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Abstract

Recently a probability interpretation of moments was proposed as
a compromise between the Elmore delay and higher order moment
matching for RC timing estimation[5]. By modeling RC impulses as
time-shifted incomplete gamma distribution functions, the delays
could be obtained via table lookup using a gamma integral table
and the first three moments of the impulse response. However,
while this approximation works well for many examples, it strug-
gles with responses when the metal resistance becomes dominant,
and produces results with impractical time shift values.

In this paper the probability interpretation is extended to the
circuit homogeneous response, without requiring the time shift
parameter. The gamma distribution is used to characterize the nor-
malized homogeneous portion of the step response. For a general-
ized RC interconnect model (RC tree or mesh), the stability of the
homogeneous-gamma distribution model is guaranteed. It is dem-
onstrated that when a table model is carefully constructed, the h-
gamma approximation provides for excellent improvement over the
Elmore delay in terms of accuracy, with very little additional cost
in terms of CPU time.

1: Introduction

With the advent of deep submicron technologies, the delay due to
the RC interconnect is becoming a more dominant portion of the
overall path delay for digital integrated circuits. Model order reduc-
tion methods [2][7][8][11][15] have been widely used to control the
overwhelming complexity of the interconnect circuit models by
representing the responses in terms of their dominant poles. How-
ever, while model order reduction methods are extremely efficient
for verification purposes, the computational complexity required to
solve the transcendental equations to obtain the delay points is un-
acceptable for use as a delay metric for the early phases of design.
Therefore, due to the explicit nature of the Elmore delay approxi-
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mation, it remains a popular inner-loop metric for performance
driven design optimization. Unfortunately, this metric is of limited
efficacy for the DSM technologies for which interconnect resis-
tance and delays are dominant[3][10].

While the Elmore delay is provably an upperbound for the 50%
delay of a large class of RC tree responses[3], the tightness of the
bound varies significantly from one node to the next. For this rea-
son, attempts have been made to create higher order (2-pole)
moment matching models from which the delays can be approxi-
mated explicitly[4][16]. But these models are lacking in terms of
generality and accuracy[5]. 

As a compromise between model order reduction via moment
matching and Elmore’s distribution interpretation of RC impulse
responses to approximate the median (50% delay) by the mean
(first moment of the impulse response), a probability interpretation
of moments was used in [5] which combines the benefit of both.
By modeling the RC impulse responses in terms of time-shifted
incomplete gamma functions, the distribution parameters are fitted
in a provably stable way (for RC trees) by matching the first three
moments of the impulse response[5]. The accuracy of this
approach was generally superior to an Elmore approximation, par-
ticularly for nodes at the far ends of RC trees. However, large time
shifts can occur when the impulse is not accurately captured in
terms of a gamma function, and delay approximation errors com-
parable to those for the Elmore delay can result[5]. 

This paper extends the probability interpretation to fit the
homogeneous portion of the step response. The gamma distribu-
tion is selected to model the normalized homogeneous portion of
the step response. The first two (central) moments of the homoge-
neous response are matched to determine the parameter values for
this distribution model. The moment matching is shown to be
provably stable and realizable for a general class of RC intercon-
nect circuits; namely, RC meshes. Once the gamma distribution
parameters are obtained via moment matching, the step and ramp
response delays are estimated using table lookup techniques. By
selecting appropriate table entries, the lookup tables can be limited
to moderate size, which makes this approach efficient in both
terms of runtime and memory. The result is a delay metric in terms
of the first three moments of the impulse response which provides
accuracy similar to two-pole models, but with computational com-
plexity comparable to the Elmore delay approximation.

This paper is organized as follows: Section 2 presents the nec-
essary background and review of the probability interpretation of
moments and gamma distributions. Section 3 proposes the appli-
cation of the gamma distribution for modeling the normalized
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homogeneous portion of the step response and the delay calcula-
tion of the step and ramp responses. Properties of the moment fit-
ting and the lookup tables are presented in Section 4. The
experimental results are shown in Section 5, followed by the con-
clusions in Section 6.

2: Background

2.1: Probability Interpretation of Moments

Let  be the time-domain impulse response for an RC circuit.

The corresponding transfer function , can be expanded in a
Taylor series about s=0:

(1)

We define the k-th coefficient, , and refer to it as the response

waveform moment following the terminology in [11]:

(2)

It follows that  can be written as

(3)

If  satisfies the following conditions, 

(4)

then we can also express the transfer function in terms of mo-
ments of a probability function. For example, if the conditions in
(4) are true,  can be treated as a p.d.f. (probability density

function)[6], where the k-th moment mk exists for any ,

(5)

Elmore used this distribution interpretation of moments to
propose the approximation of the median by the first moment, or
mean[1]. Penfield and Rubenstein demonstrated that RC tree
impulse responses satisfied the conditions in (4)[9], and the
Elmore delay has been used for delay estimation ever since.

Higher order moments of the distribution are often translated
into shape characteristics as described by central moments[6].
Noting the relationship between the moments of a p.d.f. and the
circuit-response moments using equations (2) and (5),

(6)

we can express the central moments of  in terms of the mo-
ments of the circuit response as follows[3]:

(7)

Following typical central moment definitions, is the mean of

the distribution,  represents the variance, or spread of the dis-

tribution, and  is a measure of the skew, or asymmetry of the

distribution. 

In [3], the central moment properties where used to prove that
the Elmore delay is an absolute upper bound on the 50% delay of
RC trees. But if one can select a representative distribution fam-
ily for RC tree impulse responses, the next step is to use central
moments to characterize a higher order estimation of the median
point of the function. 

2.2: Gamma Distribution Model

One family of the distributions suggested in [5] is the gamma dis-

tribution. The probability density function  has the form:

, (8)

The variable n is the shape parameter, while  is the scale factor.
The central moments of the gamma function can be expressed
as[5]:

, (9)

If we choose  to approximate the RC impulse

response, then the corresponding s domain transfer function,

, would follow via the Laplace transformation of

:

(10)

The frequency domain model denoted by (10) may be interpreted
as a unique pole with a real number order. Notice that when

, the gamma distribution model can naturally degrade to
the dominant pole model in both frequency domain and time do-
main. However, the existence of the parameter n increases the de-
gree of freedom of the model. 
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2.3: PRIMO using the Gamma Distribution 
Model 

Since the gamma function has only two variables, it can be
uniquely characterized by fitting it with two moments. However,
three moments are generally required to capture essential wave-
form response characteristics[3]. Therefore, in [5] a third param-

eter, namely a time-shift value  was added to the gamma
function so that three moments could be matched. The first three

moments of the impulse response, , were used to

uniquely specify the three time-shifted gamma parameters. 

One can think of this fitting as matching the central moments

 of the gamma distribution with the corresponding cen-

tral moments of the circuit impulse response, 

(11)

then shifting the resulting p.d.f in time domain so that it has the

same mean value  as the impulse response

(12)

It follows that the step response is approximated by:

(13)

Denoting the cumulative distribution function (c.d.f) of the
unscaled gamma distribution by P(n, t):

(14)

Then we can also express the step response as 

. (15)

where  is also an incomplete gamma function.

To calculate the delay at a particular percentage point , one
needs only to use a one dimensional lookup table for the unscaled

gamma distribution (with p.d.f ) percentiles to get the

value . Then with simple shifting and scaling the delay
approximation, t is obtained.

For saturated ramp responses similar table lookup techniques
can also be adopted. Assuming the input ramp has a maximum
voltage of 1, and rise time of tr, the ramp response expressed in

terms of integration of the step response is 

(16)

Substituting  by (15), and letting 

(17)

Notice that the right hand side of (17) is a function of variable

x with two parameters n, and . Thus, for any percentage point

, we only need a precompiled two dimensional table with n and

 as the entries, for the x values satisfying

(18)

After looking up the 2D table for , the delay value

 is computed by simple transformations.

3: Gamma Fitting of Homogeneous Response

3.1:  Homogeneous Response for RC Meshes

Since the Laplace transform of the circuit impulse response can be
expressed in the form shown in (3), the Laplace transform of the
unit step response Y(s) can be expressed as

(19)

Referring to (19), we can decompose the step response into the

forced response, , and the homogeneous response

. Therefore, we can

write the time-domain unit step response as:

(20)

The components of y(t) are displayed in Fig.1.
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FIGURE 1. Decomposition of a unit step response.
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Since the unit step response, y(t), of an RC mesh [14] mono-

tonically increases from 0 to 1, and , , the nor-

malized homogeneous response satisfies the following:

(21)

Therefore, in a manner similar to what was done for the impulse
response, we can treat yh(t) as a probability density function and

use a gamma distribution to fit the homogeneous response.

3.2: h-gamma Approximations

Unlike PRIMO in [5] which fits the impulse response with the
shifted gamma distribution, we propose here to fit the gamma dis-
tribution to the normalized homogeneous response without time-
shifting. Without the extra parameter, ∆, can completely charac-
terize the gamma distribution representation of the homogeneous
response by matching two central moments.

We begin by writing the Laplace transform of the normalized
homogeneous function as:

(22)

We can express the mean µ and the variance µ2 in terms of the cir-

cuit response moments using (22) and the expressions in [3]:

(23)

To fit the gamma distribution parameters n and λ, we force
the model to match the µ and µ2 in (23) via moment matching: 

(24)

Rearranging (24),

; (25)

Once we solve for the n and λ, the approximate step response is 

(26)

It is important to note that while it appears that we are match-
ing only the first two central moments, it is evident from (23) that
we are using the first three moments of the impulse response.
Moreover, by fitting the complete response with the summation

of the forced response and the gamma distribution approxima-
tion, it is apparent from (3) and (19) that the first three moments
of the impulse response are implicitly matched. 

3.3: Delay Calculation

To find the step delay for any threshold percentage point  using
(26) we must evaluate

(27)

By defining the following two parameters

, (28)

and using the expression,

(29)

we can rewrite (27) as

(30)

Instead of solving for t using the nonlinear expression in (27),
we follow the p.d.f. approach and construct a table lookup model

to evaluate (30). For each predetermined percentage point , we
precompile a 2 dimensional table with k and n as its entries, and x
as its outcome. Thus when n and λ are obtained by matching the
first three moments, we compute k by (28), and use the n and k to
get x via the table lookup. The delay value, t is obtained by scal-

ing x back by λ, i.e., .

3.4: Ramp Response Delay

The response of a saturated ramp with maximum voltage 1, and
rise time tr can be expressed in terms of integration of the unit step

response model:

(31)
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we can express the ramp response as:
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Following the approach proposed for the step delay evaluation,

we can write  in (33) as . Then, for a given thresh-

old percentage point , the nonlinear equation of the form

 can be transformed to 

(34)

A 3-dimensional table with entries k, l, and n, and outcome x, can
be pre-compiled for the solution of (34). Then, for delay computa-
tion purposes we need only to compute k, l, and n, use the 3D table
to get x, then scale it by λ to get t. The delay relative to the input

ramp is then calculated as .

4: Properties and Implementation Issues

4.1: Stability

The stability of the gamma distribution model for the homoge-
neous response refers to the realizability of the model; namely, that

the parameters n and λ should satisfy , . 

Theorem: The gamma distribution model for the homogeneous
portion of an RC mesh step response is stable for any RC mesh.

Proof:
The circuit response starts at a zero state and ends with the dc value
of the step input for all nodes of the RC mesh; namely,

 for a unit step response. It was stated in [14]
that the step response of an RC mesh is monotonically increasing
as an obvious extension of the Rubenstein, Penfield and Horowitz
proof in [13]. It follows that the step response for any node in an
RC mesh is bounded between 0 and 1. 

Therefore, given that

(35)

The normalized homogeneous response is

(36)

And since  and  are defined as

(37)

Obviously  and  are always positive for any nonnegative nor-

malized homogeneous response yh(t). From the equations for the

gamma parameters in (25), it follows that the model must always

satisfy , . Q.E.D

4.2: Properties of the Tables

One important issue with regard to the utility of this method is the
runtime and storage efficiency of the table model. Note that among
the 3 parameters, k and n are not associated with the input ramp rise

time, and can be expressed with the circuit-response moments ex-
clusively. From equations (23), (25) and (28), we have

(38)

To determine the expected range for these values, first consider
the case when the response is dominated by a single pole p, such

that . Using this relation it is apparent from

(38) that k and n should be close to 1. Our empirical results vali-
date this, where we find that k is between 0.3~1.8, and n is
between 0.5~1.5. 

To determine the range of l it should be noted that when

, i.e, , the response will be ramp follower and

the 50% percentage delay point will approach the Elmore delay

upperbound[3]. When , i.e., , the ramp is

steep enough to be considered as a step input, which means the
delay can be approximated by the outcome of the lookup table for
step response delay with entries k and n. Thus we only need to
make the table with the value of l in the range of 0.1~10.

5: Experimental Results

5.1: signal bus example

The first example is a 0.25 micron example from a commercial mi-
croprocessor. The RC tree has 50 fanouts, including nodes close to
the driver as well as nodes far from the driving point. The h-gamma
model is applied to estimate the 50% delay of the ramp response.
We compared the results with the extension of PRIMO[5] de-
scribed in Section 2.3, and the Elmore approximation when used as
a dominant time constant. The exact response was measured in
terms of a 5th order RICE approximation which showed no differ-
ence from SPICE when a sufficiently small time step was chosen
in SPICE. 

To provide for a fair comparison of all three methods over rep-
resentative best and worst case conditions for all 50 responses, we
plotted histograms of the errors when the rise times were 0.2, 1.0
and 5 times that of the Elmore delay, for each node. That is, each
histogram in Figures 2, 3 and 4 represents the delays for each of
the 50 nodes using 50 different input signal rise times. From the
histograms we observe that large errors sometimes result for both
the Elmore approximation and the time-shifted gamma, while the
h-gamma results are consistently more accurate, with smaller
average and maximum errors. 

5.2: Clock Tree Example

The second example is a balanced clock tree with 188 leaf nodes.
The relative errors from the three approximation methods are sum-
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marized in Table 1, once again measured relative to a 5-th order
RICE approximation. Since all the output nodes are far-end leaf
nodes, all of the metrics provided reasonable accuracy, however,
the h-gamma results are clearly superior.

5.3: Statistics on Large Industry RC Mesh

As a final example we analyzed a large industry example contain-
ing 753 RC nets (actually RC meshes) with a combined total of
1221 fanout nodes. It is demonstrated in Table 2 that the h-gamma
results are clearly superior in all cases once again in terms of the
mean, maximum and standard deviation of the error distribution.
. 

Of further interest, from an implementation perspective, are the
statistics associated with the parameter values k and n. For this ex-
ample, the results are summarized in Table 3. As expected, the val-
ues do not change significantly in a range that is very close to 1.0.
Because of the limited range of these values, we were able to con-
struct a sufficiently accurate table with moderate storage space.

6: Conclusion

By modeling the normalized homogeneous portion of the step re-
sponse as a probability density function in terms of the gamma dis-
tribution, a new delay metric using the first three moments of the
impulse response is proposed. This model is shown to be provably
stable for any RC mesh response, and the accuracy of this metric
was demonstrated on a large number of industrial examples. Im-
portantly, the table model which is required for the distribution
function is shown to span a very small range of element values such
that high accuracy can be achieved with moderate-sized tables.
This results in a metric that provides accuracy close to that from
model order reduction, but with runtime complexity comparable to
the Elmore delay approximation.
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TABLE 1. Comparison of the 50% step delay errors for a clock 
tree example.

Statistics Dominant Pole PRIMO h-gamma

Mean error 2.06% 0.22% 0.17%
Standard deviation 1.04% 0.25% 0.11%
Maximal error 4.78% 0.73% 0.37%

TABLE 2. Comparison of the 50% delay errors for step and 
ramp responses. To consider ramp inputs that were comparable 
to delays, all of the ramps were set to be equal to the Elmore 
delay of the node under test.

Step Input Dominant PolePRIMO h-gamma

Mean error 4.87% 1.06% 0.62%
Standard deviation 10.55% 3.99% 1.96%
Maximal error 117.24% 49.14% 24.02%

Tr = Elmore delay*Dominant PolePRIMO h-gamma

Mean error 4.15% 0.59% 0.36%
Standard deviation 6.03% 1.17% 0.41%
Maximal error 54.4% 10.24% 3.07%

TABLE 3. The distribution of k and n.

Statistics k n

Maximum 1.3592 1.1046
Minimum 0.5841 0.8537
Mean 1.0375 0.9913
Median 1.0321 1.0015
Standard Deviation 0.1046 0.0708
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Figure 2: The relative errors of the 50% delay via a single dominant time constant approximation for an (a) input rise time
of 0.2 times the Elmore delay for each node; (b) An input rise time of 1.0 times the Elmore delay for each node; (c) And an
input rise time of 5 times the Elmore delay for each node.

(a) (b) (c)

Figure 3: The relative errors of the 50% delay via a time-shifted gamma (PRIMO) approximation for an (a) input rise time
of 0.2 times the Elmore delay for each node; (b) An input rise time of 1.0 times the Elmore delay for each node; (c) And an
input rise time of 5 times the Elmore delay for each node.

Figure 4: The relative errors of the 50% delay via an h-gamma approximation for an (a) input rise time of 0.2 times the
Elmore delay for each node; (b) An input rise time of 1.0 times the Elmore delay for each node; (c) And an input rise time of
5 times the Elmore delay for each node.
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