1)_{i j}=-(Y 4)_{j i} \\
& (Y 2)_{i j}=-(Y 2)_{j i} \tag{38}\\
& (Y 3)_{i j}=-(Y 3)_{j i}
\end{align*}
$$

and replacement of (i, j, p, q) by (j, j, q, p) in (31) would show that

$$
\begin{align*}
& \left(Y_{n}^{t t}\right)_{i j}=-\left(Y_{n}^{\phi \phi}\right)_{j i} \\
& \left(Y_{n}^{\phi t}\right)_{i j}=-\left(Y_{n}^{\phi t}\right)_{j i} \tag{39}\\
& \left(Y_{n}^{t \phi}\right)_{i j}=-\left(Y_{n}^{t \phi}\right)_{j i}
\end{align*}
$$

An efficient method of computing (31) which takes (38) and (39) into account is described in a subsequent report.
IV. E-FIELD SOLUY'ION

The $\mathrm{F}-\mathrm{field}$ solution is obtained by applying the method of moments to the $\mathrm{E}-\mathrm{field}$ integral equation. The E-field integral equation is derived by setting the component tangential to S of the total electric field equal to zero on S.

The boundary condition that the total tangential electric field is zero on s is written as

$$
\begin{equation*}
-\frac{1}{\eta} \mathrm{~F}_{\tan }^{\mathrm{s}}=\frac{1}{\eta} \mathrm{E}_{\operatorname{man}}^{\mathrm{i}} \quad \text { onl } \mathrm{S} \tag{40}
\end{equation*}
$$

where ${\underset{\sim}{*}}^{\text {s }}$ is the electric field due to the electric surface current on S. E^{1} is the incident electric field given by either (1) or (2) and n is the intrinsic impedance. The subscript tan denotes tangential components on S. The $1 / \eta$ teras are included in (40) to give it the dimensions of current.

The field \mathbb{E}^{s} can be expressed in terms of a vector potential A and a scalar potential Φ as
where

$$
\begin{align*}
& \Lambda(J)=\mu \iint_{S} J\left(r_{\sim}^{\prime}\right) \frac{-j k\left|r-r^{\prime}\right|}{4 \pi\left|r-r^{\prime}\right|} d s^{\prime} \tag{42}\\
& \Phi(J)=\frac{1}{\varepsilon} \iint_{S} \sigma \frac{e^{-j k\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|} d s^{\prime} \tag{43}
\end{align*}
$$

Here, r and r^{\prime} are vectors to the field and source points respectively, $J\left(r_{\alpha}^{\prime}\right)$ is the electric surface current on S, k is the propagation constant, ψ is the permeability, ε is the permittivity, and σ is the suiface charge given by

$$
\begin{equation*}
\sigma=-\frac{1}{j u} \lim _{\Delta S \rightarrow 0}\left(\frac{\int_{C} J(r) \cdot u_{n}^{u} d c}{\Delta S}\right)=-\frac{1}{j \sim v_{s}} \cdot \underset{\sim}{J}(\underset{r}{r} \tag{44}
\end{equation*}
$$

where ${\underset{\sim}{n}}^{u}$ is the unit vector tangential to S and normal to the curve 6 which bounds the small portion Δs of s. $\quad 4$ points away from ΔS. The operator V_{s} iss the surface divergence on S.

Following the method of moments, we write

$$
\begin{equation*}
!=\sum_{n, i}\left(I_{n j}^{t} \quad I_{n j}^{t}+1 \frac{1}{n j} \therefore_{n j}^{t}\right) \tag{45}
\end{equation*}
$$

where $I_{n j}^{t}$ and. $I_{n j}^{\phi}$ are coefficients to be determined and $J_{n j}^{t}$ and $J_{n j}^{\phi}$ are expansion functions defined by

$$
\begin{align*}
& J_{n j}^{t}=u_{q t} f_{j}(t) e^{f n \phi} \\
& J_{\sim n j}^{\phi}={\underset{\sim \phi}{ }}^{f_{j}}(t) e^{j n \phi} \tag{46}
\end{align*}
$$

Next, we take the integral over S of the dot product of (40) with each one of a collection of testing functions $\underset{\sim}{W}{ }_{\mathrm{mi}}^{\mathrm{t}}, ~ \underset{\sim}{\mathrm{~m}}{ }^{\phi}$ defined by

$$
\begin{align*}
& \underset{\sim m i}{W^{t}}={\underset{\sim}{t}}^{u} f_{i}(t) e^{-j m \phi} \tag{47}\\
& \underset{\sim m i}{W_{m i}^{\phi}}={\underset{\sim \phi}{u_{i}}}_{f_{i}}(t) e^{-j m \phi}
\end{align*}
$$

to obtain the matrix equaition

$$
\begin{align*}
& \sum_{\mathrm{n}}\left(\left[z_{\mathrm{mn}}^{\mathrm{tt}}\right] \overrightarrow{\mathrm{T}}_{\mathrm{n}}^{\mathrm{t}}+\left[z_{\mathrm{mn}}^{\mathrm{t} \phi}\right] \overrightarrow{\mathrm{t}}_{\mathrm{n}}^{\phi}\right)=\overrightarrow{\mathrm{V}}_{\mathrm{m}}^{\mathrm{t}} \tag{48}\\
& \sum_{\mathrm{n}}\left(\left[z_{\mathrm{mn}}^{\phi \mathrm{t}}\right] \overrightarrow{\mathrm{t}}_{\mathrm{n}}^{\mathrm{t}}+\left[z_{\mathrm{mn}}^{\phi \phi}\right] \overrightarrow{\mathrm{I}}_{\mathrm{n}}^{\phi}\right)=\overrightarrow{\mathrm{V}}_{\mathrm{m}}^{\phi}
\end{align*}
$$

where the Z 's are square matrices whose $i j-$ th elements are defined by
where p may be either t or ϕ and q may be either t or ϕ and $\eta=\sqrt{1 / 2}$ is the intrinstc impedance. Also, $\vec{V}_{\mathrm{m}}^{\mathrm{t}}$ and $\overrightarrow{\mathrm{V}}_{\mathrm{m}}^{\boldsymbol{q}}$ are colum vectors whose i ith elements are given by

$$
\begin{equation*}
v_{m i}^{p}=\frac{1}{i} \iint_{\zeta}{\underset{\sim m i}{w}}_{p}^{p} \cdot{\underset{\sim}{i}}_{i}^{i} d s \tag{50}
\end{equation*}
$$

where p may be either t or ϕ. Lastly, \vec{t}_{n}^{t} and \vec{t}_{n}^{ϕ} are column vectors cf the coeffictents $I_{n j}^{t}$ and $I_{n j}^{\phi}$ appearing in (45).

The following manipulations serve to transfer the differential operator on \varnothing in (49) to ${\underset{w n i}{ }}_{\mathrm{p}}^{\text {. }}$. Since S is closed,

$$
\begin{equation*}
\iint_{\mathrm{S}} \underset{m s}{\nabla} \cdot(\Phi \underset{\sim}{W}) \mathrm{ds}=0 \tag{51}
\end{equation*}
$$

where $\underset{\sim}{W}$ denotes $\underset{\sim}{W}{ }_{\sim}^{p} i^{p}$. Now, the represertation

$$
\begin{equation*}
\underset{\sim}{\nabla} \cdot \underset{\sim}{W}=\frac{1}{\rho} \frac{\partial}{\partial t}\left(\rho \underset{\sim}{W} \cdot{\underset{\sim}{u}}^{\underset{\sim}{u}}\right)+\frac{1}{\rho} \frac{\partial}{\partial \phi}\left(\underset{\sim}{W} \cdot{\underset{\sim}{u}}_{\underline{u}}\right) \tag{52}
\end{equation*}
$$

of the surface divergence and the definition

$$
\begin{equation*}
\nabla_{\sim S} \Phi=u_{n t} \frac{\partial \Phi}{\partial t}+{\underset{\sim}{u}}_{\underline{u}} \frac{\partial \Phi}{p \partial \phi} \tag{53}
\end{equation*}
$$

of the surface gradient imply that

$$
\begin{equation*}
\underset{\sim}{\nabla} \cdot(\Phi \underset{\sim}{W})=\Phi \underset{\sim}{\nabla} \cdot \underset{\sim}{V}+\underset{\sim}{W} \cdot \underset{\sim}{V} \Phi \tag{54}
\end{equation*}
$$

In (54), the surface gradient of Φ can be replaced by the ordinary three-dimensional gradient of Φ because (53) is the component of the three-dimensional gradient tangential to S and W is tangential to S. Substitution of (54) into (51) and then (51) into (49) yields

$$
\begin{equation*}
\left(Z_{\operatorname{mn}}^{p q}\right)_{i j}=\frac{1 u^{n}}{\eta} \iint_{S}\left\{W_{n i}^{p} \cdot A\left(r_{n j}^{q}\right)+\sigma_{m i}^{p} \Phi\left(J_{n j}^{q}\right)\right\} d s \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{m d}^{p}=-\frac{1}{j w}{\underset{m s}{ }}_{v}^{p} \cdot{\underset{\sim m i}{p}}_{p}^{p} \tag{56}
\end{equation*}
$$

Since, as shown in Appendix B , (55) is zero for $\mathrm{m} \neq \mathrm{n}$, (48)
reduces to

$$
\left[\begin{array}{cc}
z_{n}^{t t} & z_{n}^{t \phi} \tag{57}\\
z_{n}^{\phi t} & z_{n}^{\phi \phi}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{1}_{n}^{t} \\
{\underset{\mathrm{~T}}{n}}_{\phi}^{n}
\end{array}\right]=\left[\begin{array}{c}
\vec{v}_{n}^{t} \\
\vec{v}_{n}^{\phi}
\end{array}\right], n=0, \pm 1, \pm 2, \ldots
$$

where $z_{n}^{P q}$ is $Z_{n n}^{P q}$ of (55). It is also shown in Appendix B that the elements of $Z_{n}^{p q}$ are given by

$$
\begin{align*}
& \left(Z_{n}^{t r}\right)_{i f}=f \int d t \int d t^{\prime}\left\{k_{p f_{i}}(t) \rho^{\prime} f_{j}\left(t^{\prime}\right)\left(G_{5} \sin v \sin v^{\prime}+G_{4} \cos v \cos v^{\prime}\right)\right. \\
& \left.-\frac{\partial}{\partial t}\left(\rho f_{i}(t)\right) \frac{\partial}{\partial t^{\prime}}\left(\rho^{\prime} f_{f}\left(t^{\prime}\right)\right) G_{4}\right\} \tag{58}\\
& \left(Z_{n}^{\phi t}\right)_{i j}=-\int \operatorname{dt\rho } f_{i}(t) \int d t^{\prime}\left(k^{2} \rho^{\prime} f_{j}\left(t^{\prime}\right) G_{6} \sin v^{\prime}+\frac{n}{\rho} \frac{\partial}{\partial t^{\prime}}\left(\rho^{\prime} f_{j}\left(t^{\prime}\right)\right) C_{4}\right) \tag{59}\\
& \left(Z_{n}^{t \phi}\right)_{i j}=\int d t \int d t^{\prime} \rho^{\prime} f_{i}\left(t^{\prime}\right)\left(k^{2}{ }_{\rho} f_{i}(t) G_{6} \sin v+\frac{n}{\rho^{\prime}} \frac{\partial}{\partial t}\left(\rho f_{i}(t)\right) G_{4}\right) \tag{60}\\
& \left(Z_{n}^{\phi \phi}\right)_{i f}=f \int d t \rho f_{i}(t) \int d t^{\prime} \rho^{\prime} f_{j}\left(t^{\prime}\right)\left(k^{2} G_{5}-\frac{n^{2}}{\rho \rho^{\prime}} G_{4}\right) \tag{61}
\end{align*}
$$

where v is the angle between the tangent to the generating curve and the z axis and where

$$
\begin{align*}
& G_{4}=\int_{0}^{\pi} d \phi^{\prime} \frac{e^{-j k R}}{k R} \cos \left(n \phi^{\prime}\right) \tag{62}\\
& G_{5}=\int_{0}^{\pi} d \phi^{\prime} \frac{e^{-j k R}}{k R} \cos \phi^{\prime} \cos \left(n^{\prime} \phi^{\prime}\right) \tag{63}\\
& G_{6}=\int_{0}^{\pi} d \phi^{\prime} \frac{e^{-j k R}}{k R} \sin \phi^{\prime} \sin \left(n \phi^{\prime}\right) \tag{64}
\end{align*}
$$

$$
\begin{equation*}
K=\sqrt{\left(\rho-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}+400^{\prime} \sin ^{2}\left(\frac{\phi^{\prime}}{2}\right)} \tag{65}
\end{equation*}
$$

Here, n, z, and v depend on t while $\rho^{\prime}, z^{\prime}$, and v^{\prime} depend on t^{\prime}.
To evaluate (58)-(b1), we choose for of (t) the four impulse approximation (30) to a triangle function which reads

$$
\begin{equation*}
\rho f_{i}(t)=\frac{1}{k} \sum_{p=1}^{4} T_{p+4 i-4} \delta\left(t-t{ }_{p+2 i-2}\right) \tag{66}
\end{equation*}
$$

where $\delta(t)$ is the unit impulse function and T_{i} and t_{i} are defined by (29) and (27) respectively. For $\frac{d}{d t}\left(f f_{i}(t)\right)$, we choose the four impulse approximation

$$
\begin{equation*}
\frac{d}{d t}\left(p f_{i}(t)\right)=\sum_{p=1}^{4} T_{p+4 i-4}^{\prime} \delta\left(t-t_{p+2 i-2}\right) \tag{67}
\end{equation*}
$$

to the derivative of the triangle function as shown in Fig. 3. Figure 4 illustrates (67). The coefficients ${ }_{p}^{\prime \prime}+4 i-4$ appearing, in (67) are given by

$$
\begin{align*}
& T_{4 i-3}^{\prime}=\frac{d_{2 i-1}}{d_{2 i-1}+d_{2 i}} \\
& T_{4 i-2}^{\prime}=\frac{d_{2 i}}{d_{2 i-1}+d_{2 i}} \\
& T_{4 i-1}^{\prime}=\frac{-d_{2} i+1}{d_{2} i+1+d_{2} i+2} \tag{6,8}\\
& T_{4 i}^{\prime} \quad-d_{2 i+1} \\
& d_{2 i+1}+d_{2 i+2}
\end{align*}
$$

Vis. 4. Herivative of triangle function (solid) and four impulse approxipation (arrows).

$$
\begin{align*}
& \left(z_{n}^{t t}\right)_{i . j}=1 \sum_{p=1}^{4} \sum_{q=1}^{4}\left(T_{p},{ }^{\prime \prime} q^{\prime}\left(r_{5} \sin v_{i}, \sin v_{j},+G_{4} \cos v_{i}, \cos v_{j}\right)-T_{p}^{\prime}, T_{q}^{\prime}, G_{4}\right\} \tag{69}\\
& \left(z_{n}^{\phi t}\right)_{i j}=-\sum_{p=1}^{4} \sum_{q=1}^{4}\left\{T_{p}, T_{q}, G_{6} \sin v_{j},+\frac{n}{k p_{1}} T_{p}, T_{q}^{\prime \prime}, G_{4}\right\} \tag{70}\\
& \left(z_{n}^{t \phi}\right)_{i j}=\sum_{p=1}^{4} \sum_{q=1}^{4}\left\{T_{p}, T_{q}, G_{6} \sin v_{f}, \quad \frac{n}{k \rho_{j} ;} T_{p}^{\prime}, T_{q}, G_{4}\right\} \tag{71}\\
& \left(Z_{n}^{\phi \phi}\right)_{i j}=j \sum_{p=1}^{4} \sum_{q=1}^{4}{ }_{T}{ }_{p},{ }^{T}{ }_{C},\left(G_{5}-\frac{n^{2}}{k^{2} \rho_{i}, \rho_{j},} G_{4}\right) \tag{72}\\
& \text { where } \\
& \begin{array}{l}
p^{\prime}=p+4 i-4 \\
q^{\prime}=q+4 j-4 \\
i^{\prime}=p+2 i-2 \\
j^{\prime}=q+2 j-2
\end{array} \tag{73}
\end{align*}
$$

The subscript i^{\prime} denotes evalration at t_{i}, . The subscript f^{\prime} denotes evaluation at t_{f}, . In (69) - (72), G_{4}, G_{5}, and G_{6} are given by (62) - (64) in which k of (65) is evaluated at $t=t_{i}, t^{\prime}=t_{j}$, which, in terms of
 we replace R by the equivalent distance R_{e} given by (36) which, with i replaced by i^{\prime} reads

$$
\begin{equation*}
\mathrm{k}_{\mathrm{e}}=\sqrt{\left(\mathrm{d}_{\mathrm{i}}, / 4\right)^{2}+4 \rho_{i}^{2}, \sin ^{2}\left(\phi^{\prime} / 2\right)} \tag{74}
\end{equation*}
$$

The N_{ϕ} point Caussian quadrature formula (37) which reads

$$
\begin{equation*}
\int_{0}^{\pi} f\left(\|^{+}\right) d \phi^{\prime}=\frac{\pi}{2} \sum_{k=1}^{N_{\phi}} A_{k} f\left(\frac{\pi}{2}\left(x_{k}+1\right)\right) \tag{75}
\end{equation*}
$$

is used to calculate the integrals G_{4}, G_{5}, and G_{6} deftned by (62) - (64).
Since replacement of ($1, f, p, q$) by ($1, i, 4, p$) in (73; implies replacement of ($\mathrm{X}^{\prime}, j^{\prime}, \mathrm{p}^{\prime}, \mathrm{q}^{\circ}$) by ($\mathrm{j}^{\prime}, \mathrm{i}^{\prime}, \mathrm{q}^{\prime}, \mathrm{p}^{\prime}$) \ln (69) - (72), and since G_{4}, G_{5}, and G_{6} are symmetric in i^{\prime} and f, it is evident chat

$$
\begin{align*}
& \left(Z_{n}^{t t}\right)_{i j}=\left(Z_{n}^{t t}\right)_{j i} \\
& \left(Z_{n}^{\phi t}\right)_{i j}=-\left(Z_{n}^{t \phi}\right)_{j i} \tag{76}\\
& \left(Z_{n}^{\phi \phi}\right)_{i j}=\left(Z_{n}^{\phi \phi}\right)_{j i}
\end{align*}
$$

An efficient method of computing (69) - (72) which takes advantage of (76) is described in a subsequent report.

V. COMBINED FIELD SOLITTION

In this section, we assume that the incident field ($\mathrm{F}_{\mathrm{m}}^{\mathrm{i}}, \mathrm{H}_{\mathrm{m}}^{\mathrm{i}}$) due to sources outside the perfectly conducting body whose closed surface is S induces a unique electric surface current $\underset{\sim}{J}$ on S and that this $\underset{\sim}{J}$ satisfies (3) and (40) which read

$$
\begin{align*}
& -\underset{\sim}{n} \times{\underset{\sim}{r}}^{s}(\underset{\sim}{J})=\underset{\sim}{n} \times \underset{\sim}{H^{i}} \quad \text { just inside } S \tag{77}
\end{align*}
$$

where n is the unit outside normal vector to $S,\left(\underset{\sim}{s}, H_{\sim}^{s}\right)$ tis the field due to J , and the subscript tan denotes tangential components on S . The questIon arises whether (77) alone is sufficient to determine J, whether (78) alone is sufficient, or whether information must be drawn simultaneously from both (77) and (78).

If both J an $1 \mathrm{I}+\hat{\mathrm{J}}$ satisfy (77), then

$$
\begin{equation*}
{\underset{\sim}{n}}_{\mathrm{t} a n}^{\mathrm{s}}(\underset{\sim}{\mathrm{~J}})=0 \quad \text { just inside } \mathrm{s} \tag{79}
\end{equation*}
$$

Maxwell's equations will be satisfied if

$$
\begin{equation*}
\underset{\sim}{\nabla} \times \underset{\sim}{\nabla} \times{\underset{\sim}{H}}^{3}(\hat{J})=k^{2} \underline{H}^{s}(\hat{y}) \quad \text { inside } s \tag{80}
\end{equation*}
$$

The solution I to (77) is not unique for values of k at which (79) and (80) admit a nontrivial solution $\hat{\jmath}$. This $\hat{!}$ will be called a magnetic cavity mode. Similarly the solution J to (78) is not unique for values of k at which

$$
\begin{align*}
& {\underset{V}{s}}_{\tan }^{(\hat{J})=0 \quad \text { on } S} \tag{81}\\
& \nabla \times \nabla \times E^{s}(\hat{J})=k^{2} F^{s}(\hat{J}) \tag{82}
\end{align*}
$$

admit a nontrivial solution \hat{j} called an electric cavity mode. Comparison of (79) and (80) with (81) and (82) shows that the magnetic and electric cavicy modes occur at the same values of k and that the magnetic field of the magnetic mode is proportional to the electric field of the electric mode inside S. The electric mode field vanishes outside S because its tangertial electric field is zero just outside S, but the mannetic mode field does not vanish outside S because its tangential magnetic field is not zero just outside S.

The assumed existence of a mique solution J to the physical problem implies that the incident field is orthogonal to a nontrivial. solution, if it exists, of the adjoint field problem. The adjoint magnetic field operatcr has been determined by Marin [9].
'Ve will show that the solition J to the combined field formulation [4,5]
is unique and satisfies both (77) and (78) whenever α is a positive real number.
[9] T. Marin, "Natural-Mode Representation of Transtent Scattered Fitide," IEFF Trans. Anterinas Propagat., vol. AP-21, pp. 809-818, Nov. 1973.

The solution to (83) is unique if

$$
\begin{equation*}
-n \times H^{s}(J)-\frac{\underline{Z}}{\eta}{\underset{\sim}{x}}^{\mathrm{s}}(J)=0 \tag{84}
\end{equation*}
$$

implies that $J=0$. Scalar multiplication of (84) by its compiex conjugate and integration over S lead to

$$
\begin{equation*}
\iint_{S}\left(\left|H_{n t a n}^{s}(J)\right|^{2}+\frac{\alpha^{2}}{n^{2}}\left|F_{n \tan }^{s}(J)\right|^{2}\right) d s+\frac{2 \alpha}{n}\left[\text { Rea] } \int_{S}\left({\underset{N}{N}}^{s}(J) \times{\underset{\sim}{r}}^{s^{*}}(J)\right) \cdot(-n) d s\right]=0 \tag{85}
\end{equation*}
$$

The bracketed quantity in (85) is the real power flowing inside S and hence is either zero if the media is loss-free or greater than zero if the media is lossy. Thus, (85) implies that

$$
\begin{align*}
& \underset{\sim}{H} \underset{\tan }{S}(J)=0 \quad \text { just inside } S \tag{86}
\end{align*}
$$

Since (87) implies that ${\underset{\sim}{H}}_{\mathrm{tar}}^{\mathrm{s}}(\mathrm{J})$ is also zero fust outside S , we obtain the desired result that $\underset{\sim}{s}=0$. Hence che solution to (83) is unique. The statement on page 224 of $[5]$ that. (83) has an infinite number of solutions at eigenfrequencies is not corract.
T.f (83) is true, then (84) - (87) are vaild with $\mathrm{H}^{\mathbf{s}}(\mathrm{J})$ replaced
 both (77) and (78).

Since (83) ts the linear combination of (3) and (40) with relative weight α, the metiod or moments formulation obtained frm. (83) is the same linear combination of (17) and (57). Hence,
where all matrices and column vectors have the same meaning as in Sections ITI and IV except that $\stackrel{I}{n}^{\dagger}$ and ${ }_{n}^{\phi}$ now, wher substicuted into (45), give the combined field solution for J.

VI . FAR FIELD MEASIJRFMENT AND PLANE WAVE EXCITATION
In this section, measurement vectors are used to obtain the far field of the surface current. J. The plane wave excitation vectors needed for the H-field, F-field, and combined field solutions are then expressed in terms of these measurement ventors.

By reciprocity,

$$
\begin{equation*}
{\underset{\sim}{x}}_{s}^{s}(J) \cdot I \ell \underset{\sim}{r}=\iint_{S} J(\underset{\sim}{r}) \cdot F_{\sim}\left(I_{r}\right) \mathrm{ds} \tag{89}
\end{equation*}
$$

where $F_{i}^{S}(J)$ is the far electric field due to $J, I \ell{ }_{\mathrm{H}}$ is a receiving electric

$$
\begin{equation*}
\underset{\sim}{F}\left(I_{\sim_{r}}\right)=\frac{-j k n \epsilon^{-j k r_{r}}}{4 \pi r_{r}} I_{\ell_{r}} e^{-j k r} \cdot \underset{r}{r} \tag{90}
\end{equation*}
$$

where r_{r} is the distance between the measurement point and the origin in the vicinity of S and k is the propagation vector of the plane wave coming from Ie ${ }_{r}$: Substi ting (45), (46), and (90) into (89) and letting er be either ${\underset{\sim}{4}}_{\underset{0}{1}}^{r}$ or $\underset{\sim}{u}, w^{r}$ obtain
 civen by
where ϕ_{r} is the azimuth of the far fieid measurement point. In (91), $E_{\theta}^{s}(J)$ and $\mathrm{E}_{\phi}^{s}(J)$ are respectively the $\underset{\sim}{u}{ }_{\sim}^{r}$ and ${\underset{\sim}{u}}^{r}$ components of ${\underset{\sim}{E}}_{s}^{s}(J)$.

With a view toward evaluation of (92), we note from Figs. 2, A-1, and A-2 that

$$
\begin{align*}
& {\underset{\sim}{u}}_{t} \cdot{\underset{\sim}{u}}^{\mathrm{r}}=-\sin \theta_{r} \cos v+\cos \theta_{r} \sin v \cos \left(\phi-\phi_{r}\right) \\
& {\underset{u}{u} \phi}^{u_{i}}{\underset{\sim}{r}}^{r}=-\cos \theta_{r} \sin \left(\phi-\phi_{r}\right) \tag{93}\\
& \mathrm{u}_{\mathrm{t}} \cdot \stackrel{u}{r}_{\mathrm{r}}^{\mathrm{r}}=\sin \mathrm{v} \sin \left(\phi-\phi_{\mathrm{r}}\right)
\end{align*}
$$

$$
\begin{aligned}
& { }_{\sim}^{-k} r_{r} \cdot \underset{\sim}{r}=k z \cos \theta_{r}+k \rho \sin \theta_{r} \cos \left(\phi-\phi_{r}\right)
\end{aligned}
$$

Substituting (93) and (30) into (92) and taking advantage of the integral formula

$$
\begin{equation*}
J_{n}\left(k \rho \sin \theta_{r}\right)=\frac{j^{-n}}{2 \pi} \int_{0}^{2 \pi} e^{j\left(k \rho \sin \theta_{r} \cos \phi+n \phi\right)} d \phi \tag{94}
\end{equation*}
$$

Geduced fron (9.1.21) of [10] for Bessel functions, we obtain
[10] M. Abramowtz and I. A. Stegun, "liandbook of Mathematical Functions," U. S. (Goverment Printing Office, Washington, D.C. (Nati. Bur. Std. 11. S. Appl. Math. Ser. 55), 1964 , p. 360.

$$
\begin{aligned}
& R_{n i}^{t \theta}=\pi j^{n} \sum_{p=1}^{4} T_{p+4 i-4}\left(-2 J_{n} \sin \theta_{r} \cos v+j\left(J_{n+1}-J_{n-1}\right) \cos \theta_{r} \sin v\right) e^{j k z \cos \theta} r \\
& R_{n i}^{\phi \theta}=-\pi j^{n} \sum_{p=1}^{4} T_{p+4 i-4}\left(J_{n+1}+J_{n-1}\right) \cos \theta_{r} e^{j k z \cos \theta_{r}}
\end{aligned}
$$

$$
R_{n i}^{t \phi}=\pi j^{n} \sum_{p=1}^{4} T_{p+4 i-4}\left(J_{n+1}+T_{n-1}\right) \sin v e^{i k z \cos \theta_{r}}
$$

$$
\mathrm{F}_{\mathrm{ni}}^{\phi \phi}=\pi j^{n+1} \sum_{p=1}^{4} \mathrm{~T}_{\rho+4 i-4}\left(J_{n+l}-J_{n-1}\right) e^{j k z \cos \theta_{r}}
$$

where

$$
\begin{equation*}
J_{\mathrm{n}}=J_{\mathrm{n}}\left(\mathrm{k} \rho \sin \theta_{\mathrm{r}}\right) \tag{96}
\end{equation*}
$$

In (95), ρ, z, and v are to be evaluated at $t=t_{p+2 i-2}$.
Substitute (1) and (2) into (18) and (19) to obtain

$$
\begin{equation*}
\hat{\tau}_{n i}^{p q}=\int \operatorname{dt\rho } f_{i}(t) \int_{0}^{2 \pi} d \phi(\underset{\sim}{u} p \times \underset{\sim}{u}) \cdot\left(\underset{\sim}{k} \times \underset{\sim}{u}{ }_{q}^{t}\right) e^{j(-\underset{\sim t}{k} \cdot \underset{\sim}{r} \cdot n \phi)} \tag{97}
\end{equation*}
$$

and then substitute (1) and (2) into (50) where ${\underset{w n i}{p}}_{\mathrm{p}}^{\text {is given }} \mathrm{by}$ (47) to obtair

$$
\begin{equation*}
V_{n i}^{p q}=k \int \operatorname{dtp} f_{i}(t) \int_{0}^{2 \pi} d \phi(\underset{\sim}{u} \cdot \underbrace{t}_{\sim q}) e^{j\left(--k_{v} \cdot r\right.} \underset{\sim}{r}-n \phi) \tag{98}
\end{equation*}
$$

where p is either t or ϕ. The additional superscript q on the left-hand sides of (97) and (98) is either or 0 according as the incident electric field is a polarized as in (1) or polarłzed as in (2). Comparison of (97) with (92) shows that

$$
\left[\begin{array}{cc}
\overrightarrow{\mathrm{I}}_{\mathrm{n}}^{\mathrm{t} \theta} & \mathrm{I}_{\mathrm{n}}^{\mathrm{t} \phi} \tag{99}\\
\overrightarrow{\hat{I}}_{\mathrm{n}} \phi \theta & \overrightarrow{\mathrm{I}}_{\mathrm{n}} \phi \phi
\end{array}\right]=\left[\begin{array}{cc}
\overrightarrow{\mathrm{R}}_{-\mathrm{n}}^{\phi \phi} & \overrightarrow{\mathrm{R}}_{-\mathrm{n}}^{\phi \theta} \\
& \\
\overrightarrow{\mathrm{R}}_{-\mathrm{n}}^{\mathrm{t} \phi} & -\overrightarrow{\mathrm{R}}_{-\mathrm{n}}^{\mathrm{t} \theta}
\end{array}\right]
$$

where the R's on the right-hand side of (99) are to be evaluated at $\theta_{r}=\theta_{t}$. Conuparison of (98) with (92) leads to

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{n}}^{\mathrm{pq}}=\overrightarrow{\mathrm{R}}_{-\mathrm{n}}^{\mathrm{pq}} \tag{100}
\end{equation*}
$$

where p is either t or ϕ, q is either θ or ϕ, and $\vec{R}_{-n}^{p q}$ is to be evaluated at $\theta_{r}=\theta_{t}$.

The expressions (45) and (91) for the electric surface current and far field can be simplified by combining the +n and -n terms. Substituting (46) into (45), we obtain
where \tilde{f} is the transpose of the colunm vector \vec{f} of the $f_{j}(t)$, and $\overrightarrow{\mathrm{f}}_{n}^{t q}$ and $\dot{I}_{n}^{\phi q}$ are columm vectors of the coefficients $I_{n j}^{t}$ and $I_{n j}^{\phi}{ }_{j}$ respectively. The additional superscript q is either θ or ϕ according as the incident electric field is θ polarized as in (1) or ϕ polarized as in (2). The column vectors $\vec{I}_{n}^{\text {tq }}$ and $\overrightarrow{\mathrm{T}}_{\mathrm{n}}^{\phi \mathrm{q}}$ appearing in (101) are obtained by solving either the H-field matrix equation (17), the E-ficld matrix equation (57), or the combined field matrix equation (88) with the additional superscript q on the colum vectors therein to denote the polarization of the incident electric field.

$$
\begin{align*}
& \text { Inspection of (20) }-(26) \text { and }(58)-(64) \text { reveals that } \\
& \qquad\left[\begin{array}{cc}
Y_{-n}^{t t} & Y_{-n}^{t \phi} \\
Y_{-n}^{\phi t} & Y_{-n}^{\phi \phi} \\
-n
\end{array}\right]=\left[\begin{array}{cc}
Y_{n}^{t t} & -Y_{n}^{t \phi} \\
-Y_{n}^{\phi t} & Y_{n}^{\phi \phi}
\end{array}\right], n=0,1,2, \ldots \tag{102}
\end{align*}
$$

and

$$
\left[\begin{array}{cc}
Z_{-n}^{t t} & Z_{-n}^{t \phi} \\
Z_{-n}^{\phi t} & Z_{-n}^{\phi \phi}
\end{array}\right]=\left[\begin{array}{cc}
z_{n}^{t t} & -Z_{n}^{t \phi} \\
& \\
-Z_{n}^{\phi t} & Z_{n}^{\phi \phi}
\end{array}\right], n=0,1,2, \ldots \text { (103) }
$$

From (95), it is apparent that

$$
\left[\begin{array}{cc}
\vec{R}_{-n}^{t \theta} & \vec{R}_{-n}^{t \phi} \\
& \\
\vec{R}_{-n}^{\phi \theta} & \vec{R}_{-n}^{\phi \phi}
\end{array}\right]=\left[\begin{array}{cc}
\vec{R}_{n}^{t \theta} & -\vec{R}_{n}^{t \phi} \\
n & \\
& \vec{R}_{n}^{\phi \theta} \\
-\vec{R}_{n}^{\phi \phi}
\end{array}\right], n=0,1,2, \ldots(104)
$$

Substitution of (104) into (99) and (100) gives
and

Since the properties (102) and (103) survive matrix inversion it is evident from (17), (57), (88), (105), and (106) that

In view of (107), (101) becomes
where \bar{f} lis a row vector of the $f_{j}(t)$. If $\rho f_{j}(t)$ is the triangle function itself rather than the four impulse approximation (30) to the triangle function, then

$$
\begin{aligned}
& \left.J^{\phi}\right|_{t=t_{2 i+1}^{-}}=\frac{I_{o i_{n} \phi}^{\phi \phi}+\sum_{\sum_{2=1}^{\infty}}^{\infty}\left\{2 j I_{n i \sim t}^{t \phi} \sin (n \phi)+2 I_{n i n \phi}^{\phi \phi} \cos (n \phi)\right\}}{\rho_{2 i+1}^{u}}
\end{aligned}
$$

Equations (104) and (107) reduce the specializations of (91) for θ and ϕ polarized inciderit electric fields to

$$
\begin{align*}
& F_{\phi \theta}^{s}(J)=\frac{n e^{-j k r} r}{2 \pi r_{r}}\left\{\sum_{n=1}^{\infty}\left(\tilde{R}_{n}^{t \phi} \vec{f}_{n}^{+\theta}+\tilde{n}_{n}^{\phi \phi}{\underset{n}{j}}_{\dot{\phi} \theta}^{n}\right) \sin \left(n_{\phi}\right)\right\} \tag{110}\\
& \left.F_{\theta \phi}^{s}(J)=\frac{n e^{-j k r}-}{2 \pi r_{r}}\left\{\sum_{n=1}^{\infty}\left(\tilde{R}_{n}^{t}\right)_{n}^{t F_{n}^{t}}+{\underset{n}{n}}_{\phi \theta}^{n}{ }_{n}^{\phi \phi}\right) \sin \left(n_{r}\right)\right\}
\end{align*}
$$

In (110), the first subscript on F^{s} denotes the component under consideration whereas the second subscript denotes the polarization of the incident electric field.

The scattering cross section σ is that area for which the incident wave contains enough power to produce by omidirectional radiation the scattered power density at the far field point. Specializing o to the four different polarizations, we obtain

$$
\begin{equation*}
\frac{{ }_{\sigma}^{\mathrm{pq}}}{\lambda^{2}}=\frac{1}{4 \pi}{ }^{3}\left|\frac{2 \pi r_{r} \mathrm{~F}_{\mathrm{pq}}(\mathrm{~J})}{\eta}\right|^{2} \tag{111}
\end{equation*}
$$

where p is either θ or ϕ and q is either θ or ϕ. In (1]1), p is the receiver polarization, q is the transmitter polarization, $\lambda=2 \pi / k$ is the wavelength, and $\mathrm{F}_{\mathrm{pq}}^{\mathrm{s}}(\mathrm{J})$ is given by (110).

VIT. EXAMPLES

Computer program subroutines have been written to calculate the square matrices and measurement vectors needed for the h-field, f-Field and combined field solutions. These sul routines will be descrihed and tisted in a subsequent report. Some computational results obtained with these subroutines are given in this section.

We compare computed approximations to the electric current induced on the surface of a conducting spinere by an axial incident plane wave with the known exact solution. Figure 5 is a plot of Λ versus ka where k is the propagation constant, a is the radius of the sphere, and A is defined by

$$
\begin{equation*}
s=\sqrt{\iint_{S}\left|I-J_{N}^{C}\right|^{2} d s} \tag{1i2}
\end{equation*}
$$

Here, S is the surface of the sphere and H^{i} is the notitent magnetio fifid. Also, f^{t} is the exact elcotric cutrent given by ($6-103$) of [6]

Fig. 5. Electric current error \wedge versus ka for a conducting sphere of radins a excited by an incident plane wave. Squares denote 1 -field solution, citcles denote fi-field solution, and triangles denote rombined fielid solution. Values of A. 0.5 are plotted at the top.
and $\underset{\sim}{J}$ is the computed approximation to ${\underset{\sim}{c}}_{\mathrm{c}}$. The squares, circles, and triangles in Fig. 5 tell which field solution (E-field, H-field, or combined field with $\alpha=1$ in (88)) J_{i} is obtained from. In (112), the expression

$$
\begin{equation*}
|J| \underset{\sim}{J}-\left.{\underset{\sim}{J}}^{c}\right|^{2}=\left(\underset{\sim}{J}-{\underset{\sim}{J}}^{c}\right) \cdot\left(\underset{\sim}{J}-{\underset{\sim}{J}}^{c}\right)^{*} \tag{113}
\end{equation*}
$$

where * denotes complex conjugate is the time average of the square of the length of the time dependent vector whose root-mean-square phasor is ($\mathrm{J}-\mathrm{J}_{\sim}^{\mathrm{C}}$).

The number P (maximum value of (i+1) in (27)) of data points on the generating curve is 31 for all the examples of this section. These data points, equally spaced from the lower pole to the upper pole of the sphere, give 1.4 expansion functions for the t directed electric current and 14 expansion functions for the ϕ directed current. Both surface integrals in (112) are evaluated by integrating analytically in ϕ and by sampling in t at the 30 points defined by (27). The number N_{ϕ} of points used in the Gaussian quadrature integration (37) is 20.

Tn Fig. 5, the H-field solution is generally the best and the F-field solution is the worst as far as Jis concerned. For both F-field and H-field solutions, the error in J is large at resonances of the spherical cavity which are tabulated on page 270 of [6]. The combined field solution is not affected by these resonances. Note that the error in I for the F-ficld solution has a peak around $k a=1.35$ which is far from any resonance. This peak disappeared when the number P of data points was reduced from 31 to 21 .

Figure 6 compares the nomalized radar cross section o/ria in the backscattering direction obtained from the H-fleld solution, the E-ficl, solution, and the combined field solution with the exact $\sigma / \pi a^{2}$. The exact o/ $/ a^{2}$ is calculated from $(6-105)$ of $[6]$ in which A_{e} is our a. In Fig. 6, the squares denote the 1 -field solution, the circles denote the E-field solution, the triangles denote the conbined field solution, and the solfd line denotes the exact solution. The E-ffeld, H-fleld and

combined ficld solutions for $\quad / \pi a^{2}$ are heginning to deteriorate for the larger val res of ka in fig. 6. At $k a=6$, there are only 5 expansion functions per wavelength.

Figures 7 and 8 show the curves of Figs. 5 and 6 respectively in more detail in the vicinity of the first resonance which occurs at $k_{a}=2.744$. The disturbance in the H-field solution occurs quite close to the resonant frequency, but the disturbance in the E-field solution occurs at a slightly higher frequency. Although the error in f for the F-field solition is tremendous, the error in $\sigma f^{2} a^{2}$ for the f-field solution is quite small except at two or three points. The following explanation is offered. Accordirg to Section V, the F-field solution does nor determine how maci of the electric cavity mode current is contained in J. Hence, we suspect that our numerical F-field solutinit does not contain the right amount of the electric cavity mode. If this suspicion is true, then the radar crosi section can still be quite accurate because the electric cavity mode does not radiate any axternal field.

Figures 7 and 8 show that the combined field solution is much better than ejther the 1 -field solution or the f-field solution in the vicinity of the first resonance.

VIT dISCUSSION

An li-fieid solution, an k-field solution and a combined field solution for plane wave scattering from a perfectly conductang body os revolution have heen developed and exnonded. The H-field solution is
 impuise solution. Instead of impulso expansion furcions and simpaon's, rule for integration with respert to the azimuth s, we use four impulse approximations to triangla furtions and danssian quadratere intergation.
 Won Ganssian quatratare intermation in the azimuth: instemat pulse

iig. 7. Flestrie cerrent error A versus ka for a conducting sphere of radius a exited by an incident plane wave. Squares denote ll-field solution, circies denote fifield soiution, and triansles denotr conbined field solution. The first resoname of the spherical cavity is at ka=2.764. Values of $: ~-0.5$ are ploted at the top.

Fig. 8. Nomalized radar cross section o/na versus ka for a conducting sphere of radius a. Solid line denotes exact solution, squares denote H-field solution, circles denote foliela solution, and triangles denote combined field solution. The first resonance of the spherial cavity is at ka $=2.344$.
combined field formation is a linear combination of the wutions for the H-field and fofield solutions. Computer program subroutines which caloulate the square matrices for the forield and F-field solutions and the plane wate measurement vectors wili appear in a forthcoming report. The subroutioe which calculates the square matiof for the rifeld solution executes appreciably faster and requires considerabiy less sorage to obtain the same kind of accuracy as a previous solution [11].

The H-field ance friet aotutions reteriorate in her virinity of Cavity resonances because their homogeneons equations admit nontrivial solutions at these resonances. In section V, it is shom that the homogroeous equation associated with the conbined field formulation has no montrivial solution if the relative weight of the fofield equatinn is real and, if the inside media is lossy, positive. For this reason the combined field solution is much better than either the H-fiela or F-field solutions in the vicinity of cavicy resonances. Figures ? and 8 bear this out

For the examples of Section VII, the relative weight of the f-field equation in the combined fie? formulation is unity. This puts the H-field and F-mield equations on more or less equal footing because the magnitude of the excitation due to the H-ficld equation is then that due to the e-field equation rotated 90° in space. Acoording on $\mathrm{F}_{\mathrm{ig}} \mathrm{g}$. 6, the ! - field solution for $\sigma / \pi a^{2}$ is generally a bit more accurate than the f-field solution away from the cavitv resonances. This suggests that one weights tha F-field equation less than the H-field equation in the combined field formulation.

Oshiro et al. [4,5] conclude fron their plots of mean exror versus a for $0 \leq \alpha \leq 1$ that an value on che order of 0.2 is best. However, there is no logical reason for riling nut negative values of α when the electric surface current radiates into a loss-free inside media because then the lefthand side of (85) does not depend on the sign of we see little significance in the facts that the magnitude of the combined ifeld excitation on the righthand side of (83) is generally larger on the illuminated poition of the surface of the body of revolution than in the shadow zone for 0 and that the oppoate is true for $\% 0$.
[11] R.F. Harrington and J.R. Maurz, "Radiation and Scattering from Bodies of Revolution," Report AFCRI,-69-0305, Contract No. F-19628-67--0-0233 between Syracuse Iniversity and Air Force Cambridge Research laboratories. ruly 1969.

DFRTVATION OF THE H-FIELD INTEGRAL EQUATION

The purpose of Appendix A is to obtain (9) from (7) and (8). In view of (8),

$$
\begin{equation*}
\left(r-r^{\prime}\right) \times \underset{\sim}{J}\left(r_{M}\right)=\left(r-r^{\prime}\right) \times u_{t}^{\prime} J^{t}\left(t^{\prime}, \phi^{\prime}\right)+\left(\underset{\sim}{r-r^{\prime}}\right) \times{\underset{\sim}{u}}_{\prime}^{\prime} J^{\phi}\left(t^{\prime}, \phi^{\prime}\right) \tag{A-1}
\end{equation*}
$$

The cass products on the right-hand side of ($A-1$) are evaluated by expressing all vectors in terms of unit vectors ${\underset{\sim}{u}}^{u_{0}},{\underset{\sim}{u}}_{u_{\phi}}$, and $\underset{\sim}{u} \underset{z}{u}$ in the ρ, ϕ, and z directions respectively.

$$
\begin{align*}
& \underset{\sim}{r}=\underset{\sim}{u} p p+{\underset{\sim}{z}}_{z}^{z} \tag{A-2}
\end{align*}
$$

$$
\begin{align*}
& \underset{\sim}{u}{ }^{\prime}={\underset{m p}{u}}_{u_{p}} \sin v^{\prime} \cos \left(\phi^{\prime} \cdots \dot{\psi}\right)+\underset{\sim}{u} \sin v^{\prime} \sin \left(\phi^{\prime}-\phi\right)+\underset{w z}{u} \cos v^{\prime} \tag{A-4}\\
& u_{u^{\prime}}^{\prime}=-u_{w \rho} \sin \left(\phi^{\prime}-\phi\right)+{\underset{w}{1}}^{u_{\phi}} \cos \left(\phi^{\prime}-\phi\right) \tag{A-5}
\end{align*}
$$

Equation (A - 3) has been obtained by first writing

$$
\begin{equation*}
\underline{u}^{\prime}={\underset{\sim}{u}}_{\prime}^{\prime} 0^{\prime}+{\underset{u z}{z}}_{u^{\prime}}{ }^{\prime} \tag{6}
\end{equation*}
$$

and then using Fig. A-l to express ${\underset{\sim}{p}}_{\prime}^{\prime}$ in terms of ${\underset{u}{p}}^{u}$ and $u_{-\phi}{ }_{0}$. To verify (A-4), use Fig. A-2 to express $\underset{\sim}{u}{ }^{\prime}$ in terms of: ${\underset{\sim}{\sim}}_{\prime}^{0}$ and $\underset{\sim}{u}$ and then use

Substitution of (A-1) - (A-5) into (A-1) yields

$$
\begin{align*}
& \left(\underset{\sim}{r}-{\underset{\sim}{r}}^{\prime}\right) \times \underset{\sim}{J}\left(\underline{r}^{\prime}\right)=\operatorname{rum}_{\sim}^{u}\left(-p^{\prime} \cos v^{\prime}+\left(z^{\prime}-z\right) \sin v^{\prime}\right) \sin \left(\phi^{\prime}-\phi\right) \\
& +{\underset{-\phi}{ }}\left(-\left(0-\rho \cdot \cos \left(\phi^{\prime}-\phi\right)\right) \cos v^{\prime}-\left(z^{\prime}-z\right) \sin v^{\prime} \cos \left(\phi^{\prime}-\phi\right)\right) \\
& \left.+{\underset{-}{z}}^{\sim} \rho \sin v^{\prime} \sin \left(\phi^{\prime}-\phi\right)\right\} J^{t}\left(t^{\prime}, \phi^{\prime}\right)+\left\{{\underset{\sim}{0}}^{u}\left(z^{\prime}-2\right) \cos \left(\phi^{\prime}-\phi\right)\right. \\
& \left.+u_{\phi}\left(z^{\prime}-z\right) \sin \left(\phi^{\prime}-\phi\right)+y_{z}\left(\cdots ;^{\prime}+\rho \cos \left(\phi^{\prime}-\phi\right)\right)\right\} x^{\phi}\left(t^{\prime}, \phi^{\prime}\right) \tag{A-7}
\end{align*}
$$

Fig. A-2. Init vector $\underline{u}_{\mathrm{t}}^{\prime}$ in $\mathrm{n}^{\prime} \mathrm{z}$ plane.

To find the ${\underset{u}{t}}_{u_{t}}$ and ${\underset{\sim}{x}}^{u}$ components of (7), we need

With the help of

$$
\begin{equation*}
\underset{\sim}{u} t=u_{\sim}^{u} \sin v+{\underset{\sim}{u}}_{u}^{u} \cos v \tag{A-10}
\end{equation*}
$$

and $(A-7),(A-8)$ and ($A-9)$ become

$$
\begin{align*}
& \underset{\sim}{u} \cdot \underset{\sim}{n} \times\left[\left(\underset{\sim}{r}-{\underset{\sim}{r}}^{\prime}\right) \times \underset{\sim}{J}\left(r^{\prime}\right)\right]=\left\{\left(\left(\rho^{\prime}-\rho\right) \cos v^{\prime}-\left(z^{\prime}-z\right) \sin v^{\prime}\right) \cos \left(\phi^{\prime}-\phi\right)\right. \\
& \left.-2_{\rho} \cos v^{\prime} \sin ^{2}\left(\frac{\phi^{\prime}-\phi}{2}\right)\right\} J^{t}\left(t^{\prime}, \phi^{\prime}\right)+\left(z^{\prime}-z\right) \sin \left(\phi^{\prime} \cdot \phi\right) J^{\phi}\left(t^{\prime}, \phi^{\prime}\right) \tag{A-11}
\end{align*}
$$

$$
\begin{align*}
& \text { - (} \left.\left.z^{\prime}-z\right) \sin v \sin v^{\prime}\right) \sin \left(\phi^{\prime}-\phi\right) J^{t}\left(t^{\prime}, \phi^{\prime}\right)+\left[\left(\left(\rho^{\prime}-\rho\right) \cos v\right.\right. \\
& \left.\left.-\left(z^{\prime}-z\right) \sin v\right) \cos \left(\phi^{\prime}-\phi\right)+2 \rho^{\prime} \cos v \sin ^{2}\left(\frac{\phi^{\prime}-\phi}{2}\right)\right\} J^{\phi}\left(t^{\prime}, \phi^{\prime}\right) \tag{A-12}
\end{align*}
$$

The distance $\left|r^{\prime}-r^{\prime}\right|$ appearing in (7) is the square root of the sum of the squares of $\left(z-z\right.$ ') and the projection of ($\underset{\sim}{r}-{\underset{m}{r}}^{\prime}$) in the $x y$ plane. Hence,

$$
\begin{equation*}
\left|\underset{u}{r}-{\underset{\sim}{u}}^{\prime}\right|=\sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{\prime 2}+\rho^{2}-2 \rho \rho^{\prime} \cos \left(\phi^{\prime}-\phi\right)}=\sqrt{\left(\rho-\rho^{\prime}\right)+\left(z-z^{\prime}\right)^{2}+4 \rho \rho^{\prime} \sin ^{2}\left(\frac{\phi^{\prime}-\phi}{2}\right)} \tag{A-13}
\end{equation*}
$$

An integral with respect to φ^{\prime} results when the surface integral in (7) is iterated. Because this integral with respect to ϕ^{\prime} is an integral of a 2π periodic function of ϕ^{\prime} over the period 2π, ϕ^{\prime} may be replaced by $\phi^{\prime}+\phi$ without changing the value of the integral. Substitution of (A-11) -(A-13) into (7) leads to the desired H-field integral equation (9).

DERIVATION $\cap \mathrm{F}$ THE F-FIELD MATRIX EQUATION

The testing functions $\underset{\mathrm{mi}}{\mathrm{W}}$ appearing in (55) are defined by (47). From (55), (47), and (52), we obtain

$$
\begin{aligned}
& \sigma_{m i}^{t}=\frac{-1}{j \omega \rho} \frac{\partial}{\partial t}\left(\rho f_{i}(t)\right) e^{-j m \phi} \\
& \sigma_{m i}^{\phi}=\frac{m}{\omega \rho} f_{i}(t) e^{-j m \phi}
\end{aligned}
$$

The vector and scalar potentials A and Φ appearing in (55) are given by (42) and (43) with $J_{n j}^{\mathrm{q}}$ defined by (46). In agreement with (44), (46), and (52), and in analogy with ($B-1$), the charge density o appearing in (43) is specialized to either $\sigma_{n j}^{t}$ or $\sigma_{n j}^{\phi}$ given by

$$
\begin{align*}
& \sigma_{n i}^{t}=\frac{-1}{j \omega \rho^{\prime}} \frac{\partial}{\partial t^{\prime}}\left(\rho^{\prime} f_{j}\left(t^{\prime}\right)\right) e^{j n \phi^{\prime}} \\
& \sigma_{n j}^{\phi}=\frac{-n}{\omega \rho^{\prime}} f_{j}\left(t^{\prime}\right) e^{j n \phi^{\prime}} \tag{B-2}
\end{align*}
$$

In view of the above considerations, (55) can be rewritten as

To facilitate evaluation of the dot products appearing in ($B-3$), we write

$$
\begin{align*}
& u_{t}={\underset{p}{p}}^{p} \sin v+{\underset{\sim}{u}}_{u} \cos v \tag{B-4}\\
& u_{t}^{\prime}={\underset{\sim}{p}}_{\prime}^{u_{p}} \sin v^{\prime}+{\underset{\sim}{z}}_{u} \cos v^{\prime}
\end{align*}
$$

where ${\underset{\sim}{u}}^{u}, u_{p}^{\prime}$, and v^{\prime} are defined in Figs. $A-1$ and A-2. With the help of ($B-4$), we obtain

$$
\begin{align*}
& {\underset{\sim}{t}}^{u_{t}}{\underset{\sim}{u}}_{\prime}^{\prime}=\sin v \sin v^{\prime} \cos \left(\phi^{\prime}-\phi\right)+\cos v \cos v^{\prime} \\
& {\underset{\sim}{u}}_{u_{\phi}} \cdot{\underset{u}{u}}_{\prime}^{\prime}=\sin v^{\prime} \sin \left(\phi^{\prime}-\phi\right) \\
& {\underset{u}{u}}_{u} \cdot u_{\phi}^{\prime}=-\sin v \sin \left(\phi^{\prime}-\phi\right) \tag{B-5}\\
& {\underset{\sim}{u}, \dot{q}}_{u_{n}}^{u_{\phi}^{\prime}}=\cos \left(\phi^{\prime}-\phi\right)
\end{align*}
$$

The distance $|r-r|$ is given by ($A-13$) which reads

$$
\begin{equation*}
\left|r-r^{\prime}\right|=\sqrt{\left(\rho-\rho^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}+4 \rho \rho^{\prime} \sin ^{2}\left(\frac{\psi^{\prime}-\phi}{2}\right)} \tag{B-6}
\end{equation*}
$$

In view of ($B-5$) and ($B-6$), the integrands of ($B-3$) are periodic functions of ϕ^{\prime} with period 2π. Hence, ϕ^{\prime} can be replaced by ($\phi^{\prime}+\phi$) without changing the values of any of the integrals. When this is done, the ϕ dependence of the integrands becomes $\mathrm{e}^{\mathrm{j}(\mathrm{n}-\mathrm{m}) \phi}$ which when integrated gives 2π for $m=n$ and zero for $m \neq n$. Taking the liberty of replacing the double subscript inn by the single subscript n, we obtain (53) - (61). The forms (62) - (64) of the ϕ^{\prime} integrals follow from the even or odd symmetry of the terms in ($B-5$) about $\left(\phi^{\prime}-\phi\right)=0$ and the even symmetry of ($B-6$) about $\left(\phi^{\prime}-\phi\right)=0$.
[1] T. K. Wr, "Electronagnetic Scattering from Arbitrarily-Shaped lossy Dielectric Bodies." Ph.D. thesis, liniversity of Mississippi, May 1976.
[2] P.L.F. Uslenghi, "Computation of Surface Currents on Bodies of Revolution," Alta Frequenza, vol. 39 , No. 8, 1970, pp. 1-12.
[3] J. R. Mautz and R. F. Harrington, "Radiation and Scattering from Bodies of Revolution:' Appl. Sci. Res., vol. 20, Tune 1969, pp. 405-435.
[4] F. K. Oshiro, K. M. Mitzner, and S. S. Locus et al., "Calculation of Radar Cross Section," Air Force Avionirs laboratory Tech. Rept. AFAL-TR-70-21, Part II, April 1970.
[5] A. J. Poggio and F. K. Miller, "Integral Equation Solutions of Three-Dimensional Scattering Prohlems," Chap. 4 ot Computer Techniques for Flectromagnetics, edited by R. Mittra, Pergamon Press, 1973.
[6] R. F. Harrington, Time-Harmonic Flectromagnetic Fields, Mchraw-Hi]l Book Co., 1961.
[7] F. A. Wolff, Antenna Analysis, John Wiley and Sons, Inc., New York, 1966, p. 61.
[8] V. T. Krylov, Approximate Calculation of Integrals, transiated by A. H. Stroud, Macmillan Co., New York, 1962, Appendix A.
[9] L. Marin, "Natural-Mode Representation of Transient Scattered Fields," IFEE Trans. Antennas Propagat., vol. Ap--21, pp. 809-818, Nov. 1973.
[10] M Abramowitz and 1. A. Stepum, "Handbook of Mathematiral Functions," H.S. Govt. Printing, Office, Washington, D. C. (Nat I. Bur. Std. I.S. Appi. Math. Ser. 55), 1964, p. 360.
[11] R. F. Harrington and J. R. Matatz, "Radiation and Sratering from
 (-0233 between Syracuse $\mathrm{H}_{\mathrm{n}} \mathrm{iversity}$ and Air force Cambrider kesearch Latoratories, Julv 196\%.

[^0]: $1 i$
 UN(IASSIFIE!
 SECURITY GLASSIFICATION OF TMIS PAGE(When DeIC Entered)

